圆锥曲线大题集锦
- 格式:doc
- 大小:379.05 KB
- 文档页数:10
目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。
题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
⾼考数学圆锥曲线⼤题集⼤全⾼考⼆轮复习专项:圆锥曲线⼤题集1. 如图,直线l1与l2是同⼀平⾯内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧,且|AB|=4,|AD|=1,M是该平⾯上的⼀个动点,M在l1上的射影点是N,且|BN|=2|DM|.2. (Ⅰ建⽴适当的坐标系,求动点M的轨迹C的⽅程.(Ⅱ过点D且不与l1、l2垂直的直线l交(Ⅰ中的轨迹C于E、F两点;另外平⾯上的点G、H满⾜:求点G的横坐标的取值范围.2. 设椭圆的中⼼是坐标原点,焦点在轴上,离⼼率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的⽅程.3. 已知椭圆的⼀条准线⽅程是其左、右顶点分别是A、B;双曲线的⼀条渐近线⽅程为3x-5y=0.(Ⅰ)求椭圆C1的⽅程及双曲线C2的离⼼率;(Ⅱ)在第⼀象限内取双曲线C2上⼀点P,连结AP交椭圆C1于点M,连结PB 并延长交椭圆C1于点N,若. 求证:4. 椭圆的中⼼在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜⾓为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹⾓为 a.(1)⽤半焦距c表⽰椭圆的⽅程及tg;(2)若2 <3 ,求椭圆率⼼率 e 的取值范围 .5. 已知椭圆(a>b>0)的离⼼率,过点A(0,-b)和B(a,0)的直线与原点的距离为(1)求椭圆的⽅程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直⾓坐标平⾯中,的两个顶点的坐标分别为,,平⾯内两点同时满⾜下列条件:①;②;③∥(1)求的顶点的轨迹⽅程;(2)过点的直线与(1)中轨迹交于两点,求的取值范围7. 设,为直⾓坐标平⾯内x轴.y轴正⽅向上的单位向量,若,且(Ⅰ)求动点M(x,y的轨迹C的⽅程;(Ⅱ)设曲线C上两点A.B,满⾜(1直线AB过点(0,3),(2若,则OAPB为矩形,试求AB⽅程.8. 已知抛物线C:的焦点为原点,C的准线与直线的交点M在x轴上,与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).(Ⅰ)求抛物线C的⽅程;(Ⅱ)求实数p的取值范围;(Ⅲ)若C的焦点和准线为椭圆Q的⼀个焦点和⼀条准线,试求Q的短轴的端点的轨迹⽅程.9. 如图,椭圆的中⼼在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且|CD|=|AA1|.椭圆的⼀条弦AC交双曲线于E,设,当时,求双曲线的离⼼率e的取值范围.10. 已知三⾓形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的⼀个端点(点A在y轴正半轴上).若三⾓形ABC的重⼼是椭圆的右焦点,试求直线BC的⽅程;若⾓A为,AD垂直BC于D,试求点D的轨迹⽅程.11. 如图,过抛物线的对称轴上任⼀点作直线与抛物线交于两点,点是点关于原点的对称点.(1 设点分有向线段所成的⽐为,证明:;(2 设直线的⽅程是,过两点的圆与抛物线在点处有共同的切线,求圆的⽅程.12. 已知动点P(p,-1),Q(p,),过Q作斜率为的直线l,P Q中点M的轨迹为曲线C.(1)证明:l经过⼀个定点⽽且与曲线C⼀定有两个公共点;(2)若(1)中的其中⼀个公共点为A,证明:AP是曲线C的切线;(3)设直线AP的倾斜⾓为,AP与l的夹⾓为,证明:或是定值.13. 在平⾯直⾓坐标系内有两个定点和动点P,坐标分别为、,动点满⾜,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,直线与曲线交于A、B两点,O是坐标原点,△ABO的⾯积为,(1)求曲线C的⽅程;(2)求的值。
圆锥曲线32题1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.3. 已知椭圆的离心率为在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.4. 已知的顶点,在椭圆上,点在直线:上,且.(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;(2)当的面积等于时,求的值.8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.11. 已知椭圆的离心率为.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足.(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且(1)求直线的斜率;(2)若的面积为,求抛物线的方程.24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3是一个定值.25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.35. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.36. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.圆锥曲线32题答案1. (1)由题设知:,即.将点代入椭圆方程得,解得.所以,故椭圆方程为.(2)由()知,,所以,所以所在直线方程为,由得,设,,则,所以所以2. (1)因为椭圆的离心率为,所以.解得,故椭圆的方程可设为,则椭圆的左焦点坐标为,过左焦点且倾斜角为的直线方程为:.设直线与椭圆的交点为,,由消去,得,解得,.因为,解得.故椭圆的方程为.(2)①当切线的斜率存在且不为时,设的方程为,联立直线和椭圆的方程,得消去并整理,得.因为直线和椭圆有且只有一个交点,所以.化简并整理,得.因为直线与垂直,所以直线的方程为.联立方程组解得所以把代入上式得②当切线的斜率为时,此时或,符合式.③当切线的斜率不存在时,此时或符合式.综上所述,点的轨迹方程为.3. (1)由题意得解得,.所以的方程为.(2)设直线(,),,,.将代入,得.故,.于是直线的斜率所以直线的斜率与直线的斜率的乘积为定值.4. (1)因为,且通过原点,所以所在直线的方程为.由得,两点坐标分别是,.所以.又因为边上的高等于原点到直线的距离.所以,.(2)设所在直线的方程为,由得.因为,两点在椭圆上,所以,即.设,两点坐标分别为,,则,且,.所以又因为的长等于点到直线的距离,即所以.当时,边最长.(显然).所以,所在直线的方程为.5. (1)由题意,知椭圆的焦点在轴上,设椭圆方程为,由题意,知,,又,则,所以椭圆方程为.(2)设,,由题意,知直线的斜率存在,设其方程为,与椭圆方程联立,即消去,得,,由根与系数的关系,知又,即有,所以.则所以.整理,得,又时等式不成立,所以,得,此时.所以的取值范围为.6. (1)抛物线的准线为,所以,所以抛物线方程为.(2)由(1)知点的坐标是,由题意得,.又因为,所以.因为,所以所以的方程为的方程为由联立得所以的坐标为.7. (1)设圆心的坐标为,由题意,知圆心到定点和直线的距离相等,故圆心的轨迹的方程为.(2)由方程组消去,并整理得.设,,则设直线与轴交于点,则.所以因为,所以,解得.经检验,均符合题意,所以.8. (1)因为,所以设点的坐标为,点的坐标为由得则则,解得.(2)设点的坐标为,点的坐标为,由得,得,则.由得,解得,代入上式得:,则,,当且仅当时取等号,此时,又则,解得.所以,面积的最大值为,此时椭圆的方程为.9. (1)由题意可得,抛物线上点到点的距离等于点到直线的距离,由抛物线的定义,即.(2)由(1)得,抛物线方程为,,可设,,.因为不垂直于轴,可设直线:,由消去得,故又直线的斜率为的斜为.从而得直线:,直线:.所以设,由,,三点共线得,于是所以或.经检验,或满足题意.综上,点的横坐标的取值范围是.10. (1)因为,所以.又点在椭圆上,所以,解得,所以椭圆的方程为.(2)设直线的方程为.由得,设,的坐标分别为,,的中点为,则因为是等腰的底边,所以.所以的斜率.此时方程为,解得,,所以,所以.此时,点到直线的距离,所以的面积11. (1)因为椭圆的离心率为,所以,.因为,解得,,所以椭圆的方程为.(2)法1:因为的角平分线总垂直于轴,所以与所在直线关于直线对称.设直线的斜率为,则直线的斜率为所以直线的方程为,直线的方程为.设点,,由消去,得因为点在椭圆上,所以是方程的一个根,则.所以.同理.所以.又.所以直线的斜率为所以直线的斜率为定值,该值为法2:设点,,则直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即因为点,在椭圆上,所以由得,得同理由得由得,化简得由得得.得,得所以直线的斜率为为定值.法3:设直线的方程为,点,,则,,直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即化简得.