北京市昌平区2017-2018学年七年级数学下学期期末试题新人教版
- 格式:doc
- 大小:394.50 KB
- 文档页数:8
2017-2018学年北京市昌平区七年级(下)期末数学试卷(J)副标题一、选择题(本大题共8小题,共8.0分)1.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约米其中,用科学记数法表示为A. B. C. D.【答案】A【解析】解:,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若,则下列各式中一定成立的是A. B. C. D.【答案】C【解析】解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.根据不等式两边加或减同一个数或式子,不等号的方向不变,不等式两边乘或除以同一个正数,不等号的方向不变,不等式两边乘或除以同一个负数,不等号的方向改变,可得答案.主要考查了不等式的基本性质“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变,不等式两边乘或除以同一个正数,不等号的方向不变,不等式两边乘或除以同一个负数,不等号的方向改变.3.下列计算正确的是A. B. C. D.【答案】B【解析】解:A、,无法计算,故此选项错误;B、,正确;C、,故此选项错误;D、,故此选项错误;故选:B.直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.下列调查中,不适合用抽样调查方式的是A. 调查“神舟十一号”飞船重要零部件的产品质量B. 调查某电视剧的收视率C. 调查一批炮弹的杀伤力D. 调查一片森林的树木有多少棵【答案】A【解析】解:A、调查“神舟十一号”飞船重要零部件的产品质量适合全面调查,不适合抽样调查,符合题意;B、调查某电视剧的收视率适合抽样调查,不符合题意;C、调查一批炮弹的杀伤力适合抽样调查,不符合题意;D、调查一片森林的树木有多少棵适合抽样调查,不符合题意;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,已知直线,,则等于A.B.C.D.【答案】C【解析】解:,,,,故选:C.根据平行线的性质,即可得到的度数,进而得出的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.若方程是关于x,y的二元一次方程,则m满足A. B. C. D.【答案】C【解析】解:由方程可得,方程是关于x,y的二元一次方程,,,故选:C.根据二元一次方程未知数x的系数不为0判断即可.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:只含有2个未知数,且含有未知数的项的次数是1的整式方程.7.某健步走运动的爱好者用手机软件记录了某个月天每天健步走的步数单位:万步,将记录结果绘制成了如图所示的统计图在每天所走的步数这组数据中,众数和中位数分别是A. ,B. ,C. ,D. ,【答案】D【解析】解:这组数据中出现的次数最多,在每天所走的步数这组数据中,众数是;每天所走的步数的中位数是:在每天所走的步数这组数据中,众数和中位数分别是、.故选:D.中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,众数是一组数据中出现次数最多的数据,据此判断即可.此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.8.观察下列等式:那么第为正整数个等式为A. B.C. D.【答案】D【解析】解:第为正整数个等式为,故选:D.,,根据以上规律得出即可.本题考查了幂的乘方与积的乘方、完全平方公式等知识点,能根据已知算式得出规律是解此题的关键.二、填空题(本大题共8小题,共8.0分)9.因式分解:______.【答案】【解析】解:原式.故答案为:.方程利用平方差公式分解即可.此题考查了因式分解运用公式法,熟练掌握平方差公式是解本题的关键.10.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是______.【答案】【解析】解:白球2只,红球6只,黑球4只,共有只,取出黑球的概率是;故答案为:.先求出总球的个数,再根据概率公式即可得出答案.此题考查了概率公式,用到的知识点为:概率所求情况数与总情况数之比.11.写出不等式组的整数解为______.【答案】、0【解析】解:不等式组的解集为,不等式组的整数解为、0,故答案为:、0.先根据“大小小大中间找”确定出不等式组的解集,继而可得不等式组的整数解.本题考查的是一元一次不等式组的整数解,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.在中,和是方程的解;______是方程的解;不解方程组,可写出方程组的解为______.【答案】和;【解析】解:在中,和是方程的解;和是方程的解;不解方程组,可写出方程组的解为,故答案为:和;利用二元一次方程的解的定义判断即可.此题考查了解二元一次方程组,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》简称《算法统宗》在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为______.【答案】【解析】解:设大和尚有x人,小和尚有y人,根据题意得:.故答案是:.根据100个和尚分100个馒头,正好分完大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数小和尚的人数,大和尚分得的馒头数小和尚分得的馒头数,依此列出方程即可.本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程.14.在实数范围内定义一种新运算“”,其运算规则为:如:则不等式的解集为______.【答案】【解析】解:根据题意得:,解得:.故答案是:.首先转化成一般的不等式,然后解不等式即可.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.已知,则的值为______.【答案】9【解析】解:.故答案是:9.把前两项分解因式,然后把代入,化简,然后再利用表示,代入求值即可.本题考查了平方差公式,正确对所求的式子进行变形是关键.16.数学课上,老师要求同学们利用三角板画两条平行线老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:将含角的三角尺的最长边与直线a重合,另一块三角尺最长边与含角的三角尺的最短边紧贴;将含角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则.小华的画法:将含角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;再次将含角三角尺的最短边与虚线重合,画出最长边所在直线b,则.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢______同学的画法,画图的依据是______.【答案】苗苗;苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行【解析】解:我喜欢苗苗同学的画法,画图的依据是:苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.故答案为:苗苗,苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.直接利用平移的性质结合平行线的性质得出画图依据.此题主要考查了平行线的性质以及平移变换,正确应用平行线的性质是解题关键.三、计算题(本大题共5小题,共5.0分)17.因式分解:;.【答案】解:原式.原式.【解析】直接运用完全平方公式进行因式分解即可;先运用平方差公式,再运用提公因式法进行因式分解.本题主要考查了因式分解,解决问题的关键是掌握公式法以及提公因式法.18.解不等式:,并把它的解集在数轴上表示出来.【答案】解:移项,得:,合并同类项,得:,系数化为1,得:,解集在数轴上表示如下:【解析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.解不等式组:【答案】解:,由,得:,.,由,得:,.,所以不等式组的解集为.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.解方程组:【答案】解:,由,得,解这个方程,得,把代入,得,解得:,所以这个方程组的解为.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.已知,求的值.【答案】解:原式,由,得:,原式.【解析】首先利用整式的乘法和完全平方公式计算,化简后,再把变化得出整体代入求得数值即可.本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.四、解答题(本大题共7小题,共7.0分)22.已知关于x,y的二元一次方程组的解为,求的值.【答案】解:把代入得:得:.【解析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.23.已知:如图,,点C在射线OB上,经过C点的直线,求的度数.【答案】解:如图所示:,.,.,...【解析】直接利用垂直的定义结合平行线的性质得出度数,进而得出答案.此题主要考查了平行线的性质以及垂直的定义,正确得出的度数是解题关键.24.某电子品牌商下设台式电脑部、平板电脑部、手机部等年的前五个月该品牌全部商品销售额共计600万元下表表示该品牌商2018年前五个月的月销售额统计信息不全图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表单位:万元该品牌5月份的销售额是______万元;手机部5月份的销售额是______万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图则5月份______机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是______.