(完整word)沪教版五年级相遇追及问题练习及答案
- 格式:doc
- 大小:740.19 KB
- 文档页数:9
小学五年级数学思维专题训练—相遇与追及1、甲、乙两车同时从A、B两地相向出发,第一次在距A地3000米处相遇。
相遇后两车继续前行,各自到达目的地后立即返回,在距A地500米处第二次相遇。
A、B两地相距米?2、甲、乙两人从A、B两地同时出发相向而行,甲每分钟行70米,乙每分钟行50米。
出发一段时间后,两人在距中点100米处相遇。
如果甲出发后在途中某地停留了一会儿,两人将在距中点250米处相遇。
那么甲在途中停留了分钟?3、某日清晨,一艘渡轮从香港岛驶向九龙,另一艘渡轮从九龙驶向香港岛,两艘渡轮航速不相同。
它们同时出发,于上午8:20首次相遇,两艘渡轮继续航行到目的地,停留15分钟后才返航,两艘渡轮于上午9:11再度相遇。
假设两艘渡轮全程以匀速行驶,请问它们最初的开航时间是几点几分?4、上午8点整,甲从A地出发匀速去B地,8点20分甲与从B地出发匀速去A地的乙相遇;相遇后甲将速度提高到原来的3倍,乙速度不变;8点30分,甲、乙两人同时到达各自的目的地。
那么,乙从B地出发时是8点分?5、甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/小时,乙车的速度是40千米/小时,当甲车驶过A 、B 距离的31多50千米时,与乙车相遇。
A 、B 两地相距 千米?6、甲、乙两人分别以每小时6千米、每小时4千米的速度从相距30千米的两地向对方出发地前进,当两人的距离为10千米时,他们走了 小时?7、小明在河的东岸,小刚在河的西岸,他们分别向河对岸直线游去。
两人第一次在河中相遇时距西岸80米,相遇后各自继续向对岸游去,当游抵对岸后又立即返回。
他俩在河中第二次相遇时距东岸60米,相遇后再继续往前游,到达对岸后又立即返回。
当他俩在河中第三次相遇时,距东岸 米?距西岸 米?8、A 、B 两地相距6000米,甲、乙两人分别从A 、B 两地同时出发相向而行,结果在距B 地2400米处相遇。
如果乙的速度提高到原来的2.5倍,那么两人可提前9分钟相遇,则甲的速度是 米/分钟?9、甲、乙两人分别从A 、B 两地同时相向出发,往返跑步,第一次相遇地点距离AB 的中点100米,甲到B 地、乙到A 地后立即返回,乙的速度保持不变,甲的速度变为原来的2倍,第二次相遇恰好在AB 的中点,那么A 、B 两地相距 米?10、A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分钟、6米/分钟、5米/分钟。
龙文教育学科教师辅导讲义教师:学生:日期: 年月星期:时段:课题期中复习之相遇追及、流水问题1甲、乙两列火车分别从A、B两地相对开出,甲车的速度是58千米/小时,乙车的速度是46千米/小时,甲、乙两车相遇后继续前进,甲到达B地,乙到达A地后,立即按原路返回,两车从开始到第二次相遇共用9小时,求A、B 两地相距多少千米?2甲乙两个城市相距1030千米,从甲城到乙城开出一列普通客车,每小时行驶65千米,2小时后,从乙城开出一列快车,每小时行驶85千米。
快车开出多少小时同普通客车相遇?2甲、乙两辆汽车,同时从东西两地相向而行,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地间的公路是多少千米?4好马每天走120千米,劣马每天走75千米,劣马先走12天,好马多少天可以追上劣马?1.张、李二骑车同时从甲地出发,同一方向行进。
张比李每小时快4千米,张比李早20分钟通过途中乙地。
当李到达乙地时,张又前进了8千米,那么甲、乙两的距离是多少千米?2.上午8时有一列货车以每小时48千米的速度从甲城开往乙城,上午10时又有一列客车以每小时70千米的速度从甲城开往乙城,为了行驶的安全,列车间的距离不应小时8千米,货车最晚应在什么时候停车让客车通过?3.有甲、乙两列火车,甲车车长115米,每秒钟行驶27米,乙车车长130米,每秒钟行驶32米。
从甲车追及乙车到两车离开,共需要多长时间?4.一架飞机从机场出发到某地执行任务,原计划每分钟飞行8千米。
为了争取时间,现将飞行速度提高到每分钟12千米,结果比原计划早到了40分钟。
问机场与目的地相距多远?1.一只小船从甲地到乙地往返一次共用2小时。
回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地距离是多少千米?2.一只轮船的速度是每小时3600米,船在水的流速为30米/分钟的河里航行,从下游的一个港口到上游的某地,再返回到原港口,共用了3小时20分,则这条船从下游港口到上游某地共航行了多少米?3.一艘货轮顺流航行36千米,逆流航行12千米共用了10小时;顺流航行20千米,再逆流航行20千米也用10小时;那么顺流航行12千米,又逆流航行24千米要用多少小时?4.甲、乙两船在静水中的速度分别为33千米/小时和25千米/小时。
五年级下册数学试题——列方程解应用题专题复习沪教版含答案列方程解应用题专题复习1、追及问题例1:小李每小时走5千米,走了10.5千米后,小张骑车以每小时12千米的速度追赶小李,经过几小时可以追上?追上时小李已经走了多少千米?解题方法提示根据小李先走了10.5千米,所以小李与小张两人之间的路程差是10.5千米;用小李与小张两人的速度差x追及时间=小李与小张两人之间的路程差,据此列出方程并求解即可。
解:设经过x小时可以追上。
(12-5)x=10.57x=10.57x+7=10.5+7x=l.55xl.5+10.5=18 (千米)答:经过1.5小时可以追上,追上时小李已经走了18千米。