把,代入上式,并化简得由消去得则,,代入得,整理得,所以或.若,可得方程的一个根为,不合题意.若时,合题意.所以直线的斜率为定值,该值为.12. (1)由题意可知:,又,,所以,,所以椭圆的方程为:.(2)①若直线的斜率不存在,此时为原点,满足,所以,方程为.②若直线的斜率存在,设其方程为,,将直线方程与椭圆方程联立可得即,可得设,则,,由可知,解得或,将结果代入验证,舍掉.此时,直线的方程为.综上所述,直线的方程为或.13. (1)根据及题设知,.将代入,解得或故的离心率为(2)由题意,得原点为的中点,轴,所以直线与轴的交点是线段的中点,故,即由得设,由题意知,则即代入的方程,得将及代入得.解得,,故,.14. (1)据题意,为点到直线的距离,连接,因为为线段的中垂线与直线的交点,所以所以点的轨迹是抛物线,焦点为,准线为直线所以曲线的方程为.(2)据题意,,过点的切线斜率存在,设为,则切线方程为:,联立抛物线方程可得,由直线和抛物线相切,可得,即因为,所以方程存在两个不等实根,设为,,因为,,由方程可知,所以切线,所以,结论得证.15. (1)由题意设双曲线方程为.由已知得,,再由,得.故双曲线的方程为.(2)设,,将代入,得.由题意知解得.所以的取值范围为.16. (1)因为抛物线上的点到轴的距离等于,所以点到直线的距离等于点到焦点的距离,得是抛物线的准线,即解得,所以抛物线的方程为;可知椭圆的右焦点,左焦点,由,得,又,解得,由椭圆的定义得,所以,又,得,所以椭圆的方程为.(2)显然,,由消去,得,由题意知,得,由消去,得,其中,化简得,又,得,解得,设,,则,由所以的取值范围是.17. (1)由题意可得:,又,解得.所以椭圆的方程为:.(2)设直线的方程为:,代入椭圆方程可得:,由,解得.设,,,所以,,则直线的方程为:,令,可得所以直线与轴的交点为.18. (1)依题意,设抛物线的方程为.由抛物线且经过点,得,所以抛物线的方程为.(2)因为所以,所以,所以直线与的倾斜角互补,所以.依题意,直线的斜率存在,设直线的方程为:,将其代入抛物线的方程,整理得.设,则,,所以.以替换点坐标中的,得.所以所以直线的斜率为19. (1)联立方程有,有,由于直线与抛物线相切,得,所以,所以.(2)假设存在满足条件的点,直线,有,设,,有,,,,,当,满足为定值,所以.20. (1)因为椭圆焦点在轴上,且过点,所以.设内切圆的半径为,点的坐标为,则的重心的坐标为,因为,所以.由面积可得即,则解得,,即所求的椭圆方程为则椭圆方程为.(2)设,,,则切线,的方程分别为,.因为点在两条切线上,所以,.故直线的方程为.又因为点为直线上,所以,即直线的方程可化为,整理得,由解得因此,直线过定点21. (1)由题意可得:直线的斜率存在,设方程为:,设,,动点,由可得.可得.;;由可得即点的轨迹方程为(2)设直线的方程为:(且),由可得,可得,因为直线与抛物线相切,所以,可得,可得,又由可得可得,所以以线段为直径的圆过点.22. (1)由题意可知:,,椭圆的离心率,则,所以椭圆的标准方程:.(2)设直线的方程为.消去整理得:.设,,则,,所以为定值.23. (1)过,两点作准线的垂线,垂足分别为,,易知,,因为所以,所以为的中点,又是的中点,所以是的中位线,所以而,所以所以,,所以,而,所以;(2)因为为的中点,是的中点,所以,所以,所以,所以抛物线的方程为.24. (1)双曲线的,,可得双曲线的渐近线方程为,即为.(2)令可得,解得,(负的舍去),设,,由为的中点,可得,,解得,,即有,可得的斜率为,则直线的方程为,即为.(3)设,即有,设,,由为的中点,可得,,解得,,则为定值.25. (1)设所在直线的方程为,抛物线方程为,联立两方程消去得.设,,则.由题意知,,且,所以,所求抛物线的方程为.(2)由点为抛物线上的点,得.由题意知直线,的斜率均存在,且不为,设直线的方程为,则直线的方程为.由得,因而由得,因而从而直线的斜率26. (1)由题意可知:,,所以椭圆的标准方程:,设直线的方程,则整理得:,解得:,,则点坐标,故直线的斜率,直线的斜率所以所以;(2)由(Ⅰ)可知:四边形的面积,则三角形,,由,整理得:,则,所以,的最小值.27. (1)设,,由题知抛物线焦点为,设焦点弦方程为,代入抛物线方程得,有,解之得,由韦达定理:,所以中点横坐标:,代入直线方程,中点纵坐标:为,消参数,得其方程为:,当线段的斜率不存在时,线段中点为焦点,满足此式,故动点的轨迹方程为:.(2)设,代入,得,,联立,得,同理,,所以,又因为,故与的面积比为.28. (1)因为过点,所以,解得所以抛物线方程为,所以焦点坐标为,准线为(2)设过点的直线方程为,,所以直线为,直线为:,由题意知,,由可得,所以,,所以,所以为线段的中点.29. (1)由题意可知:椭圆的离心率,则椭圆的准线方程,由由解得:,,则,所以椭圆的标准方程:.(2)方法一:设,时,与相交于点,与题设不符,当时,则直线的斜率的方程,直线的斜率,则直线的斜率,直线的方程,联立解得:则,由,在椭圆上,,的横坐标互为相反数,纵坐标应相等或相反,则或,所以或,则解得:则或无解,又在第一象限,所以的坐标为:.方法二:设,由在第一象限,则,,当时,不存在,解得:与重合,不满足题意,当时,,,由,,则,,直线的方程的方程联立解得:,则,由在椭圆方程,由对称性可得:,即,或,由,在椭圆方程,解得:或无解,又在第一象限,所以的坐标为:.30. (1)设中点为,中点为,以,所在的直线分别为轴,轴,为原点建立直角坐标系.因为,动点的轨迹是以,为焦点的椭圆,设其长、短半轴的长分别为,,半焦距为,则,,,所以曲线的方程为:.(2)直线的方程为,设,,由方程组得方程,,,故.35. (1)设,由题意知,点一定在椭圆上,则点也在椭圆上,分别将其代入,得,,解得,,所以的标准方程为.设,依题意知,点在抛物线上,代入抛物线的方程,得,所以的标准方程为.(2)设,,,由知,故直线的方程为,即,代入椭圆的方程,整理得,,,,所以设点到直线的距离为,则所以当且仅当时,取等号,此时满足.综上,面积的最大值为.36. (1)由题意,得,,则椭圆为.由得.因为直线与椭圆有且仅有一个交点,所以,所以椭圆的方程为.(2)由(1)得.因为直线与轴交于,所以当直线与轴垂直时,,所以当直线与轴不垂直时,设直线的方程为,,,由,依题意得,,且,所以所以,因为,所以.综上所述,的取值范围是.。
高中数学_圆锥曲线400题一、单选题( ) 1. 一双曲线的两渐近线为1:20L x y -=与2:20L x y +=且通过点()﹐其方程式为(1)22182x y -= (2)22182x y -=- (3)22128x y -= (4)22128x y -=-﹒( ) 2. 拋物线2118y x =+的焦点在 (1)()0,3 (2)()0,10 (3)330,32⎛⎫ ⎪⎝⎭ (4)2570,32⎛⎫⎪⎝⎭﹒( ) 3. 在坐标平面上﹐过点()2,5P 而与双曲线221254x y -=相切的直线有几条﹕ (1)0 (2)1 (3)2(4)3 (5)4﹒( ) 4. 坐标平面上有一双曲线﹐已知其两焦点为()10,2--与()10,2-﹐一渐近线的斜率为34-﹐问此双曲线的贯轴长度为何﹕ (1)3 (2)4 (3)6 (4)8 (5)16﹒( ) 5. = (1)其长轴长为(2)其短轴长为(3)正焦弦长为(4)长轴的两端点为()6,2-﹑()6,2-- (5)长轴的方程式为0x y +=﹒( ) 6. 设拋物线的对称轴平行于y 轴且通过()1,0﹑()0,5-﹑()2,11三点﹐则方程式为 (1)245y x x =+- (2)265y x x =-- (3)245y x x =+- (4)2325y x x =+-﹒( ) 7. 通过点()1,1且与椭圆2223x y +=相切的直线方程式为 (1)23x y += (2)210x y -+= (3)23x y += (4)21x y -=﹒( ) 8. 拋物线的方程式为()()()2223465425x y x y +-=-+-﹐那么它的对称轴方程式为 (1)3470x y +-= (2)90x y +-= (3)4380x y --= (4)68310x y +-=﹒( ) 9.如右圖﹐A ﹐B ﹐C ﹐D 四個點中有一點是橢圓的焦點﹐選出該焦點: (1)A (2)B (3)C (4)D ﹒( )10. 下列何者正确﹕ (1)与拋物线恰交于一点的直线是切线 (2)与椭圆恰交于一点的直线是切线 (3)与双曲线恰交于一点的直线是切线 (4)通过()1,3作椭圆2299x y +=的切线恰有一条﹒( )11. 设k 为一常数﹐若方程式222117x y k k +=+-表一椭圆且与双曲线221759x y -=有相同的焦点﹐则k 的值为 (1)9- (2)9-或8 (3)10- (4)10-或9﹒( )12. 已知方程式()()2225423x y x y ⎡⎤-+=+-⎣⎦的图形为拋物线Γ﹐则Γ的正焦弦长为何﹕ (1)(2)(3)(4)5 (5)10﹒( )13. 下列各叙述何者为真﹕ (1)若双曲线的两渐近线互相垂直﹐则此双曲线必为等轴双曲线(2)设a ﹑b ﹑c 为实数﹐方程式22ax by c +=的图形是双曲线⇔0ab < (3)若直线L 与圆锥曲线Γ恰交于一点P ﹐则L 必为Γ的切线 (4)过双曲线的中心可作双曲线的二条切线﹒( )14. 