【答案】120;120;36;B;【解析】解:该品牌5月份的销售额是万元,故答案为:120;不同意小明的看法,手机部4月份销售额为:万元.手机部5月份销售额为:万元.因为36万元万元,故小明说法错误,故答案为:36.由扇形统计图知,5月份B机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是,故答案为:B、.销售总额减去前4个月的销售额即可得;月份销售额乘以手机所占百分比可得,计算出手机部4月份销售额,比较大小即可得;由扇形统计图各手机销售额所占百分比即可得.本题考查了扇形统计图和折线统计图的应用,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.25.如图,已知BD平分请补全图形后,依条件完成解答.在直线BC下方画,使与互补;在射线BE上任取一点F,过点F画直线交BC于点G;判断与的数量关系,并说明理由.【答案】解:、如图所示:,理由如下:,,平分,.即.【解析】延长AB,作射线BE,则为所求;在在射线BE上任取一点F,作,交BC于点G,则直线FG为所求;,利用平行线的性质证明即可.本题考查了作图复杂作图以及平行线的判断和性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.26.某小区准备新建50个停车位,用以解决小区停车难的问题已知新建1个地上停车位和1个地下停车位共需万元;新建3个地上停车位和2个地下停车位共需万元.该小区新建1个地上停车位和1个地下停车位需多少万元?该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【答案】解:设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要万元,新建1个地下停车位需万元.设建为整数个地上停车位,则建个地下停车位,根据题意,得:,解得:.为整数,,31,32,共有3种建造方案.建30个地上停车位,20个地下停车位;建31个地上停车位,19个地下停车位;建32个地上停车位,18个地下停车位.【解析】设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;设建m个地上停车位,则建个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法在解答中要注意实际问题中未知数的取值范围的运用.27.在三角形ABC中,点D在线段AB上,交AC于点E,点F在直线BC上,作直线EF,过点D作直线交直线EF于点H.在如图1所示的情况下,求证:;若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.当点H在三角形ABC内部时,直接写出与的数量关系;当点H在三角形ABC外部时,中结论是否依然成立?请在图2中画图探究,并说明理由.【答案】解:证明:,,,,,即;,理由如下:,,,;当点H在三角形ABC外部时,中结论不成立.理由如下:如图,当点H在直线DE上方时,,,如图,当点H在直线DE下方时,,,综上所述,当点H在三角形ABC外部时,.【解析】利用平行线的性质即可证明;,由平行线的性质可得,由此得证;中结论不成立,分两种情况讨论即可.本题考查了作图复杂作图和平行线的性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.28.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程的解为,不等式组的解集为,因为,所以,称方程为不等式组的关联方程.在方程,,中,不等式组的关联方程是______;填序号若不等式组的一个关联方程的根是整数,则这个关联方程可以是______;写出一个即可若方程,都是关于x的不等式组的关联方程,求m的取值范围.【答案】;【解析】解:解不等式组,得:,方程的解为;方程的解为;方程的解为,不等式组的关联方程是,故答案为:;解不等式组得:,所以不等式组的整数解为,则该不等式组的关联方程为,故答案为:;解不等式,得:,解不等式,得:,所以不等式组的解集为.方程的解为,方程的解为,所以m的取值范围是.分别解不等式组和各一元一次方程,再根据“关联方程”的定义即可判断;解不等式组得出其整数解,再写出以此整数解为解得一元一次方程即可得;解不等式组得出,再解一元一次方程得出方程的解,根据不等式组整数解的确定可得答案.本题主要考查解一元一次不等式和一元一次方程,解题的关键是理解并掌握“关联方程”的定义和解一元一次不等式、一元一次方程的能力.。
昌平区2017 - 2018学年第二学期初一年级期末质量抽测数 学 试 卷2018.7一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个....是符合题意的.1. 叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为 A .5510-⨯ B .4510-⨯C .40.510-⨯D .35010-⨯2. 若a<b ,则下列各式正确的是A .22+>+b aB .22->-b aC .b a 22->-D .22b a > 3. 下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=4. 下列调查中,不适合用抽样调查方式的是A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵5. 如图,已知直线a //b ,∠1=100°,则∠2等于A .60°B .70°C .80°D .100°6. 若方程234mx y=x+- 是关于x y ,的二元一次方程,则m 满足 A .2m -≠ B. 0m ≠ C. 3m ≠ D. 4m ≠ 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步ba 21天数走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.38.观察下列等式:①32- 12 = 2 × 4②52- 32 = 2 × 8③72 - 52 = 2 × 12......那么第n(n为正整数)个等式为A.n2- (n-2)2 = 2 × (2n-2)B.(n+1)2- (n-1)2 = 2 × 2nC.(2n)2- (2n-2)2 = 2 ×(4n -2) D.(2n+1)2- (2n-1)2 = 2 × 4n二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:21x-=.10.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.写出不等式组11xx-⎧⎨<⎩≥,的整数解为.12.在①11x=y=-⎧⎨⎩,,②23x=y=⎧⎨⎩,,--③3x=y=⎧⎨⎩,-中,①和②是方程235x y=-的解;是方程39x+y=-的解;不解方程组,可写出方程组23539x y=x+y=--⎧⎨⎩,的解为.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人, 小和尚有y人,那么根据题意可列方程组为.14. 在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15. 若3a b +=,则226a b b -+的值为 .16. 数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下: 苗苗的画法:baa①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b //a. 小华的画法:baa①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线; ②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b //a . 请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据. 答:我喜欢 同学的画法,画图的依据是 .三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 因式分解:(1)269x x -+; (2)()22m n m n -+-.18. 解不等式:12+x ≥13-x ,并把它的解集在数轴上表示出来.19. 解不等式组:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,.–1–2–3–4123420. 解方程组:13 5.x+y=x+y=⎧⎨⎩,21. 已知关于x ,y 的二元一次方程组231ax+by=ax by=-⎧⎨⎩,的解为11x=y=⎧⎨⎩,. 求2a+b 的值.22.已知:如图,OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.FOED CBA23. 已知2870x x +-=,求2)12()1(4)2)(2(++---+x x x x x 的值.24. 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图. 品牌月销售额统计表(单位:万元)D 5%E 25% C 17%B 28%A 25%5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图(1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A 、B 、C 、D 、E 五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .25. 如图,已知BD 平分∠ABC . 请补全图形后,依条件完成解答. (1)在直线BC 下方画∠CBE ,使∠CBE 与∠ABC 互补;(2)在射线BE 上任取一点F ,过点F 画直线FG ∥BD 交BC 于点G ; (3)判断∠BFG 与∠BGF 的数量关系,并说明理由.26. 