练一练:1.一辆客车以每小时80千米的速度追赶先出发的货车。
已知货车的速度为60千米/时,客车用了3小时追上货车,那么货车先出发几小时?解:设货车先出发x个小时,则货车共行驶了(x+3) 小时,根据题目信息可得60(x+3)=80x3解得x=l答:货车先出发1个小时。
2.一辆卡车以每小时30千米的速度由甲地驶往乙地,3小时后,一辆摩托车也由甲地驶往乙地,摩托车行了9小时追上卡车,求摩托车速度。
解:设摩托车的速度为每小时x千米。
根据题目信息可得9x=(9+3)x30解得x=40答:摩托车的速度为每小时40千米3.小巧步行每分钟走46米,小胖步行每分钟走54米。
他们绕一个周长225米的环形花坛同时同向行走,小巧在小胖前面128米,多少时间后小胖追上小巧?解:设X分钟后小胖追上小巧。
根据题目信息可得128+46X=54X解得X=16答:16分钟后小胖追上小巧。
4、甲、乙两人同时从相距1340米的各自的家中出发相向而行,甲骑自行车,每分钟行250米,乙步行,每分钟行90米。
3分钟后,乙返回家中取忘带的书,再经过几分钟,甲追上乙?这时乙离家多少米?解:再设经过X分钟甲追上乙。
根据题目信息可得250(X+3)=1340-90X3+90X解得X=290X(3-2)=90米答:再设经过2分钟甲追上乙。
相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x=_________分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_________分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________)秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________.9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
精讲精练 五年级思维数学 第六讲中点相遇问题思维目标:能正确理解距中点相遇时,多走的路程往往是2倍。
数学目标:自然数的认识思维:路程=速度×时间;路程差÷时间差=速度。
路程差÷速度差=时间数学:1,2,3,4,…这些用来计数和编序的数,以及0叫做自然数。
一切自然数都可以用“n ”表示。
最小的自然数是0,没有最大的自然数。
【例1】小强与小红同时从学校与少年宫出发相向而行,小强每小时行3.2千米,小红每小时行2.8千米,当小强与小红相遇时,相遇地点正好离开学校与少年宫的中点0.2千米处,求学校与少年宫相距多少千米?金钥匙:因为是距中点0.2千米处相遇的,所以小强要比小红多走了0.2×2=0.4千米。
相遇时间: 0.2×2÷(3.2-2.8)=1(小时)两地距离: (3.2+2.8)×1=6千米。
答:学校与少年宫相距6千米。
试金石:1、甲乙两车同时从AB 两地出发,相向而行,甲车每小时行58千米,乙车每小时行54千米,相遇时,相遇地点正好离开AB 两地的中点6千米,求AB 两地相距多少千米?2、甲乙两车同时从AB 两地出发,相向而行,甲车每小时行58千米,比乙车每小时多行2千米,当甲车驶过AB 两地中点3.2千米处,与乙车相遇,求AB 两地相距多少千米?学习目标 知识梳理【例2】甲乙两人同时从A地出发到B地去,甲每小时行12千米,乙每小时行9千米,甲到达B地后,立即返回,在返回途中与乙相遇,相遇地点离开B地正好是3.6千米,求AB两地的路程?金钥匙:根据题意,可以知道,由于甲比乙走的快,到达B地后立刻返回与乙在距离B点处相遇,则比乙多走了2个3.6的路程。
那我们还是可以根据路程差÷速度差来求出他们行走的时间。
相遇时间: 3.6×2÷(12-9)=2.4(小时)两地距离:(12+9)×2.4÷2=25.2(千米)答:AB两地的路程是25.2千米。
追及问题(教案)2023-2024学年数学五年级下册-沪教版教学内容:本节课主要讲解追及问题的基本概念和方法。
追及问题是指两个或多个物体从同一地点出发,以不同的速度行驶,要求找出它们相遇的时间或地点。
通过本节课的学习,学生将掌握追及问题的解题思路和技巧。
教学目标:1. 让学生理解追及问题的基本概念和条件。
2. 培养学生运用追及问题的解题方法,解决实际问题。
3. 提高学生分析问题和解决问题的能力。
教学难点:1. 追及问题的条件和解题思路的理解。
2. 追及问题中速度、时间、距离的关系的运用。
教具学具准备:1. 教学PPT或黑板。
2. 练习题和草稿纸。
3. 计算器(可选)。
教学过程:1. 导入:通过一个简单的追及问题,引起学生的兴趣,让他们了解追及问题的基本概念。
2. 讲解:讲解追及问题的条件和解题思路,通过例题进行示范,让学生理解追及问题中速度、时间、距离的关系。
3. 练习:让学生独立完成一些追及问题的练习题,巩固所学知识。
4. 讨论与解答:学生互相讨论练习题的解题过程,教师解答学生的疑问。
5. 总结:总结追及问题的解题方法和技巧,强调重点和难点。
6. 作业布置:布置一些追及问题的作业题,让学生在课后进行巩固练习。
板书设计:1. 追及问题2. 副2023-2024学年数学五年级下册-沪教版3. 教学目标4. 教学难点5. 教学过程6. 练习题和答案7. 作业布置作业设计:1. 基础题:解决一些简单的追及问题,要求学生理解追及问题的基本概念和解题思路。
2. 提高题:解决一些稍微复杂的追及问题,要求学生运用所学的解题方法和技巧。
3. 挑战题:解决一些更复杂的追及问题,要求学生运用所学的知识进行推理和计算。