设P 为双曲线22:1916x y Γ-=在第一象限的一点﹐若1F ﹑2F 为Γ的两焦点且12:1:3PF PF =﹐则下列哪些值可能为△12PF F 的周长﹕ (1)18 (2)20 (3)22 (4)24 (5)26﹒( )15. 拋物线的顶点为()1,0﹐焦点为()0,1﹐则下列何者正确﹕ (1)其方程式为()241y x =- (2)其对称轴为10x y --= (3)其方程式为22261070x xy y x y +++-+= (4)其正焦弦长为4 (5)其准线为30x y --=﹒( )16. 求椭圆229436x y +=上的点P 到直线:210L x y +=的最长距离为 (1)15 (2) (3)5( )17. 求拋物线28y x =被直线22x y -=所截的弦长为 (1)40 (2)(3)(4)50﹒ ( )18. 阿光在做习题时﹐遇到一题题目如下﹔「求过点()3,5且与双曲线22:48210x y x y Γ--+-=相切的直线方程式﹒」阿光的作法如下﹔35435821022x y x y ++⨯--⨯+⨯-= ⇒125412510x y x y ---++-= ⇒8480x y --=⇒220x y --=﹒答﹔切线方程式为220x y --=﹒就阿光的作法与答案﹐试判别下列何者为真﹕ (1)作法与答案皆正确(2)作法正确﹐但计算过程中有发生错误﹐使得答案不正确(3)作法正确﹐但答案错误﹐因为切线要有两条﹐所以阿光少写一条铅直切线3x = (4)作法不正确﹐因为()3,5不在双曲线上﹒( )19.同例題1﹐如果調整檯燈罩﹐將其往下壓﹐如圖﹒那麼桌面上S 區域的邊界是下列哪種圓錐曲線的一部分? (1)圓 (2)橢圓 (3)拋物線 (4)雙曲線﹒( )20. (1)10(2)10+(3)14 (4)15﹒二、多选题( ) 1. 已知一拋物线的焦点为()4,3﹐准线为y 轴﹐则下列哪些点也在此拋物线上? (1)()2,3(2)()4,7 (3)()4,1- (4)()4,3- (5)()0,3﹒( ) 2. 已知椭圆的长轴平行于x 轴﹐中心为()1,2且通过点()4,6﹐试问下列哪些点一定会在这椭圆上﹕ (1)()3,4 (2)()4,2- (3)()5,6 (4)()2,2-- (5)()2,6-﹒( ) 3. 已知拋物线方程式为284200y x y -++=﹐则 (1)对称轴为2x = (2)顶点()2,2- (3)焦点()2,0 (4)正焦弦长为8 (5)开口向上﹒( ) 4. 直线y x k =+与双曲线22412y x -=的相交关系为 (1)0k =时﹐没有交点 (2)3k =时﹐有一个交点 (3)3k <-时﹐有二个交点 (4)3k >时﹐没有交点 (5)k =时﹐没有交点﹒( ) 5. 下列有关双曲线224x y -=的叙述哪些是正确的? (1)顶点为()0,2与()0,2- (2)贯轴长为2 (3)贯轴与共轭轴等长 (4)渐近线互相垂直 (5)通过中心可作出两条切线﹒( ) 6. 下列方程式何者表示一个完整的拋物线﹕ (1)()()222253412x y x y +=+- (2)(3)2y -=(4)25410y x y +--= (5)25x y +-﹒( ) 7. 设a ﹑b ﹑c 为实数﹐若二次函数2x ay by c =++的图形通过()1,0且与y 轴相切﹐下列何者为真﹕ (1)0a < (2)0b > (3)1c = (4)240b ac +> (5)0a b c ++≥﹒( ) 8. 已知坐标平面上三点()3,0A ﹐()3,0B -﹐(),P x y ﹐下列叙述哪些是正确的?(1)若8PA PB +=﹐则P 点的轨迹是一个椭圆 (2)若6PA PB +=﹐则P 点的轨迹是一个圆 (3)若4PA PB +=﹐则P 点的轨迹是一个椭圆 (4)若PA PB =﹐则P 点的轨迹是一条直线(5)若3PA PB -=﹐则P 点的轨迹是双曲线的一支﹒( ) 9. 设220ax cy dx ey f ++++=﹐22220a c d e +++≠在坐标平面﹐下列叙述何者正确﹕ (1)若0ac <﹐图形不可能为无图形 (2)0ac =﹐则图形为一直线 (3)0f =时必过原点 (4)若图形为椭圆﹐则0ac > (5)0ac >时图形可能为点﹒( )10. 一双曲线贯轴平行y 轴﹐中心为()1,2-且过()2,4-﹐则下列哪些点也会在双曲线上﹕ (1)()0,3 (2)()1,3- (3)()1,1- (4)()2,0- (5)()0,0﹒( )11. 关于10Γ=﹐则下列何者为真﹕ (1)Γ表一椭圆 (2)Γ表一双曲线 (3)Γ的中心为()2,2- (4)Γ对称于直线20x -= (5)Γ的一顶点为()2,3﹒( )12. 在坐标平面上﹐请问下列哪些直线与双曲线221364x y -=不相交﹕ (1)3y x = (2)32y x =(3)31y x =+ (4)3y x =- (5)100y =﹒( )13. 下列叙述何者正确﹕ (1)已知拋物线上三点﹐可以求出拋物线之方程式 (2)已知顶点及正焦弦长﹐可以求出拋物线之方程式 (3)已知椭圆的两焦点及椭圆上一点﹐可以求出椭圆的方程式 (4)已知椭圆的中心及长轴﹑短轴的长度﹐可以求出椭圆的方程式 (5)已知椭圆的四个顶点坐标﹐可以求出椭圆的方程式﹒( )14. 下列哪些叙述是正确的﹕ (1)Γ为拋物线﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L必为Γ的切线 (2)Γ为椭圆﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L 必为Γ的切线 (3)Γ为双曲线﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L 必为Γ的切线 (4)Γ为一圆锥曲线(拋物线、椭圆或双曲线)﹐V 为它的一个顶点﹐L 为过V 的对称轴﹐则过V 的切线必与L 垂直 (5)Γ为一圆锥曲线(拋物线、椭圆或双曲线)﹐P 在Γ上﹐则通过P 恰可作一条Γ的切线﹒( )15. 下列各方程式中﹐哪些图形的焦点相同﹕ (1)22192x y -= (2)22129x y -= (3)223824x y -= (4)22143x y += (5)221143x y +=﹒( )16.在()0,0O 有三個同心圓﹐半徑為1﹐2﹐3﹐在()4,0P 有四個同心圓﹐半徑為1﹐2﹐3﹐4﹐如右圖所示﹒A ﹐B ﹐C ﹐D ﹐E ﹐F 在某一個橢圓上﹐則下列有關此橢圓的選項哪些是正確的? (1)中心為()2,0(2)長軸長為4 (3)短軸長為3 (4)一頂點為9,02⎛⎫⎪⎝⎭(5)一焦點為()4,0﹒( )17. 下列哪些叙述是正确的﹕ (1)()()22321250x y x y -+++-=的图形为两直线 (2)2的图形为双曲线的一支 (3)24y x =与24y x =图形的形状与大小均相同(不论位置) (4)22260x y -+=与22260x y --=图形的形状与大小均相同(不论位置) (5)2262x y =+与2262y x =+图形的形状与大小均相同(不论位置)﹒( )18. 坐标平面上﹐下列哪些直线与双曲线22:149x y Γ+=-不相交﹕(1)230x y -= (2)3210x y -+= (3)210x y -+= (4)320x y += (5)3y =﹒( )19. 一拋物线Γ的方程式为28x y =﹐()P 为Γ上一点﹐今有一平行y 轴的光線自上方射向P ﹐經反射後射到Γ上另一點Q 再反射﹒令1L 為過P 的切線﹐2L 為過Q 的切線﹐1L 和2L 交於R ﹒則下列哪些正確﹖(1)Q 的坐標為23⎛⎫ ⎪ ⎪⎝⎭(2)經過Q 的反射線與y 軸交於()0,1103(3)2L 320y ++= (4)1L 與2L垂直 (5)R 的y坐標為2-﹒( )20. 已知坐标平面上一双曲线Ω的对称轴平行坐标轴﹐贯轴长2﹐图形过()2,10A -﹐()4,10B ﹐()1,4C 三点﹐且这三点不在双曲线的同一支上﹒关于此双曲线﹐下列哪些叙述是正确的﹕ (1)Ω的贯轴平行x 轴 (2)Ω与x 轴必相交 (3)Ω与直线5y =没有交点 (4)Ω与直线1x =交于两点 (5)一直线过点()1,4C 且平行于Ω的其中一条渐近线﹐则此直线与Ω交于两点﹒( )21. 设1F 与2F 为坐标平面上双曲线22:1916x y Γ-=的两个焦点﹐P 为Γ上一点﹐使得此三点构成一直角三角形;试问符合条件的P 点有n 个﹐则n =﹕ (1)4n ≥ (2)4n ≤ (3)6n ≥ (4)6n ≤ (5)8n ≥﹒( )22. 关于双曲线22:1254y x Γ-=﹐下列哪些叙述是正确的﹕ (1)过点()0,0的直线不可能与Γ相切 (2)过点()5,0-有两条切线 (3)斜率为52的切线有两条 (4)斜率为3的切线有两条 (5)斜率为2的直线有可能将双曲线的两支分在此直线的两侧﹒( )23. 2=的点(),x y 所成的图形﹐下列叙述何者正确﹕ (1)此图形为一椭圆 (2)此图形为一双曲线 (3)此图形的中心在()1,1-(4)此图形对称于20x y -+= (5)已知此图形上有一点22⎛ ⎝⎭﹐则22⎛ ⎝⎭必也在此图形上﹒( )24. 关于双曲线22:1254y x Γ-=﹐下列哪些叙述是正确的﹕ (1)过点()0,0的直线不可能与Γ相切 (2)Γ的共轭双曲线的焦点为(0, (3)斜率为52的切线有两条 (4)斜率为3的切线有两条 (5)斜率为2的直线有可能将双曲线的两支分在此直线的两侧﹒( )25. 