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?D CBA27. 在三角形ABC 中,点D 在线段AB 上,DE ∥BC 交AC 于点E ,点F 在直线BC 上,作直线EF ,过点D 作直线DH ∥AC 交直线EF 于点H .(1)在如图1所示的情况下,求证:∠HDE =∠C ;(2)若三角形ABC 不变,D ,E 两点的位置也不变,点F 在直线BC 上运动.①当点H 在三角形ABC 内部时,直接写出∠DHF 与∠FEC 的数量关系;②当点H 在三角形ABC 外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程260x =- 的解为3x= ,不等式组205x x ->⎧⎨<⎩,的解集为25x << ,因为235<< ,所以,称方程260x =-为不等式组205x x ->⎧⎨<⎩,的关联方程.(1) 在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号)(2)若不等式组1144275x x x ⎧-⎪⎨⎪++⎩<,>-的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)昌平区2017-2018学年第二学期初一年级期末质量抽测 数学试卷参考答案及评分标准 2018.7一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= (x-3) 2.…………………………2分(2)原式= (m+n) (m-n)+ (m-n) …………………………3分= (m-n) (m+n+1) .…………………………5分18. 解:移项,得2x-3x≥-1-1.…………………………2分合并同类项,得-x≥-2.…………………………3分系数化为1,得x≤2. …………………………4分解集在数轴上表示如下:–41234–1–3–2………………5分19.解:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,①.②由①,得3x-3≤5x + 1.…………………………1分-2 x≤4.x≥-2.…………………………2分由②,得8x<9 -x .…………………………3分9x<9 .x<1.…………………………4分所以不等式组的解集为-2≤x<1.…………………………5分20.解:13 5.x+y=x+y=⎧⎨⎩,①②由②-①,得2x=4. …………………………1分解这个方程,得x=2. …………………………2分把x=2代入①,得2+ y = 1. …………………………3分y = -1.…………………………4分所以这个方程组的解为21.x=y=-⎧⎨⎩,…………………………5分21.解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分①-②,得 a + 2b = 2. …………………………5分4321FO E DCBA法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,- 得 231.a+b=a b=-⎧⎨⎩, ①② …………………… 2分 解得 431.3a=b=⎧⎪⎪⎨⎪⎪⎩,………………………………………………………… 4分所以a + 2b = 2 . ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90°. …………………………1分 ∵∠2=60°,∴∠3=∠2=60°. …………………………2分 ∵DF ∥OE ,∴∠3+∠4=180°. …………………………3分 ∴∠4=120°. …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150°. ………………5分23.解:原式= x 2 - 4 - 4x 2 + 4x + 4x 2 + 4x + 1………………………… 3分= x 2 + 8x - 3.………………………… 4分由x 2 + 8x – 7 = 0,得 x 2 + 8x = 7. ………………………… 5分 所以,原式= 7 – 3 = 4.………………………… 6分24. 解:(1)120. ………………………… 1分 (2)36. ………………………… 2分 不同意小明的看法. ………………………… 3分4321GFEDCBA手机部4月份销售额为:95×32%=30.4(万元). …………………… 4分 手机部5月份销售额为:120×30%=36(万元). 因为36万元>30.4万元, 故小明说法错误.(3)B. ………………………… 5分 8.4%. ………………………… 6分 25.解:(1)如图. ………………………… 1分(2)如图. ………………………… 2分 (3)∠BFG =∠BGF . ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4. …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4. …………………………6分 ∴∠1=∠2.即∠BFG =∠BGF .26. 解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元. …………… 1分根据题意,得0.632 1.3.x+y=x+y=⎧⎨⎩,……………2分 解得:0.10.5.x y =⎧⎨=⎩,……………3分答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元. (2)设建m (m 为整数)个地上停车位,则建(50-m )个地下停车位.图2-2HF ED CB A根据题意,得12<0.1m +0.5(50-m )≤13. ……………4分 解得:30≤m <32.5. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位; ②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(1)证明:如图.∵DE ∥BC ,∴∠1=∠C . ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2. ………………………… 2分 ∴∠2=∠C . ………………………… 3分即∠HDE =∠C .(2)解:①∠DHF +∠FEC =180°. ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立.理由如下:ⅰ.如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC ,∴∠DHF =∠FEC . ………………… 6分ⅱ.如图2-2,当点H 在直线DE 下方时,54321AB CDE F HAB C D EFH图2-1∵DH ∥AC ,∴∠DHF =∠FEC . …………………… 7分综上所述,当点H 在三角形ABC 外部时,∠DHF =∠FEC . (注(2)②中对应一图一理由正确得2分,完全正确得3分)28. 解:(1)③. ………………………… 1分 (2)答案不唯一,只要解为x = 1即可. ………………………… 2分 (3)22.x x m x m -⎧⎨-⎩<, ①≤ ②解不等式①,得x >m . ………………………… 3分解不等式②,得x ≤m +2. ………………………… 4分所以不等式组的解集为m <x ≤m +2.方程2x -1= x +2的解为x =3. ………………………… 5分方程1322x x +=+⎛⎫ ⎪⎝⎭的解为x =2. ………………………… 6分所以,m 的取值范围是1≤m <2. ………………………… 7分。
2017-2018学年北京市昌平区七年级(下)期末数学试卷一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.5×10﹣5B.5×10﹣4C.0.5×10﹣4D.50×10﹣3 2.(2分)若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>3.(2分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3 4.(2分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵5.(2分)如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.70°C.80°D.100°6.(2分)若方程mx﹣2y=3x+4是关于x,y的二元一次方程,则m满足()A.m≠﹣2B.m≠0C.m≠3D.m≠47.(2分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.38.(2分)观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)因式分解:x2﹣1=.10.(2分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.(2分)写出不等式组的整数解为.12.(2分)在①②③中,①和②是方程2x﹣3y=5的解;是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为.13.(2分)程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为.14.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15.(2分)已知a+b=3,则a2﹣b2+6b的值为.16.(2分)数学课上,老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小华的画法:①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b∥a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢同学的画法,画图的依据是.