课后反思:通过本节课的教学,学生对追及问题的基本概念和解题方法有了更深入的理解。
在练习过程中,学生能够运用追及问题的解题方法解决实际问题,提高了他们分析问题和解决问题的能力。
但也发现一些学生在理解追及问题的条件和解题思路上还存在一些困难,需要进一步加强讲解和指导。
沪教版五下数学相遇追及问题
相遇追及问题是数学中一个非常有趣的问题,其实就是指两个人在不同的时间从不同的位置出发,然后以不同的速度相向而行,最后相遇的问题。
这个问题可以归纳为以下几个要素:
1. 时间:两个人出发的时间。
2. 位置:两个人出发的位置。
3. 速度:两个人的速度。
4. 相遇:两个人何时相遇。
那么,我们怎么解决这个问题呢?我们可以分别考虑两个人的行进过程,找到他们相遇的时间点。
假设两个人分别为A、B,A出发点为a,速度为va,B出发点为b,速度为vb,相遇点为x,相遇时间为t。
根据以上要素,我们可以得到以下公式:
A:x = a + va*t
B:x = b + vb*t
因为他们相遇的地点的坐标肯定是相同的,所以我们可以将两个式子
组合起来,得到一个关于t的方程:
a + va*t =
b + vb*t
如果我们将未知数t移到一边,常数项移到另一边,就可以解出t的值:t = (b-a)/(va-vb)
得到t之后,就可以求出相遇点的坐标了:
x = a + va*t 或 x = b + vb*t
总结一下:
1. 计算两人相遇的时间:t = (b-a)/(va-vb)
2. 计算两人相遇的地点:x = a + va*t 或 x = b + vb*t
以上就是解决相遇追及问题的基本方法,希望大家能够轻松地运用这
种方法解决各种有趣的数学问题。
相遇追及问题一、同步知识梳理1、s、v、t探源我们经常在解决行程问题的过程中用到s、v、t三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t,这个字母t代表英文单词time,翻译过来就是时间的意思。
表示速度的字母v,对应的单词同学们可能不太熟悉,这个单词是velocity,而不是我们常用来表示速度的speed。
velocity表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance,但这个单词并不是以字母s开头的。
关于为什么会用s来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v和代表时间的t在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s来表示路程。
2、关于s、v、t 三者的基本关系速度×时间=路程可简记为:s = vt路程÷速度=时间可简记为:t = s÷v路程÷时间=速度可简记为:v = s÷t3、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
二、同步题型分析题型1:简单行程公式解题【例 1】韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【解析】原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【例 2】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【解析】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
相遇追及问题一、同步知识梳理1、s 、v 、t 探源我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示路程。
2、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s = vt路程÷速度=时间 可简记为:t = s÷v路程÷时间=速度 可简记为:v = s÷t3、平均速度平均速度的基本关系式为:平均速度总路程总时间;总时间总路程平均速度;总路程平均速度总时间。
二、同步题型分析题型1:简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【解析】 原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【例 2】 邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【解析】 法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。
【例 3】 一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)【解析】 火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了(1360÷340=)4秒.可见火车行1360米用了(57+4=)61秒,将距离除以时间可求出火车的速度. 1360÷(57+1360÷340)=1360÷61≈22(米)【例 4】 甲、乙两地相距6720米,某人从甲地步行去乙地,前一半时间平均每分钟行80=÷=÷=⨯米,后一半时间平均每分钟行60米.问他走后一半路程用了多少分钟?【解析】方法一:由于前一半时间与后一半时间的平均速度是已知的,因此可以计算出这人步行的时间.而如果了解清楚各段的路程、时间与速度,题目结果也就自然地被计算出来了.