设a 与b 为实数﹐关于二元二次方程式22240x ay bx y ++-=的图形Γ﹐下列哪些叙述是正确的﹕ (1)若Γ是一椭圆﹐则0a < (2)若Γ是一双曲线﹐则0a > (3)若Γ是一圆﹐则1a = (4)若Γ是一拋物线﹐则0a =且0b = (5)若0a =且0b =﹐则Γ是一拋物线﹒( )26. 已知()1,2A ﹐()3,1B --﹐()5,5C ﹐:0L x y -=﹐满足下列条件的P 的图形叙述何者正确﹕ (1)0PA PB -=时图形为双曲线的一支 (2)10PB PC +=时图形为椭圆 (3)P 到C 的距离与P 到直线L 的距离相等时为拋物线 (4)15PB PC +=时图形为椭圆 (5)4PA PB -=时图形为双曲线﹒( )27. 下列何者为真﹕ (1)椭圆内接最大面积的矩形﹐此矩形必为正方形 (2)过点()3,4可做2条切线与双曲线221916x y -=相切 (3)过点()0,0可做1条切线与双曲线221916x y -=相切 (4)等轴双曲线的正焦弦长等于贯轴长 (5)若1Γ﹑2Γ互为共轭双曲线﹐又双曲线1Γ的两焦点间的距离为4﹐则2Γ的两焦点间的距离亦为4﹒( )28. 已知等轴双曲线Γ的一条渐近线为0x y +=﹐中心的坐标()1,1-且Γ过点()4,0﹐试问下列叙述哪些是正确的﹕ (1)Γ的两渐近线互相垂直 (2)0x y -=为Γ的另外一条渐近线(3)Γ的贯轴在直线1x =上 (4)点()3,1--为Γ的一个焦点 (5)点(1,1-+为Γ共轭双曲线Γ'的一个顶点﹒( )29. 设xy 平面上Γ6=﹐试问下列叙述哪些是正确的﹕ (1)Γ的图形可以当成两个拋物线 (2)Γ的贯轴所在直线是两渐近线的角平分线 (3)3410x y -+=是Γ的对称轴 (4)1711,55⎛⎫- ⎪⎝⎭是Γ的顶点 (5)147,55⎛⎫- ⎪⎝⎭是Γ的顶点﹒( )30. 已知双曲线的两条渐近线方程式为20x y +=与20x y -=﹐两顶点的距离为1﹐下列何者可能是此双曲线的方程式﹕ (1)224161x y -= (2)221641x y -= (3)2241x y -= (4)2241x y -+= (5)2241x y -+=﹒三、填充题1. 求拋物线2112y x x =-+-的焦点坐标为____________﹒2. 设双曲线22:1416x y Γ-=﹐P 为其上动点﹐1F ﹑2F 为其两焦点﹐求(1)若15PF =﹐则2PF =____________﹒(2)若19PF =﹐则双曲线上满足此条件的P 点共有____________个﹒ 3. 设k 为实数且2y x kx k =++的图形与直线21y x =+没有交点﹐则k 的范围为____________﹒ 4. 设直线:32L x y k =+与拋物线2:y x Γ=相切﹐则k 值为____________﹒ 5. 已知拋物线顶点()1,2﹐焦点()1,2-﹐则准线方程式为____________﹒6. 求拋物线2134y x x =-++的焦点坐标为____________﹒7. 设椭圆22:14x y Γ+=与直线1:3L y x k =+交于相异两点﹐则k 的范围为____________﹒8. 双曲线的方程式为229490x y -+=﹐则共轭双曲线的共轭轴长为____________﹒ 9. 椭圆22114x y +=与直线2y x k =+交于相异两点﹐则k 的范围为____________﹒10. 设L 为过点()1,0-且斜率为m 的直线﹐若L 与拋物线24y x =相交于相异两点﹐则m 的范围为____________﹒11. 双曲线的共轭轴为y 轴﹐贯轴平行x 轴﹐一焦点为()2,2且通过点222,3⎛⎫⎪⎝⎭﹐则其贯轴长为____________﹒12. 拋物线的准线:3L x =﹐焦点()3,0F -﹐则此拋物线方程式为____________﹒ 13. 求椭圆22346850x y x y +-+-=的长轴长为____________﹒14. ()()2241x y x y +-+=的图形为一双曲线﹐其标准式为____________﹒ 15. 双曲线中心为()6,6﹐贯轴平行x 轴﹐贯轴长为10﹐中心至焦点距离为13﹐则(1)其渐近线方程式为____________﹒(2)其共轭双曲线方程式(标准式)为____________﹒ 16. 设一拋物线的顶点为()3,2﹐焦点为()5,2﹐则(1)此拋物线的方程式____________﹒ (2)准线方程式为____________﹒17. 设22:164x y k k Γ+=--(k 为实数)﹐若Γ表一焦点在x 轴上的椭圆﹐则k 的范围为____________﹒18. 曲线222430x xy y x y +++++=与1x y +=-之交点为A ﹑B ﹐则AB =____________﹒ 19. 双曲线()()22211416x y +--=上两点(),m n ﹑(),2m n +﹐则m =____________﹒20.如圖﹐一拋物線鏡滿足方程式22y x =﹐一光線從()5,2平行對稱軸射向鏡面上P 點﹐經反射又射到拋物線鏡面上的Q點﹐則Q 點的坐標為____________﹒21. 椭圆22421610x y x y +--+=﹐则(1)中心坐标为____________﹒(2)焦点坐标为____________﹒(3)长轴长为____________﹒ (4)短轴方程式为____________﹒(5)正焦弦长为____________﹒22. xy 平面上三点A ﹑B ﹑C ﹐已知()0,5A ﹐()0,5B -﹐AC =BC =﹐则以A ﹑B 为两焦点且通过C 点的双曲线方程式为____________﹒23. 已知21:45y x x Γ=+-与22:241y x x Γ=-+-交于A ﹑B 两点﹐则直线AB 的方程式为____________﹒24. 若一椭圆的两焦点为()12,3F ﹐()22,3F -﹐长轴长为10﹐试求(1)椭圆的正焦弦长为____________﹒(2)椭圆的方程式为____________﹒ 25.設一光線沿著2y =的直線行進﹐在拋物線22y x =上的兩點B ﹑C 反射(如圖)﹐則CD方程式為____________﹒26. 等轴双曲线Γ的一条渐近线为20x y -=﹐中心的坐标()2,1且Γ过点()3,2﹐则此双曲线Γ的方程式为____________﹒27. 有一拋物线Γ的对称轴为10y +=且准线为1x =若Γ的正焦弦长是12﹐则Γ的方程式为____________﹒28. 已知平面上两点﹐()5,0A -﹐()3,0B ﹐若动点(),P x y 满足﹐则(1)10PA PB +=﹐P 点轨迹为____________﹒ (2)8PA PB -=﹐P 点轨迹为____________﹒29. 设Γ为以()10,0A ﹐()10,0B -为焦点且过(C 的椭圆﹐则(1)Γ的方程式为____________﹒ (2)内接矩形的最大面积为____________﹒ 30.设)4P-为椭圆()222148y x ++=上一点﹐且1F ﹑2F 为椭圆的两焦点﹐12F PF ∠的角平分线方程式为____________﹒ 31.右圖是一個雙曲線﹐且A ﹑B ﹑C ﹑D ﹑E 五個點中有一為其焦點﹐試判斷其焦點為____________﹒32. 椭圆22:943624360x y x y Γ++++=﹐则Γ的长轴方程式为____________﹒ 33. 过()3,2且与22236x y -=相切的直线方程式为____________﹒34. k 的图形是椭圆﹐则常数k 的范围为____________﹒35. 已知()5,3A -﹐()1,3B --为平面上两点﹐则以A 为顶点﹐B 为焦点的拋物线方程式为____________﹒36. 设双曲线Γ方程式为22491618430x y x y -+++=﹐而1F ﹑2F 是Γ的焦点﹐试回答下列问题﹔(1)两焦点1F 与2F 的坐标为____________﹒(2)若(),P x y 是Γ上的任一点﹐则12PF PF -=____________﹒ (3)两渐近线的方程式为____________﹒37. 设一直线L 与椭圆22312210x y x y ++-+=相切于一点()1,4P -﹐则L 的方程式为____________﹒ 38. 方程式22193x y k k +=--的图形﹐表示椭圆其长轴在x 轴上﹐则k 的范围为____________﹒39.如圖﹐用尺量量看﹐哪一點最有可能是橢圓的焦點﹖答﹕____________﹒ (請填代號)40. 直线20x y t -+=与图形x =t 的范围为____________﹒ 41. 「P 点与()5,0F 之距离」比「P 到直线:80L x +=之距离」多2﹐则P 点的轨迹方程式为____________﹒42. 有一椭圆其一焦点为()2,1-﹐短轴的一端点为()1,4﹐长轴平行y 轴﹐则此椭圆的方程式为____________﹒43. 双曲线方程式为()()2293162144x y ---=﹐则此双曲线的焦点坐标为____________﹒ 44. 以()1,1为顶点且通过()3,3A 与()1,3B -的拋物线方程式为____________﹒ 45. P 为椭圆()()221424x y ++-=上一点﹐直线:3412L x y +=﹐则(1)P 到直线L 的最长距离为____________﹒ (2)椭圆对直线L 的正射影长为____________﹒46. 