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题5分,第27、28题,每小题5分,共68分)17.(5分)因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).18.(5分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.19.(5分)解不等式组:20.(5分)解方程组:21.(5分)已知关于x,y的二元一次方程组的解为,求a+2b的值.22.(5分)已知:如图,OA⊥OB,点C在射线OB上,经过C点的直线DF∥OE,∠BCF =60°.求∠AOE的度数.23.(6分)已知x2+8x﹣7=0,求(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2的值.24.(6分)某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表(单位:万元)(1)该品牌5月份的销售额是万元;(2)手机部5月份的销售额是万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图.则5月份机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是.25.(6分)如图,已知BD平分∠ABC.请补全图形后,依条件完成解答.(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;(2)在射线BE上任取一点F,过点F画直线FG∥BD交BC于点G;(3)判断∠BFG与∠BGF的数量关系,并说明理由.26.(6分)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?27.(7分)在三角形ABC中,点D在线段AB上,DE∥BC交AC于点E,点F在直线BC 上,作直线EF,过点D作直线DH∥AC交直线EF于点H.(1)在如图1所示的情况下,求证:∠HDE=∠C;(2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系;②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28.(7分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以,称方程2x﹣6=0为不等式组的关联方程.(1)在方程①5x﹣2=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)(3)若方程2x﹣1=x+2,3+x=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.2017-2018学年北京市昌平区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2分)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A.5×10﹣5B.5×10﹣4C.0.5×10﹣4D.50×10﹣3【解答】解:0.00005=5×10﹣5,故选:A.2.(2分)若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a﹣2>b﹣2C.﹣2a>﹣2b D.>【解答】解:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选:C.3.(2分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(2分)下列调查中,不适合用抽样调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵【解答】解:A、调查“神舟十一号”飞船重要零部件的产品质量适合全面调查,不适合抽样调查,符合题意;B、调查某电视剧的收视率适合抽样调查,不符合题意;C、调查一批炮弹的杀伤力适合抽样调查,不符合题意;D、调查一片森林的树木有多少棵适合抽样调查,不符合题意;故选:A.5.(2分)如图,已知直线a∥b,∠1=100°,则∠2等于()A.60°B.70°C.80°D.100°【解答】解:∵a∥b,∠1=100°,∴∠3=100°,∴∠2=80°,故选:C.6.(2分)若方程mx﹣2y=3x+4是关于x,y的二元一次方程,则m满足()A.m≠﹣2B.m≠0C.m≠3D.m≠4【解答】解:由方程mx﹣2y=3x+4可得(m﹣3)x﹣2y=4,∵方程是关于x,y的二元一次方程,∴m﹣3≠0,∴m≠3,故选:C.7.(2分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.3,1.3C.1.4,1.35D.1.4,1.3【解答】解:∵这组数据中1.4出现的次数最多,∴在每天所走的步数这组数据中,众数是1.4;每天所走的步数的中位数是:(1.3+1.3)÷2=1.3∴在每天所走的步数这组数据中,众数和中位数分别是1.4、1.3.故选:D.8.(2分)观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n【解答】解:第n(n为正整数)个等式为(2n+1)2﹣(2n﹣1)2=2×4n,故选:D.二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)因式分解:x2﹣1=(x+1)(x﹣1).【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).10.(2分)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.【解答】解:∵白球2只,红球6只,黑球4只,∴共有2+6+4=12只,∴取出黑球的概率是=;故答案为:.11.(2分)写出不等式组的整数解为﹣1、0.【解答】解:∵不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0,故答案为:﹣1、0.12.(2分)在①②③中,①和②是方程2x﹣3y=5的解;②和③是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为②.【解答】解:在①②③中,①和②是方程2x﹣3y=5的解;②和③是方程3x+y=﹣9的解;不解方程组,可写出方程组的解为②,故答案为:②和③;②13.(2分)程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为.【解答】解:设大和尚有x人,小和尚有y人,根据题意得:.故答案是:.14.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为x<﹣6.【解答】解:根据题意得:2x+12<0,解得:x<﹣6.故答案是:x<﹣6.15.(2分)已知a+b=3,则a2﹣b2+6b的值为9.【解答】解:a2﹣b2+6b=(a+b)(a﹣b)+6b=3(a﹣b)+6b=3a+3b=3(a+b)=9.故答案是:9.16.(2分)数学课上,老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b∥a.小华的画法:①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b∥a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢苗苗同学的画法,画图的依据是苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.【解答】解:我喜欢苗苗同学的画法,画图的依据是:苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.故答案为:苗苗,苗苗,同位角相等,两直线平行.小华,内错角相等,两直线平行.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题5分,第27、28题,每小题5分,共68分)17.(5分)因式分解:(1)x2﹣6x+9;(2)m2﹣n2+(m﹣n).【解答】解:(1)原式=(x﹣3)2.(2)原式=(m+n)(m﹣n)+(m﹣n)=(m﹣n)(m+n+1).18.(5分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.【解答】解:移项,得:2x﹣3x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,解集在数轴上表示如下:19.(5分)解不等式组:【解答】解:,由①,得:3x﹣3≤5x+1,﹣2x≤4.x≥﹣2,由②,得:8x<9﹣x,9x<9.x<1,所以不等式组的解集为﹣2≤x<1.20.(5分)解方程组:【解答】解:,由②﹣①,得2x=4,解这个方程,得x=2,把x=2代入①,得2+y=1,解得:y=﹣1,所以这个方程组的解为.21.(5分)已知关于x,y的二元一次方程组的解为,求a+2b的值.【解答】解:把代入得:①﹣②得:a+2b=2.22.(5分)已知:如图,OA⊥OB,点C在射线OB上,经过C点的直线DF∥OE,∠BCF =60°.求∠AOE的度数.【解答】解:如图所示:∵OA⊥OB,∴∠1=90°.∵∠2=60°,∴∠3=∠2=60°.∵DF∥OE,∴∠3+∠4=180°.∴∠4=120°.∴∠AOE=360°﹣∠1﹣∠4=360°﹣90°﹣120°=150°.23.(6分)已知x2+8x﹣7=0,求(x+2)(x﹣2)﹣4x(x﹣1)+(2x+1)2的值.【解答】解:原式=x2﹣4﹣4x2+4x+4x2+4x+1=x2+8x﹣3,由x2+8x﹣7=0,得:x2+8x=7,原式=7﹣3=4.24.(6分)某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机部各月销售额占该品牌所有商品当月销售额的百分比情况统计图.