应指出,如果前一半时间平均速度为每分钟80米,后一半时间平均速度为每分钟60米,则这个人从甲走到乙的平均速度就为每分钟走(80+60)÷2=70米.这是因为一分钟80米,一分钟60米,两分钟一共140米,平均每分钟70米.而每分钟走80米的时间与每分钟走60米的时间相同,所以平均速度始终是每分钟70米.这样,就可以计算出这个人走完全程所需要的时间是6720÷70=96分钟.由于前一半时间的速度大于后一半时间的速度,所以前一半的时间所走路程大于6720÷2=3360米.则前一个3360米用了3360÷80=42分钟;后一半路程所需时间为96-42=54分钟.方法二:设走一半路程时间是x分钟,则80x+60x=6720,解方程得:x=48分钟,因为80×48=3840(米),大于一半路程3360米,所以走前一半路程速度都是80米,时间是3360÷80=42(分钟),后一半路程时间是48+(48-42)=54(分钟).评注:首先,从这道题我们可以看出“一半时间”与“一半路程”的区别.在时间相等的情况下,总的平均速度可以是各段平均速度的平均数.但在各段路程相等的情况下,这样做就是不正确的.其次,后一半路程是混合了每分钟80米和每分钟60米两种状态,直接求所需时间并不容易.而前一半路程所需时间的计算是简单的.因此,在几种方法都可行的情况下,选择一种好的简单的方法.这种选择能力也是需要锻炼和培养的.三、课堂达标检测检测题1、甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.【解析】马车从甲地到乙地需要100÷10=10小时,在汽车出发时,马车已经走了9-3=6(小时)。
依题意,汽车必须在10-6=4小时内到达乙地,其每小时最少要行驶100÷4=25(千米).检测题2、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?【解析】北京到某地的距离为:6015900⨯=(千米),客车到达某地需要的时间为:-=(小时),所以客车要比货车提前开出3小时。
9005018÷=(小时),18153检测题3、甲、乙两辆汽车分别从A、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、 B 两地间相距多少千米?【解析】在整个过程中,甲车行驶了3+5= 8=(小时),行驶的路程为:48× 8 =384(千米);乙车行驶了5 小时,行驶的路程为:50 ×5 =250(千米),此时两车还相距15 千米,所以A 、B 两地间相距:384+250+15 =649(千米).检测题4、一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【解析】我们可以先求出2小时梨和桃走的路程:(200150)2700+⨯=(千米),又因为还差+=(千米).500千米,所以梨和桃之间的距离:7005001200检测题5、两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【解析】两车的相距路程减去5小时两车共行的路程,就得到了两车还相距的路程:-+⨯=-=(千米).480(4042)548041070一、专题精讲例1、(难度级别※※)(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【解析】汽车A在与汽车B相遇时,汽车A与汽车C的距离为:(8050)2260+⨯=千米,此时汽车B与汽车C的距离也是260千米,说明这三辆车已经出发了+⨯=千米.÷-=小时,那么甲、乙两站的距离为:(8070)131950 260(7050)13例2、(难度级别※※)有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?a)甲、丙6分钟相遇的路程:()+⨯=(米);1007561050甲、乙相遇的时间为:()÷-=(分钟);10508075210东、西两村之间的距离为:()+⨯=(米).1008021037800二、专题过关检测题1、难度级别※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【解析】那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(67.5+75)=5130米。
检测题2、(难度级别※※)小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【解析】画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A 之间这段距离:()54.810.8 1.360+⨯=(千米),这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是:1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A 到甲地需要:130÷2=65(分钟).从乙地到甲地需要的时间是:130+65=195(分钟)=3小时15分.小李从乙地到甲地需要3小时15分.检测题3、(难度级别 ※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【解析】 那2分钟是甲和丙相遇,所以距离是(60+70)×1=130米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=130÷(65-60)=26分钟,所以路程=26×(65+70)=3510米。