若直线416ax y +=与椭圆221167x y +=相切﹐则a =____________﹒(二解)47. 双曲线的两焦点()12,6F -﹐()22,4F --且通过点()2,4P -﹐则此双曲线方程式为____________﹒ 48. 平面上有一椭圆﹐已知其焦点为()0,0和()4,4-且2x y +=为此椭圆的切线﹐则此椭圆的正焦弦长为____________﹒49. 设椭圆22432412240x y x y +-++=﹐则(1)中心坐标为____________﹒(2)正焦弦长为____________﹒50. 直线2y x k =+与2513y x x =-+交于两点P ﹑Q ﹐若3PQ =﹐则k =____________﹒51. 设方程式()()2223151x y k k +-+=-+的图形为贯轴平行y 轴的双曲线﹐则k 的范围为____________﹒52. 若方程式22132x y t t +=--的图形为椭圆﹐则t 的范围为____________﹒53. k =图形为一线段﹐k =____________﹒54. 拋物线253y x x =-++的一切线L 且垂直35x y -=﹐则L 的方程式为____________﹒ 55. 设拋物线的对称轴平行于y 轴且通过()0,3﹑()2,0﹑()4,5-﹐则这拋物线的焦点坐标为____________﹒56. 设22141x y t t +=-+为焦点在y 轴的双曲线﹐则t 的范围为____________﹒57. 双曲线()()2211:1169x y Γ---=﹐试求下列各直线与双曲线Γ的交点个数﹔(1)()3114y x -=-﹔____________个 (2)34y x =﹔____________个 (3)()4113y x -=-﹔____________个 (4)4x =﹔____________个 (5)14y x =﹔____________个﹒ 58. 设一拋物线的对称轴平行于x 轴且过()1,1﹑()3,2﹑()3,1-三点﹐则拋物线方程式为____________﹒59. 双曲线6Γ=﹐则(1)此双曲线的中心点坐标为____________﹒(2)贯轴长为____________﹒60. 设()1,0A ﹐()1,0B -为平面两定点﹐(),P x y 为动点﹐若△PAB 的周长为8且△PAB 的面积为2﹐则22x y +=____________﹒61. 若P 为拋物线2:1y x Γ=-上的动点﹐Q 为圆()22:11C x y +-=上的动点﹐则(1)PQ 的最小值为____________﹒(2)当PQ 有最小值时﹐P 点的y 坐标为____________﹒ 62. 设直线y x k =+与双曲线22412y x -=相切﹐试求(1)切点坐标为____________﹒ (2)定数k 的值为____________﹒63. 平面上双曲线()()2212125144x y -+-=与椭圆()()22212112x y k k-++=+共焦点﹐则k =____________﹒ 64. 已知F 是椭圆的一个焦点﹐1B ﹑2B 是短轴的两个端点且1290B FB ∠=︒﹐1A 是长轴上距离F 较近的一个端点﹐若11A F =﹐则椭圆长轴长为____________﹒ 65. 直线1kx y +=与拋物线28x y =-相切﹐则k =____________﹒66. 等轴双曲线的中心为()7,2且一焦点为()3,2﹐则此双曲线方程式为____________﹒ 67. 方程式轴是铅垂线且过()0,3﹑()2,1﹑()2,9-三点的拋物线为____________﹒ 68. 直线():12L y m x =++与22416x y -=恰有一交点﹐则m =____________﹒ 69. 请将下列各题填入适当的代号﹔(A)椭圆 (B)拋物线 (C)双曲线 (D)线段 (E)二射线 (F)一射线 (G)无图形 (H)双曲线的一部分(1)14x +的图形为____________﹒(2)5=的图形为____________﹒(3)=____________﹒(4)(),P x y ﹐2cos 22sin cos x y θθθ=⎧⎨=⎩﹐0θπ≤≤﹐P 的轨迹图形为____________﹒(5)(),P x y ﹐2sin cos x y θθ=⎧⎨=-⎩﹐θ为实数﹐P 的轨迹图形为____________﹒70. 已知x ﹑y 为实数﹐1z x yi =+﹐2z x yi =-﹐若126z z +=﹐则动点(),P x y 的轨迹图形方程式为____________﹒71. 已知拋物线的焦点()0,0﹐准线20x y ++=﹐若PQ 为正焦弦﹐P 在第二象限﹐则P 的坐标为____________﹒ 72.如圖所示為坐標平面上兩曲線的部分圖形﹐其中之一為橢圓的部分圖形﹐另一個為拋物線的部分圖形﹒已知兩曲線均通過()4,0C 與()4,0D -且皆以y 軸為對稱軸﹐皆以()0,3F -為其焦點﹔又橢圓的中心為原點﹐則此兩曲線的頂點A ﹑B 的距離AB =____________﹒73. 双曲线22:8x y Γ-=﹐点()1,1A ﹐由A 向Γ作切线﹐则切线方程式为____________﹒74. 已知椭圆的长轴平行x 轴且长轴上一个顶点()2,3到两个焦点1F ﹑2F 的距离分别为4及10若椭圆的中心x 坐标小于2﹐则椭圆的方程式为____________﹒(请化成标准式) 75. 已知椭圆221369x y +=有一弦以()2,1为中点﹐含此弦的直线方程式为____________﹒76. 若双曲线2212:19x y a Γ-=上一点P 到此双曲线两渐近线的距离乘积为3613﹐今有一椭圆2Γ与双曲线1Γ共焦点且短轴长为4﹐则椭圆2Γ方程式的标准式为____________﹒77. 设一个拋物线方程式为28y x =今有一椭圆与拋物线的准线相切且拋物线的焦点为椭圆中心﹐拋物线的顶点为椭圆之一焦点﹐则此椭圆的短轴长为____________﹒78. 已知直线y x k =--是拋物线2350x x y +--=的切线﹐则(1)k =____________﹒(2)切点为____________﹒79. 直线L 与22416x y +=相切且斜率为1﹐若切点为(),a b ﹐则1a b -+之值____________﹒ 80. 设E ﹑F 为椭圆2248x y +=的两焦点﹐设椭圆上一点()1,2A ﹐求EAF ∠的角平分线方程式为____________﹒81. 设3AB =﹐P 点在AB 上且1AP =﹐若A 在x 轴上移动﹐B 在y 轴上移动﹐则P 点的轨迹方程式为____________﹒82. 设拋物线通过()3,0﹑()5,6且其对称轴为1x =﹐则其方程式为____________﹒ 83. (),P x y 在2222142x y -=上﹐则22x y +的最小值为____________﹒84. 设()2,4P 为椭圆22242240x y x y +-+-=上一点﹐且F ﹑F '为椭圆的两焦点﹐则FPF '∠的角平分线为____________﹒85. 设4Γ=﹐则(1)共轭轴的长为____________﹒(2)顶点坐标为____________﹒ 86.某行星繞太陽的軌道為如圖之橢圓﹐太陽位於橢圓軌道之一焦點處﹒據觀測﹐此行星與太陽的最近距離為a 萬公里﹐最遠距離為b 萬公里﹐則 (1)行星位於____________時﹐距太陽的距離恰為a ﹑b 平均值(即距離為2a b+萬公里)﹒ (2)又已知此軌道的正焦弦長為短軸長的35﹐則太陽位置為____________﹒(以上各問題均依圖上所標示參考位置作答)87. 已知拋物线()()2:141x y Γ-=+﹐L 为过点()0,3-与Γ相切的直线﹐其斜率小于0﹐则(1)直线L的方程式为____________﹒(2)切点坐标为____________﹒88. 有一道光线经过()2,6A -沿水平方向前进碰到拋物线2:4y x Γ=上一点P ﹐经反射后通过一点B ﹐已知20PB =﹐求B 点的坐标为____________﹒89. 设圆锥曲线有顶点()2,1﹐焦点()0,0﹐则(1)若为长轴平行于x 轴的椭圆﹐则椭圆方程式为____________﹒ (2)若为拋物线﹐则准线方程式为____________﹒90. 点A 在y 轴上移动﹐点B 在x 轴上移动﹐AB 长度为10﹐P 在AB 上且:2:3AP PB =﹐则P 点的轨迹方程式为____________﹒91. 以(12,1F +﹐(22,1F -为两焦点的椭圆Γ通过点(2Q +﹐则Γ的方程式为____________﹒92. 若双曲线的顶点与焦点分别是椭圆()2294136x y ++=的焦点和顶点﹐则此双曲线的方程式为____________﹒(请化成标准式)93. 拋物线的准线垂直x 轴且过三点()1,0﹑()1,1-﹑()5,1-﹐则此拋物线的焦点坐标为____________﹒94. 设F 与F '为双曲线()()2215:123x y Γ-+-+=上两焦点﹐且有一点P 的坐标为()3,2-﹐试求FPF '∠的角平分线方程式为____________﹒95. 