品牌月销售额统计表(单位:万元)(1)该品牌5月份的销售额是120万元;(2)手机部5月份的销售额是36万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A、B、C、D、E五个机型,图2表示在5月份手机部各机型销售额占5月份手机部销售额的百分比情况统计图.则5月份B机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是28%.【解答】解:(1)该品牌5月份的销售额是600﹣(180+90+115+95)=120(万元),故答案为:120;(2)不同意小明的看法,手机部4月份销售额为:95×32%=30.4(万元).手机部5月份销售额为:120×30%=36(万元).因为36万元>30.4万元,故小明说法错误,故答案为:36.(3)由扇形统计图知,5月份B机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是28%,故答案为:B、28%.25.(6分)如图,已知BD平分∠ABC.请补全图形后,依条件完成解答.(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;(2)在射线BE上任取一点F,过点F画直线FG∥BD交BC于点G;(3)判断∠BFG与∠BGF的数量关系,并说明理由.【解答】解:(1)、(2)如图所示:(3)∠BFG=∠BGF,理由如下:∵BD∥FG,∴∠1=∠3,∠2=∠4∵BD平分∠ABC,∴∠3=∠4∴∠1=∠2.即∠BFG=∠BGF.26.(6分)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【解答】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50﹣m)个地下停车位,根据题意,得:12<0.1m+0.5(50﹣m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(7分)在三角形ABC中,点D在线段AB上,DE∥BC交AC于点E,点F在直线BC 上,作直线EF,过点D作直线DH∥AC交直线EF于点H.(1)在如图1所示的情况下,求证:∠HDE=∠C;(2)若三角形ABC不变,D,E两点的位置也不变,点F在直线BC上运动.①当点H在三角形ABC内部时,直接写出∠DHF与∠FEC的数量关系;②当点H在三角形ABC外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.【解答】解:(1)证明:∵DE∥BC,∴∠1=∠C,∵DH∥AC,∴∠1=∠2,∴∠2=∠C,即∠HDE=∠C;(2)①∠DHF+∠FEC=180°,理由如下:∵DH∥AC,∴∠DHE=∠FEC,∵∠DHF+∠DHE=180°,∴∠DHF+∠FEC=180°;②当点H在三角形ABC外部时,①中结论不成立.理由如下:①′如图2﹣1,当点H在直线DE上方时,∵DH∥AC,∴∠DHF=∠FEC,②′如图2﹣2,当点H在直线DE下方时,∵DH∥AC,∴∠DHF=∠FEC,综上所述,当点H在三角形ABC外部时,∠DHF=∠FEC.28.(7分)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以,称方程2x﹣6=0为不等式组的关联方程.(1)在方程①5x﹣2=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是x ﹣1=0;(写出一个即可)(3)若方程2x﹣1=x+2,3+x=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.【解答】解:(1)解不等式组,得:<x<3,∵方程①5x﹣2=0的解为x=;方程②x+1=0的解为x=﹣;方程③x﹣(3x+1)=﹣5的解为x=2,∴不等式组的关联方程是③,故答案为:③;(2)解不等式组得:≤x<,所以不等式组的整数解为x=1,则该不等式组的关联方程为x﹣1=0,故答案为:x﹣1=0;(3)解不等式①,得:x>m,解不等式②,得:x≤m+2,所以不等式组的解集为m<x≤m+2.方程2x﹣1=x+2的解为x=3,方程3+x=2(x+)的解为x=2,所以m的取值范围是1≤m<2.。
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**北京市昌平区2017-2018学年七年级数学下学期期末试题(时间:120分钟,分值:100分)要求:(1)认真作答,字迹清晰工整;(2)禁止用涂改带,涂改液等涂改工具;(3)正确涂卡,作图题用铅笔,尺规规范作答;一、选择题(每小题2分,共24分)1、下列运算正确的是()。
A 、1055a aaB 、2446a aaC 、a aa1D 、044aaa2.计算(-8m 4n+12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于()A .2m 2n-3mn+n 2B .2n 2-3mn 2+n2C .2m 2-3mn+n 2D .2m 2-3mn+n3.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是()A .1≤x ≤3, B.1<x ≤3, C.1≤x <3, D.1<x <34.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是()A .40°,B .50°,C .60°,D .140°5.下列图形中,不一定...是轴对称图形的是()A.等腰三角形 B.线段 C.钝角 D.直角三角形6.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是()A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D.垂线段最短7.下列乘法中,不能运用平方差公式进行运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b ) D.(b +m )(m -b )第9题1 2 3 4 5 t (月)Oc (件)8.以下事件中,必然发生的是()A .打开电视机,正在播放体育节目B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点9. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产D. 1月至3月每月产量不变,4、5两月均停止生产10、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A 、154 B 、31 C 、51 D15211.如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与△DEF 全等的是()FEDCBAA .(1)(5)(2)B .(1)(2)(3)C .(2)(3)(4)D .(4)(6)(1)12.下列关于作图的语句中正确的是()A .画直线AB =10厘米;B .画射线OB =10厘米;C .已知A .B .C 三点,过这三点画一条直线;D .过直线AB 外一点画一条直线和直线AB 平行二、填空题(每小题2分,共24分)13.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为________cm .14.计算:55)25.0(4=___________。
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年度第二学期期末检测试卷初一数学在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求涂在答题纸第1-10题的相应位置上.1.6月5日是世界环境日.某班召开了“保护环境,从我做起”的主题班会.同学们了解到:在空气污染中,PM2.5对人体健康危害极大.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .2.5×106B .0.25×10-5 C. 2.5×10-6 D .25×10-7 2.已知a b <,则下列不等式一定成立的是A .770a b -<B .22a b -<-C .33a b >D .44a b +>+ 3.已知二元一次方程572=-y x ,用含x 的代数式表示y ,正确的是 A .257x y +=B .257x y -= C .275yx += D .572y x -= 4.下列运算正确的是A. 632)(x x = B. 33()xy xy = C. )0(4423≠=÷x y x x y x D. 422x x x =+5.已知⎩⎨⎧==11y x ,⎩⎨⎧==32y x 是关于x,y 的二元一次方程y=kx+b 的解,则k,b 的值是 A .k=1, b=0 B .k=-1, b=2 C .k=2, b=-1 D .k=-2, b=1 6.下列调查中,适合用普查方法的是A. 了解CCTV1传统文化类节目《中国诗词大会》的收视率B. 了解初一(1)班学生的身高情况C. 了解庞各庄某地块出产西瓜的含糖量D. 调查某品牌笔芯的使用寿命7.化简)3()(2b a b a +--的结果是 A .b a 2-- B .b a 3-- C .b a -- D .b a 5--8.下列变形是因式分解的是A. 8)6(862++=++x x x x B. 4)2)(2(2-=-+x x xC. )31(322x x x x +=+D. )2)(1(232--=+-x x x x9.如图,1∠和2∠不是同位角的是10.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD =70°,则∠AOF 的度数是A. 35°B. 45°C. 55°D. 65° 二、填空题(本题共8小题,每题2分,共16分) 11.用不等式表示“y 的21与5的和是正数”______________. 12.请你写出一个二元一次方程组,使它的解是x 2y 3=⎧⎨=⎩. 13. 已知a x=3,a y=4,ayx +2的值是______________.14. 分解因式:=-22ay ax ______________.15.某班气象兴趣小组的同学对北京市2016年5月份每天的最高气温做了统计,如下表:16.