若(),P x y 在椭圆22:440x y Γ+-=上﹐O 为Γ的中心﹐()1,0A 且60POA ∠=︒﹐则PO 长为____________﹒96. 椭圆的对称轴平行于坐标轴﹐一短轴端点为()3,3-﹐一焦点为()6,7-﹐其正焦弦长为____________﹒97. 拋物线的轴垂直于x 轴﹐并通过()1,0-﹑()9,0-﹑()0,18三点﹐则过()1,0-的切线方程式为____________﹒98. 圆锥曲线22:23440x y x Γ---=焦点为1F ﹑2F ﹐若()4,2P 在圆锥曲线上﹐求12F PF ∠的角平分线方程式为____________﹒ 99. 椭圆()()2221100210021100x y --+=在第一﹑二﹑三﹑四象限内的面积依次为1R ﹑2R ﹑3R ﹑4R ﹐则1234R R R R -+-=____________﹒100. 过()3,2A 且与()()21122x y +=-共焦点﹐共对称轴的拋物线方程式为____________﹒101. 两渐近线为20x y +=﹐20x y -=﹐且一焦点为()的双曲线其共轭双曲线方程式为____________﹒102. 坐标平面上有一椭圆﹐已知其焦点为()0,0﹑()4,4且y x =为此椭圆的切线﹐则此椭圆的长轴长为____________﹒103. 与椭圆()()2212194x y -++=共焦点且共轭轴长为4的双曲线方程式为____________﹒104. 双曲线2224810x x y y ---+=上一点112⎛⎫+ ⎪⎝⎭到两渐近线的距离乘积为____________﹒105. 坐标平面上的一直线:40L x y -+=与线外一定点()3,3A ﹒今L 上任一点P 与A 的联机段的中垂线与过点P 并垂直L 的直线相交于Q 点﹐则动点Q 所形成曲线的顶点坐标为____________﹒ 106. 已知正焦弦PQ 的两端点分别为()5,1P -﹐()3,1Q --﹐则拋物线方程式为____________﹒107. 设k 为实数﹐若方程式()2211105y x k k++=--为双曲线﹐则此双曲线的焦点坐标为____________﹒(有两解)108. 设2212518x y +=上一点P 与两焦点F ﹑'F ﹐夹角为60度﹐求△'PFF 的面积为____________﹒109.如圖﹐有一太陽灶﹐它是由拋物線繞軸旋轉而做成的拋物面﹐開口直徑20公寸﹐開口距底部之深為6公寸﹒試問烤肉盤應置於距離底部____________公寸﹐才能將肉烤熟﹒110. 有一个过原点的等轴双曲线中心为()1,2-﹐其中一条渐近线为238x y -=﹐则双曲线方程式为____________﹒(不用化简乘开)111. 椭圆22191x y +=上两点()0,1A -﹐()3,0B ﹐若()00,C x y 为椭圆上另一点﹐则(1)△ABC 面积的最大值为____________﹒(2)()00,C x y =____________﹒112. 设()1,0A -﹐()0,2B ﹐P 是拋物线24y x =上的动点﹐则△ABP 面积的最小值为____________﹒ 113. 已知两圆221:16C x y +=﹐()222:104C x y -+=﹐若动圆C 与1C ﹑2C 均相切﹐则此动圆C 的圆心轨迹方程式为____________﹒ 114.已知橢圓22194x y +=上兩點P ﹑Q 如圖所示(P ﹑Q 是和x 軸夾角為60︒的直線與橢圓之交點)﹔現在想找出P ﹑Q 的坐標﹐則(1)若使用參數式()3cos ,2sin θθ﹐則對P 而言﹐θ與60︒的大小關係為____________(請填60θ<︒﹐60θ=︒﹐60θ>︒)﹒(2)同樣的﹐對Q 而言﹐θ與120︒的大小關係為____________﹒(請填120θ<︒﹐120θ=︒﹐120θ>︒)﹒115. 拋物线的准线方程式为10x y --=﹐焦点坐标为()1,1-﹐则此拋物线的方程式为____________﹒(以220Ax Bxy Cy Dx Ey F +++++=形式表示)116. 设()15,0F -﹐()25,0F 为22:1169x y Γ-=的两焦点﹐若AB 为过2F 的任一焦弦﹐则△1ABF 面积的最小值为____________﹒117. 若一动圆与定圆()()22:314C x y +++=外切﹐且与直线:1L x =相切﹐则此动圆圆心的轨迹方程式为____________﹒118. 某行星绕一恒星之轨道为椭圆形且恒星在其一焦点处﹐据观测﹔此行星与恒星的最近距离为100万公里﹐最远距离为140万公里﹐则此椭圆的正焦弦长为____________万公里﹒ 119. 设圆()22:116C x y -+=﹐()1,0A -﹐()7,0B ﹐则(1)通过A 且与圆C 相切的所有圆的圆心轨迹方程式为____________﹒ (2)通过B 且与圆C 相切的所有圆的圆心轨迹方程式为____________﹒120. 有一双曲线A 的贯轴方程式是40y +=﹐且点()4,4-是一个焦点;若直线280x y -+=是A 的一条渐近线﹐则A 的方程式为____________﹒ 121. 设椭圆224972x y +=﹐则此椭圆切线斜率为23的切线方程式为____________﹒ 122. 设()5,4A 为平面上一点﹐P 为拋物线212y x =上一点﹐F 为拋物线的焦点﹐则当PF PA +有最小值时﹐P 点坐标为____________﹒123. 设1F ﹑2F 为双曲线221930x y -=的两个焦点﹐且P 为双曲线上一点﹐若12120F PF ∠=︒﹐则△12PF F 的最短边长度为____________﹒ 124. 已知椭圆与双曲线()22114x y +-=共焦点﹐且椭圆的正焦弦长度等于1﹐则椭圆的方程式为____________﹒125. 在坐标平面上﹐O 为原点﹐1B ﹑2B ﹑3B ﹐……在x 轴上﹐1B 在O 的右边﹐2B 在1B 的右边﹐3B 在2B 的右边﹐……﹐110OB =﹐1230B B =﹐23B B =50﹐1OB ﹑12B B ﹑23B B ﹐……的长度成等差数列﹐分别作正△11OB A ﹑正△122B B A ﹑正△233B B A ﹐……﹐其中1A ﹑2A ﹑3A ﹐……均在第一象限上﹐已知1A ﹑2A ﹑3A ﹐……在一个拋物线上﹐则此拋物线的方程式为____________﹒ 126. 已知一椭圆Γ的两焦点为()3,7F ﹐()'9,1F ﹐若直线2x y +=-为Γ的一切线﹐则Γ的长轴长为____________﹒ 127. 设一曲线方程式为()()()22223341213x y x y +-=-+-﹐则(1)对称轴方程式为____________﹒(2)顶点坐标为____________﹒ 128. 已知圆()()22:219C x y -++=及两点()2,3A ﹐()0,1B -﹐则(1)过点A 且与圆C 相切的圆之圆心形成的图形方程式为____________﹒ (2)过点B 且与圆C 相切的圆之圆心形成的图形方程式为____________﹒129. 拋物线2:8y x Γ=的焦点为F ﹐P 为Γ上的动点﹐点()4,2A -﹐当PA PF +有最小值时﹐此时P点坐标为____________﹒130. 在图中﹐圆O 的圆心为原点﹑半径为4﹐F 的坐标为()6,0﹐Q 在圓O 上﹐P 點為FQ 的中垂線與直線OQ的交點﹐當Q 在圓O 上移動時﹐求動點P 的軌跡方程式為____________﹒ (化成標準式)131. 椭圆22:4936x y Γ+=﹐则(1)若P 为椭圆Γ上的动点且()3,0A -﹐()0,2B -﹐则△PAB 面积最大值为____________﹒ (2)椭圆Γ的内接正方形面积为____________﹒ 132.台南一中大榕樹旁的長方形草皮裝設有灑水系統﹒其中高為1公尺的噴水管OA 直立於地面(如圖)﹐水自噴嘴A 噴出後呈拋物線狀﹐先向上至最高點後落下﹒若最高點離地面2公尺﹐但A 距拋物線對稱軸2公尺﹐則此噴嘴A 經360度旋轉後﹐可噴灑的草地區域為圓形﹐其直徑約為____________公尺﹒(取整數﹐小數點以下四捨五入)133.图形:x y Γ=100x y ++=的正射影(垂直投影)总长度为____________﹒(注意x ﹑y 范围限制)134. 与y 轴相切且与圆22124360x y x y +--+=相外切的圆其圆心的轨迹方程式为____________﹒135. 若P 点为椭圆2213611x y +=上的一点且P 在第一象限﹒今已知P 到焦点()5,0的距离是72﹐则P 点的坐标为____________﹒136. 双曲线Γ的一渐近线为23x y +=﹐Γ过()6,3﹑()4,0﹐又其贯轴(顶点联机)平行x 轴﹐则Γ的方程式为____________﹒137. 平面上与圆()2221x y -+=外切且与圆2249x y +=内切之所有圆的圆心﹐所成图形的方程式为____________﹒ 138. 设椭圆6Γ﹐则(1)在第一象限之顶点的坐标为____________﹒(2)又Γ内接矩形中﹐周长最大者﹐其周长为____________﹒139. 在坐标平面上﹐过()1,0F 的直线交拋物线24y x =于P ﹑Q 两点﹐P 在上半平面且2PF QF =﹐则P 的x 坐标为____________﹒140. 平面上有两点()2,5A ﹐()4,1B --﹐P 为椭圆()()2211194x y +-+=上任一点﹐则△PAB 的最大面积为____________﹒141. 若(),P a b 为椭圆22141x y +=上的任一点﹐则(1)23a b -的最小值为____________﹒(2)此时(),a b =____________﹒142. =____________﹒143. 设P 为椭圆2212516x y +=上一点﹐1F ﹑2F 为两焦点﹐若1260F PF ∠=︒﹐则△12PF F 的面积为____________﹒144. 与直线:120L x +=相切且与圆22:16C x y +=相切的圆其圆心轨迹方程式为____________﹒ 145. 过()3,0F 的直线交拋物线212y x =于P ﹑Q 两点﹐过P ﹑Q 两点作y 轴垂线﹐分别交y 轴于R ﹑S ﹐若:3:1PF FQ =﹐则梯形PQSR 的面积为____________﹒146. 圆()221:11C x y -+=﹐圆()222:125C x y ++=﹐则(1)若动圆C 和圆1C 外切且与圆2C 内切﹐动圆C 的圆心所形成的圆锥曲线方程式为____________﹒(2)若动圆C 同时与圆1C ﹑圆2C 均内切﹐动圆C 的圆心所形成的圆锥曲线方程式为____________﹒147. 设k 为一常数﹐已知拋物线Γ=﹐且过点()8,0﹐则Γ的顶点坐标为____________﹒148. 设一拋物线216x y =-﹐焦点F ﹐点()6,5A -﹐若在拋物线上有一点P ﹐使得PA PF +有最小值﹐则(1)P 点的坐标为____________﹒(2)最小值为____________﹒149. 设圆()()22:1236C x y ++-=及圆C 内一定点()3,2A ﹐通过A 点且与圆C 相(内)切的所有圆之圆心的轨迹(即圆心所成的图形)的方程式为____________﹒ 150.已知圓的方程式為()2211x y -+=﹐四邊形OAPQ 為圓內接梯形﹐底邊AO 為圓的直徑且A ﹑O 在x 軸上﹐現有一橢圓以A ﹑O 為焦點﹐且通過P ﹑Q 兩點﹐若1PQ =﹐則此橢圓的短軸長為_____________﹒四、计算题1. 已知一双曲线Γ的两焦点为()2,9F -与()2,3F '--﹐则(1)双曲线Γ方程式为何﹕ (2)Γ的共轭双曲线方程式为何﹕2. 设()()2:122y x Γ-=-﹐一光线沿3y =的直线行进﹐射在Γ上的P 点﹐经反射后又射在Γ上的Q 点﹐试求(1)PQ的方程式﹕ (2)PQ 长度为何﹕3. 自点()2,0作拋物线224y x x =-+的切线﹐试求(1)切线方程式﹒(2)切点﹒4. 下列叙述何者正确﹕(1)方程式222240x y x y k +-++=的图形是一个椭圆的充要条件是3k <﹒ (2)5的图形是一个椭圆﹒(3)椭圆()()22131916x y +-+=的正焦弦长为92﹒5. 已知一双曲线的顶点与焦点分别与椭圆221167x y +=的焦点与顶点相同﹐求此双曲线的方程式﹒6. 下列1~5各小题的方程式图形为何﹕请在(A)~(J)各项中选出对应的图形:(A)没有图形 (B)一线段 (C)一直线 (D)一射线 (E)两射线 (F)两相交直线 (G)双曲线 (H)拋物线 (I)椭圆 (J)双曲线的一支 (1)2248230x y x y ---+=﹒(2)()()()2222112x y x y ⎡⎤-+-=+-⎣⎦﹒10=﹒7=﹒2x =+﹒7. 设拋物线()()()22253122x y x y ⎡⎤-+-=-+⎣⎦﹐则(1)对称轴方程式﹒(2)顶点坐标﹒8. 若椭圆两焦点为)1F ﹐()2F ﹐切线L 为5x y +=﹐求此椭圆方程式﹒9. 已知()222210:x y x y aΓ++=+的图形为拋物线﹐则(1)a =﹕(2)Γ的顶点坐标﹒10. 已知直线2y x k =+与拋物线24y x =相切﹐求(1)k 的值﹒ (2)切点坐标﹒11. 试求过拋物线2432y x x =-+上一点()1,3P 所作的切线方程式﹒12. 设P 为椭圆22916144x y +=上一点﹐且P 到直线:10L x y +=的距离最短﹐求P 点坐标﹒13. 拋物线Γ﹐则(1)准线方程式﹒(2)对称轴方程式﹒(3)焦点坐标﹒(4)顶点坐标﹒(5)正焦弦长﹒14. 双曲线的两焦点()118,1F ﹐()212,1F -﹐有一渐近线的斜率为34﹐求此双曲线的方程式﹒ 15.某彗星的軌道為一拋物線﹐而以太陽為焦點﹐當彗星與太陽的距離為4百萬公里時﹐兩者連線與拋物線的軸成60︒﹐如右圖所示﹒問當彗星與太陽的連線垂直拋物線的軸時﹐兩者的距離為何?16. 在水槽边两点3,02A ⎛⎫- ⎪⎝⎭﹐3,02B ⎛⎫⎪⎝⎭同时作相同的圆形水波﹐图中的实线同心圆代表波峰(连续的波峰相距2单位)﹐虚线同心圆代表波谷(连续的波谷相距2单位)﹒若水槽中遇到来自A ﹑B 两点的波峰同时到达﹐则出现如图中P 点所形成的亮线;但若遇到波峰与波谷同时到达﹐则形成图中暗线的轨迹﹒很明显地﹐AB 的中垂线是中央亮线﹐则(1)离中央亮线最近的第一条亮线(即P 点所在的曲线)所满足的方程式为何﹕(2)在平行AB 且相距10单位处设一屏障(如图)﹐若中央亮线与此屏障的交点是H ﹐最近的第一条亮线与此屏障的交点是Q ﹐则HQ 的距离为何﹕17. 试求下列锥在线点T 的切线T L 与法线N L 方程式各为何﹕(1)28y x =﹐9,62T ⎛⎫⎪⎝⎭﹒ (2)229425x y +=﹐()1,2T -﹒ (3)22235x y -=﹐()2,1T -﹒。
圆锥曲线经典大题1.过点A (-4,0)的动直线l 与抛物线G :*2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC→=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值围.2.如图,(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅.〔Ⅰ〕求动点P 的轨迹C 的方程。
〔Ⅱ〕过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . 〔1〕1MA AF λ=,2MB BF λ=,求12λλ+的值; 〔2〕求MA MB ⋅的最小值. 3.设点F 是抛物线G :*2=4y 的焦点.〔1〕过点P 〔0,-4〕作抛物线G 的切线,求切线的方程;〔2〕设A ,B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,分别延长AF ,BF 交抛物线G 于C ,D 两点,求四边形ABCD 面积的最小值.4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.〔Ⅰ〕求证:A M B ,,三点的横坐标成等差数列;〔Ⅱ〕当M 点的坐标为(22)p -,时,AB = 5.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,假设112OF AF +=0〔其中O 为坐标原点〕. 〔1〕求椭圆M 的方程;〔2〕设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径〔E 、F 为直径的两个端点〕,求PF PE ⋅的最大值.6.双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率2e =,顶点到渐近线的距离为5。
(I ) 求双曲线C 的方程;(II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,假设1,[,2]3AP PB λλ=∈,求AOB ∆面积的取值围。
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
圆锥曲线基础大题20道一、解答题1.(1)已知椭圆()22122:10x y C a b a b+=>>的焦距为x =±,求椭圆1C 的方程;(2)已知双曲线()22222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,求双曲线2C 的方程. 2.已知椭圆22149x y +=,一组平行直线的斜率是1. (1)这组直线何时与椭圆有公共点?(2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程. 3.过原点O 作圆x 2+y 2-8x=0的弦OA .(1)求弦OA 中点M 的轨迹方程;(2)延长OA 到N ,使|OA|=|AN|,求N 点的轨迹方程.4.已知动圆经过点F (2,0),并且与直线x =-2相切(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB | 5.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.6.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点M .(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.7.焦点在x 轴上的椭圆的方程为2214x y m +=,点(2,1)P 在椭圆上. (1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 8.