如图,直线l 1∥l 2,AB 与直线l 1交于点C ,BD 与直线l 2相交于点D , 若∠1=60°,∠2=50°,则∠3=______________.17.如图,利用直尺和三角尺过直线外一点画已知直线的平行线.第一步:作直线AB ,并用三角尺的一边贴住直线AB ;第二步:用直尺紧靠三角尺的另一边;第三步:沿直尺下移三角尺;第四步:沿三角尺作出直线CD.这样就得到AB ∥CD.这种画平行线的依据是______________.18.观察下列各等式:323323⨯=+()()1-211-21⨯=+⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+21-3121-31 …请你再找出一组满足以上特征的两个不相等的有理数,并写成等式形式:____________.三、解答题(本题共54分,其中第28小题4分,其余每小题5分)19. 解不等式3)12(221->-x x ,并把它的解集在数轴上表示出来.20.解不等式组523(2),12123x x x x +<+⎧⎪--⎨⎪⎩ ≤. 21. 解方程组⎩⎨⎧=+=+323732y x y x22. 计算()()2--3--21-2--10⎪⎭⎫ ⎝⎛+23.计算(x+2)(x -2)(x 2-4)24.若关于x,y 的方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的值的和等于2,求244m m -+的值.25.列方程组解应用题:2016年5月18日,国际月季洲际大会在大兴开幕.某校初一年级生物、美术等兴趣小组前去参观学习.为减少现场排队购票时间,张老师利用网络购票。
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
昌平区2017-2018学年第二学期初一年级期末质量抽测数 学 试 卷 120分钟100分一、选择题(共10道小题,每小题2分,共20分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.如图,数轴上有A ,B ,C ,D 四个点,其中表示-1的相反数的点是( )A .点AB .点BC .点CD .点D2.若a 是有理数,则下列叙述正确的是( )A .a 一定是正数B .a 一定是负数C .a 可能是正数、负数、0D .-a 一定是负数3.已知1纳米=9110,那么9110用科学记数法表示为( ) A .91.010 B .9 1.010 C .91.010 D .91.0104.不等式组 4,3.x x <⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .5.以下问题,不适合用全面调查的是( )A .了解全班同学视力B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解全市中学生每天的零花钱 6.下列计算正确的是( )A .623)(a a =B .C .D .()22ab ab =7.下列因式分解正确的是( ) A .()()2933b b b -=-+ B .()()211+1x x x -=- C .()222211a a a -+=-+ D .()248224a a a a -=-842a a a ÷=632a a a =⋅A 12345-1-2-3-468.如图,能判定AB ∥CD 的条件是( ) A .∠1=∠2 B .∠3=∠4 C .∠1=∠3 D .∠2=∠49.某公司有如下几种手机4G 套餐:(1G=1024M )套餐类型月费(元/月)套餐内包含内容 套餐外资费 国内数据流量 国内电话(分钟) 流量国内 电话套餐1 76400M 2000M-200M 时,0.3元/M201M-1G 时,60元0.15元/分钟套餐2 106 800M 300 套餐3 136 1G 500 套餐41662G500李老师每月大约使用国内数据流量约800M ,国内电话约400分钟,若想使每月付费最少,则应选择的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐410.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案( )A .4B .3C .2D .1二、填空题:(共6道小题,每小题3分,共18分) 11.分解因式:2363m m -+= .12.右边的框图表示解不等式3542x x ->-移项合并同类项 系数化为13421BCAD的流程,其中“系数化为1”这一步骤的依据 是 .13.写出一个解是=1,=1.x y ⎧⎨⎩的二元一次方程组 .14.为了测量一座古塔外墙底部的底角∠AOB 的度数,李潇同学设计了如下测量方案: 作AO ,BO 的延长线OD ,OC ,量出∠COD 的度数,从而得到∠AOB 的度数. 这个测量方案的依据是 .15.如图,边长为m ,n 的长方形,它的周长为10,面积为6,则22m n mn +的值为 .nmAOBCD16.居民身份证是国家法定的证明公民个人身份的有效证件.身份证号码由十七位数字本体码和一位数字校验码组成.第1-6位是地址码,第7-14位是出生日期码,第15-17位是顺序码,即是县、区级政府所辖派出所的分配码.第18位也就是最后一位是数字校验码,是根据前面十七位数字码,按一定规则计算出来的校验码.算法如下:规定第1-17位对应的系数分别为:7,9,10,5,8,4,2,1,6,3,7,9,,10,5,8,4,2.将身份证号码的前17位数字分别乘以对应的系数,再把积相加.相加的结果除以11,求出余数.余数只可能有0,1,2,3,4,5,6,7,8,9,10这11种情况.其分别对应身份证号码的第18位数字如下表所示.的第18位号码就是x .若某人的身份证号码的前17位依次是11010219600302011,则他身份证号码的第18位数字是 .三、解答题(本题共6道小题,第17-19小题各3分;第20-22小题各4分,共21分) 17.计算:1020162)3()1(-+---π18.如图,已知∠1=∠2,∠3=70°,求∠4的度数.19.解不等式:7)1(3<--x x .4321CDBA20.解方程组:21327x y x y -=⎧⎨+=⎩,.21.已知,求代数式222))(()(b b a b a b a --+-+的值.22.已知关于x ,y 的二元一次方程组2322x y kx y k +=-⎧⎨+=⎩的解满足,求k 的取值范围.四、解答题(本题共4道小题,每小题4分,共16分) 23.列方程(组)解应用题在一年一度的农业“嘉年华”活动中,小丹的妈妈用175元买了 “章姬”、“红颜”两种草莓盆栽.“章姬”每盆20元,“红颜”每盆25元,且“章姬”比“红颜”多买了2盆.求两种草莓盆栽各买了多少盆?24. 已知:如图,△ABC 中,AD ⊥BC 于点D ,点E 在AB 上,EF ⊥BC 于点F ,∠1=∠2,求证:DE ∥AC .1=2ab xy 21F EDCB A25. 为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养。
昌平区2017 - 2018学年第二学期初一年级期末质量抽测数 学 试 卷2018.7一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个....是符合题意的.1. 叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为 A .5510-⨯ B .4510-⨯C .40.510-⨯D .35010-⨯2. 若a<b ,则下列各式正确的是A .22+>+b aB .22->-b aC .b a 22->-D .22b a > 3. 下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=4. 下列调查中,不适合用抽样调查方式的是A .调查“神舟十一号”飞船重要零部件的产品质量B .调查某电视剧的收视率C .调查一批炮弹的杀伤力D .调查一片森林的树木有多少棵5. 如图,已知直线a //b ,∠1=100°,则∠2等于A .60°B .70°C .80°D .100°6. 若方程234mx y=x+- 是关于x y ,的二元一次方程,则m 满足 A .2m -≠ B. 0m ≠ C. 3m ≠ D. 4m ≠ 7.某健步走运动爱好者用手机软件记录了某个月(30天)每天健步 ba 21天数走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.38.观察下列等式:①32- 12 = 2 × 4②52- 32 = 2 × 8③72 - 52 = 2 × 12......那么第n(n为正整数)个等式为A.n2- (n-2)2 = 2 × (2n-2)B.(n+1)2- (n-1)2 = 2 × 2nC.(2n)2- (2n-2)2 = 2 ×(4n -2) D.(2n+1)2- (2n-1)2 = 2 × 4n二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:21x-=.10.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.11.写出不等式组11xx-⎧⎨<⎩≥,的整数解为.12.在①11x=y=-⎧⎨⎩,,②23x=y=⎧⎨⎩,,--③3x=y=⎧⎨⎩,-中,①和②是方程235x y=-的解;是方程39x+y=-的解;不解方程组,可写出方程组23539x y=x+y=--⎧⎨⎩,的解为.13.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人, 小和尚有y人,那么根据题意可列方程组为.14. 在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为.15. 若3a b +=,则226a b b -+的值为 .16. 数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下: 苗苗的画法:baa①将含30°角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则b //a. 小华的画法:baa①将含30°角三角尺的最长边与直线a 重合,用虚线做出一条最短边所在直线; ②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b ,则b //a . 请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据. 答:我喜欢 同学的画法,画图的依据是 .三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 因式分解:(1)269x x -+; (2)()22m n m n -+-.18. 解不等式:12+x ≥13-x ,并把它的解集在数轴上表示出来.19. 解不等式组:3(1)51924x x xx -+-<⎧⎪⎨⎪⎩≤,.–1–2–3–4123420. 解方程组:13 5.x+y=x+y=⎧⎨⎩,21. 已知关于x ,y 的二元一次方程组231ax+by=ax by=-⎧⎨⎩,的解为11x=y=⎧⎨⎩,. 求2a+b 的值.22.已知:如图,OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.FOED CBA23. 已知2870xx +-=,求2)12()1(4)2)(2(++---+x x x x x 的值.24. 某电子品牌商下设台式电脑部、平板电脑部、手机部等.2018年的前五个月该品牌全部商品销售额共计600万元.下表表示该品牌商2018年前五个月的月销售额(统计信息不全).图1表示该品牌手机..部.各月销售额占该..品牌所有商品......当月销售额的百分比情况统计图. 品牌月销售额统计表(单位:万元)月份1月 2月 3月 4月 5月品牌月销售额1809011595D 5%E 25% C 17%B 28%A 25%5月份手机部各机型销售额占5月份手机部 销售额的百分比统计图图1 图2手机部各月销售额占品牌当月销售额的 百分比统计图32%46%30%28%24%10%20%0%30%40%50%百分比(1) 该品牌5月份的销售额是 万元; (2)手机部5月份的销售额是 万元;小明同学观察图1后认为,手机部5月份的销售额比手机部4月份的销售额减少了,你同意他的看法吗?请说明理由;(3)该品牌手机部有A 、B 、C 、D 、E 五个机型,图2表示在5月份手机部各.机型..销售额...占5月份手机部销售额的百分比情况统计图.则5月份 机型的销售额最高,销售额最高的机型占5月份该品牌销售额的百分比是 .25. 如图,已知BD 平分∠ABC . 请补全图形后,依条件完成解答. (1)在直线BC 下方画∠CBE ,使∠CBE 与∠ABC 互补;(2)在射线BE 上任取一点F ,过点F 画直线FG ∥BD 交BC 于点G ; (3)判断∠BFG 与∠BGF 的数量关系,并说明理由.26. 某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?D CBA27. 在三角形ABC 中,点D 在线段AB 上,DE ∥BC 交AC 于点E ,点F 在直线BC 上,作直线EF ,过点D作直线DH ∥AC 交直线EF 于点H .(1)在如图1所示的情况下,求证:∠HDE =∠C ;(2)若三角形ABC 不变,D ,E 两点的位置也不变,点F 在直线BC 上运动.①当点H 在三角形ABC内部时,直接写出∠DHF 与∠FEC 的数量关系;②当点H 在三角形ABC 外部时,①中结论是否依然成立?请在图2中画图探究,并说明理由.28. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程260x =- 的解为3x= ,不等式组205x x ->⎧⎨<⎩,的解集为25x << ,因为235<< ,所以,称方程260x =-为不等式组205x x ->⎧⎨<⎩,的关联方程.(1) 在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号)(2)若不等式组1144275xx x⎧-⎪⎨⎪++⎩<,>-的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)昌平区2017-2018学年第二学期初一年级期末质量抽测数学试卷参考答案及评分标准2018.7一、选择题(本题共8道小题,每小题2分,共16分)二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:(1)原式= (x-3) 2.…………………………2分(2)原式= (m+n) (m-n)+ (m-n) …………………………3分= (m-n) (m+n+1) .…………………………5分18. 解:移项,得2x-3x≥-1-1.…………………………2分合并同类项,得-x≥-2.…………………………3分系数化为1,得x≤2. …………………………4分解集在数轴上表示如下:–1–2–3–41234………………5分19.解:3(1)51924x xxx-+-<⎧⎪⎨⎪⎩≤,①.②由①,得3x-3≤5x + 1.…………………………1分-2 x≤4.x≥-2.…………………………2分由②,得8x<9 -x .…………………………3分9x<9 .x<1.…………………………4分所以不等式组的解集为-2≤x<1.…………………………5分20.解:13 5.x+y=x+y=⎧⎨⎩,①②由②-①,得2x=4. …………………………1分解这个方程,得x=2. …………………………2分把x=2代入①,得2+ y = 1. …………………………3分y = -1.…………………………4分所以这个方程组的解为21.x=y=-⎧⎨⎩,…………………………5分21.解:法一:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分①-②,得 a + 2b = 2. …………………………5分法二:把11x=y=⎧⎨⎩,代入231ax+by=ax by=⎧⎨⎩,,-得231.a+b=a b=-⎧⎨⎩,①②……………………2分4321FO E DC BA解得 431.3a=b=⎧⎪⎪⎨⎪⎪⎩,………………………………………………………… 4分所以a + 2b = 2 . ………………………………………………………… 5分22.解:∵OA ⊥OB ,∴∠1=90°. …………………………1分 ∵∠2=60°,∴∠3=∠2=60°. …………………………2分 ∵DF ∥OE ,∴∠3+∠4=180°. …………………………3分 ∴∠4=120°. …………………………4分 ∴∠AOE =360°-∠1-∠4=360°-90°-120°=150°. ………………5分23.解:原式= x 2 - 4 - 4x 2 + 4x + 4x 2 + 4x + 1………………………… 3分= x 2 + 8x - 3.………………………… 4分由x 2 + 8x – 7 = 0,得 x 2 + 8x = 7. ………………………… 5分 所以,原式= 7 – 3 = 4.………………………… 6分24. 解:(1)120. ………………………… 1分 (2)36. ………………………… 2分 不同意小明的看法. ………………………… 3分 手机部4月份销售额为:95×32%=30.4(万元). …………………… 4分4321GFEDCBA手机部5月份销售额为:120×30%=36(万元). 因为36万元>30.4万元, 故小明说法错误.(3)B. ………………………… 5分 8.4%. ………………………… 6分 25.解:(1)如图. ………………………… 1分(2)如图. ………………………… 2分 (3)∠BFG =∠BGF . ………………………… 3分 ∵BD ∥FG ,∴∠1=∠3,∠2=∠4. …………………………5分 ∵BD 平分∠ABC ,∴∠3=∠4. …………………………6分 ∴∠1=∠2.即∠BFG =∠BGF .26. 解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元. …………… 1分根据题意,得0.632 1.3.x+y=x+y=⎧⎨⎩,……………2分 解得:0.10.5.x y =⎧⎨=⎩, ……………3分答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元. (2)设建m (m 为整数)个地上停车位,则建(50-m )个地下停车位. 根据题意,得F ED CB A12<0.1m +0.5(50-m )≤13. ……………4分 解得:30≤m <32.5. ……………5分 ∵m 为整数,∴m =30,31,32,共有3种建造方案. ……………6分 ①建30个地上停车位,20个地下停车位; ②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.27.(1)证明:如图.∵DE ∥BC ,∴∠1=∠C . ………………………… 1分 ∵DH ∥AC ,∴∠1=∠2. ………………………… 2分 ∴∠2=∠C . ………………………… 3分即∠HDE =∠C .(2)解:①∠DHF +∠FEC =180°. ……………… 4分 ②当点H 在三角形ABC 外部时,①中结论不成立.理由如下:ⅰ.如图2-1,当点H 在直线DE 上方时, ∵DH ∥AC ,∴∠DHF =∠FEC . ………………… 6分ⅱ.如图2-2,当点H 在直线DE 下方时,∵DH ∥AC ,54321AB DE HAB D EH图2-1∴∠DHF=∠FEC. ……………………7分综上所述,当点H在三角形ABC外部时,∠DHF=∠FEC.(注(2)②中对应一图一理由正确得2分,完全正确得3分)28. 解:(1)③. …………………………1分(2)答案不唯一,只要解为x = 1即可. …………………………2分(3)22.x x mx m-⎧⎨-⎩<,①≤②解不等式①,得x>m.…………………………3分解不等式②,得x≤m+2.…………………………4分所以不等式组的解集为m<x≤m+2.方程2x-1= x+2的解为x=3. …………………………5分方程1322x x+=+⎛⎫⎪⎝⎭的解为x=2. …………………………6分所以,m的取值范围是1≤m<2. …………………………7分。
北京市昌平区2017-2018学年七年级数学下学期期末试题(时间:120分钟,分值:100分)要求:(1)认真作答,字迹清晰工整;(2)禁止用涂改带,涂改液等涂改工具; (3)正确涂卡,作图题用铅笔,尺规规范作答; 一、选择题(每小题2分,共24分) 1、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 2.计算(-8m 4n+12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( ) A .2m 2n-3mn+n 2B .2n 2-3mn 2+n 2C .2m 2-3mn+n 2D .2m 2-3mn+n3.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( ) A .1≤x≤3, B .1<x≤3, C .1≤x<3, D .1<x <3 4.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( ) A .40°, B.50°, C.60°, D.140° 5.下列图形中,不一定...是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角 D.直角三角形6.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( ) A .三角形的稳定性 B .两点之间线段最短 C .两点确定一条直线 D .垂线段最短7.下列乘法中,不能运用平方差公式进行运算的是( ) A .(x +a )(x -a ) B .(a+b )(-a -b ) C .(-x -b )(x -b ) D .(b +m )(m -b )第9题1 2 3 4 5 t (月)Oc (件)8.以下事件中,必然发生的是( ) A .打开电视机,正在播放体育节目 B .正五边形的外角和为180° C .通常情况下,水加热到100℃沸腾 D .掷一次骰子,向上一面是5点9. 如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( )A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产D. 1月至3月每月产量不变,4、5两月均停止生产10、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D15211.如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与△DEF 全等的是( )FEDC BAA .(1)(5)(2)B .(1)(2)(3)C .(2)(3)(4)D .(4)(6)(1)12.下列关于作图的语句中正确的是( ) A .画直线AB =10厘米;B .画射线OB =10厘米;C .已知A .B .C 三点,过这三点画一条直线;D .过直线AB 外一点画一条直线和直线AB 平行 二、填空题(每小题2分,共24分)13.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为________cm .14.计算:55)25.0(4-⨯=___________。
15.如果1kx x 2++是一个完全平方式,那么k 的值是 .16.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.17.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .18.等腰三角形的一个角为100°,则它的底角为 .19.等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 . 20.如图,将一个宽度相等的纸条沿AB 折叠一下, 如果∠1=130º,那么∠2= .21.若1)2(1=-+a a ,则a =__________。
22.找规律,如图有大小不同的平行四边形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中有______个。
AB12 (第20题图)23.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,(1)表格中反映的变量是 ,自变量是 ,因变量是 .(2)估计小亮家4月份的用电量是 °,若每度电是0.49元,估计他家4月份应交的电费是 .24.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)三、计算题(共2题,共计16分) 25.计算 (每小题2分,共10分) (1)()()3426y y 2-; (2))()(2322c ab c ab ÷ ;(3)2)())((y x y x y x ++--- (4)利用公式计算803×797 (5)计算:32112(20053)()33--++--26.化简求值(每小题3分,共6分)(1)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .(2)先化简,再求值:()()()a b a b b a b a 24222-++-+,其中21-=a ,2=b 四、作图题(每小题3分,共9分,保留作图痕迹,不写作法和证明) 27.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?理由是: .日期12345678电表读数(度) 21 24 28 33 39 42 46 49第27题 M28.牧马人在A 处放牧,现他准备将马群赶回B 处的家中,但中途他必须让马到河边l 饮水一次,他应该怎样选择饮水点P ,才能使所走的路程PA +PB 最短? 理由是:ABl29.一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A 、B 两处的两名公安人员想在距A 、B 相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.MNAO B五、解答题(共6题,总计28分)30.(4分)已知x +y =7,xy =2,求①x 2+y 2的值;②(x -y )2的值.31.(4分)若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值 32.(6分)如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM . ∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.33.(4分)如图所示:ΔABC 的周长为24cm ,AB=10cm ,边AB 的垂直平分线DE 交BC 边于点E ,垂足为D ,求ΔAEC 的周长.34.(5分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投 掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 35.(4分)如图所示,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .北京临川学校2017-2018学年下学期期末考试初一数学试卷答案一、选择题(每小题2分,共24分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C CDADABCBBCD二、填空题(每小题2分,共24分)朝上的点数 1 2 3 4 5 6出现的次数 7 96 8 20 10 第35题图题号 13 14 15 16 答案 7102-⨯-1 2±B6392 题号 1718 1920 答案 101,2140° 22cm 或26cm 115° 题号 21 22 2324 答案-12n-1日期和电表读数;日期,电表读数;120;58.8不公平三、计算题(共2题,总计16分) 25、计算(每小题2分,共10分) (1)=1212y 2y- =12y (2))c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab (3)xyy 222+(4)639991(只看结果) (5)2163- 26、化简求值(每题3分,共6分)(1)a a 332+,值为6.(2)原式=22-=ab 四、作图题(每小题3分,共9分)27、理由:垂线段最短28、理由:两点之间,线段最短29、依据:角平分线定理,线段垂直平分线定理五、解答题(共6小题,共计28分) 30、(4分)(1)45;(2)41;31、(4分)⎩⎨⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17308303,8)24()83()3(8248332032234223234n m m n m x x nx mn x m n x m x nx x mnx mx mx nx x x 项和不含解原式32、(6分)(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.33、(4分)ΔAEC 的周长=AE+EC+AC=BE +EC+AC=BC+AC=24-10=14cm .34、(5分)(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概 率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数 不一定是100次.35、(4分)证明:(1)∵ AD ∥BC (已知),∴ ∠ADC =∠ECF (两直线平行,内错角相等). ∵ E 是CD 的中点(已知),∴ DE =EC (中点的定义). ∵ 在△ADE 与△FCE 中,∠ADE =∠FCE ,DE =CE ,∠AED =∠FEC , ∴ △ADE ≌△FCE (AS A ),∴ FC =AD (全等三角形的对应边相等). (2)∵ △ADE ≌△FCE ,∴ AE =EF ,AD =CF (全等三角形的对应边相等). 又BE ⊥AE ,∴ BE 是线段AF 的垂直平分线,∴ AB =BF .∵ BC +CF , 又AD =CF (已证),∴ AB =BC +AD (等量代换).。