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过23(2,),(2,)A B ---两点 9.如图,若12,F F 是双曲线221916x y -=的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且12·32PF PF =,试求12F PF ∆的面积. 10.已知条件p :空间向量(1,0,)a n =,(1,1,1)b =-,满足0a b ⋅>;条件q :方程2212x y n k -=-表示焦点在x 轴上的双曲线. (1)求使条件p 成立的n 的取值范围;(2)若p 成立是q 成立的充分条件,求实数k 的取值范围.11.已知椭圆的两个焦点坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭. (1)求椭圆的标准方程;(2)若直线1y x =+与椭圆交于A 、B 两点,求AB 中点的坐标和AB 长度. 12.已知双曲线22221x y a b-=的离心率为2e =(2,3)P (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离13.已知椭圆()222210x y a b a b +=>>⎛ ⎝⎭,1F ,2F 是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)点P 在椭圆上,且122PF PF -=,求12PF PF ⋅的值. 14.已知双曲线22:12x C y -=. (1)求与双曲线C有共同的渐近线,且过点((2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.15.已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为2.(1)求双曲线C 的标准方程;(2)若直线l:y kx =+C 的左支交于A 、B 两点,求k 的取值范围.16.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为6,离心率为23. (1)求椭圆C 的方程;(2)直线y x m =+与椭圆C 交于A ,B 两点,求AB 的最大值.17.已知椭圆2222:1(0)x y a b a bΩ+=>>的焦距为4,短半轴长为2. (1)求椭圆Ω的方程;(2)若直线l 与椭圆Ω相交于A ,B 两点,点()2,1P -是线段AB 的中点,求直线l 的方程.18.已知双曲线C 的中心是原点,右焦点为F ,一条渐近线方程为0x =,直线:0l x y -+=与双曲线交于点A , B 两点.记F A , FB 的斜率分别为12,.k k (1)求双曲线C 的方程;(2)求1211k k +的值. 19.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,下顶点为A ,O 为坐标原点,O 到直线2AF 的距离为3,12AF F △为等边三角形. (1)求椭圆C 的标准方程; (2)若倾斜角为60 的直线经过椭圆C 的右焦点2F ,且与椭圆C 交于M ,N 两点(M 点在N 点的上方)求线段2MF 与2NF 的长度之比.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,点M (2,m )为其上一点,且|MF |=4.(1)求p 与m 的值;(2)如图,过点F 作直线l 交抛物线于A 、B 两点,求直线OA 、OB 的斜率之积.参考答案1.(1)22196x y +=;(2)22145x y -= 【分析】(1)由已知可得c =2a c±=± (2)由已知可得b a =,29c =,计算即可得出结果. 【详解】 (1)焦距为c =x =±,则2a c±=±3a =, 由222a b c =+,可得:26b =,所以椭圆1C 的方程为22196x y +=; (2)由双曲线的一条渐近线方程为2y x =可知,b a =, 且与椭圆221123x y +=有公共焦点,则29c =, 又因为222a c b =-,即2223c b a a c b =⎧⎪⎪=⎨⎪=-⎪⎩,解得:2a =,b =3c =, 所以双曲线2C 的方程为22145x y -=. 【点睛】本题考查椭圆的标准方程及双曲线的标准方程,考查计算能力,属于基础题.2.(1)截距在[范围内;(2)940x y +=.【分析】(1)由已知设直线方程y x b =+结合椭圆方程,根据有公共点即所得方程的判别式2264208(9)0b b ∆=--≥即可知直线截距在[上有交点;(2)结合(1)由中点坐标可得49(,)1313b b -,而其中必有原点即可求直线方程; 【详解】 (1)设平行直线的方程为y x b =+,若直线与椭圆有公共点,则:将y x b =+代入22149x y +=,整理得:221384360x bx b ++-=,∴2264208(9)0b b ∆=--≥解得:b ≤≤;(2)令交点坐标分别为1122(,),(,)x y x y ,由(1)知:12813b x x +=-,而121218213b y y x x b +=++=, 所以线段中点坐标为49(,)1313b b -,其中必有一个中点为坐标原点,故直线的斜率为94k =-, ∴所在的直线方程:940x y +=;【点睛】本题考查了直线与椭圆的位置关系,计算确定何时它们会有公共点,以及求交点弦的中点所构成直线的方程.3.(1)x 2+y 2-4x="0;" (2)x 2+y 2-16x=0【解析】试题分析:(1)设M 点坐标为(x ,y ),那么A 点坐标是(2x ,2y ),A 点坐标满足圆x 2+y 2-8x=0的方程,所以, (2x )2+(2y )2-16x=0,化简得M 点轨迹方程为x 2+y 2-4x=0.(2)设N 点坐标为(x ,y ),那么A 点坐标是(,22x y ), A 点坐标满足圆x 2+y 2-8x=0的方程,得到:(2x )2+(y 2)2-4x=0, N 点轨迹方程为:x 2+y 2-16x=0.考点:轨迹方程点评:中档题,本题利用“相关点法”(“代入法”),较方便的使问题得解.4.(1)28y x =(2)16【分析】(1)设(,)P x y ,根据题目条件列方程可求得结果;(2)联立直线与抛物线方程,根据弦长公式可得结果.【详解】(1)设(,)P x y |(2)|x =--,化简得28y x =,所以动圆圆心P 的轨迹M 的方程为28y x =(2)直线l 的方程为(2)y x =--,即2y x =-+, 联立228y x y x=-+⎧⎨=⎩,消去y 并整理得21240x x -+=, 设11(,)A x y ,22(,)B x y ,则1212x x +=,124x x =,由弦长公式可得||AB =16==.所以|16|AB =【点睛】本题考查了求动点的轨迹方程,考查了直线与抛物线的位置关系,考查了韦达定理和弦长公式,属于基础题.5.(1)()1,0,1x =-;(2)【分析】(1)因为()1,2P 在抛物线C 上,可得2p =,由抛物线的性质即可求出结果;(2)由抛物线的定义可知1226AB x x =++=,根据点斜式可求直线AB 的方程为1y x =-+ ,利用点到直线距离公式求出高,进而求出面积.【详解】(1)∵()1,2P 在抛物线C 上,422p P ∴=∴=,, ∴点F 的坐标为()1,0,抛物线C 的准线方程为1x =-;(2)设,A B 的坐标分别为()()1122,,x y x y ,,则1228AB x x =++=,1MF k =-,∴直线AB 的方程为1y x =-+ ,点O 到直线AB 的距离2d =, 12OAB S AB d ∴=⋅=【点睛】本题主要考查了抛物线的基本概念,直线与抛物线的位置关系,属于基础题.6.(1)2212y x -=;(2)实轴长2 【分析】(1)由共渐近线双曲线方程的求法求解即可;(2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,b '=,则渐近线方程为a y x b''=±=, ∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,b a∴=, ∴方程可化为222212x y a a-=,又双曲线C 经过点M ,代入方程,222212a a∴-=,解得1a =,b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,b =c =∴实轴长22a =,离心率为==c e a设双曲线C 的一个焦点为(,一条渐近线方程为y =,d ∴==,.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.7.(1)2(2)长轴长4、短轴长2【分析】(1)根据题意,代入点P ,即可求解.(2)由(1),写出椭圆方程,求解,,a b c ,根据椭圆长轴长、短轴长、焦距、离心率定义,即可求解.【详解】(1)由题意,点P 在椭圆上,代入,得2114m +=,解得2m =(2)由(1)知,椭圆方程为22142x y +=,则2,a b c ===椭圆的长轴长24a =;’短轴长2b =焦距2c =;离心率c e a ==. 【点睛】 本题考查(1)代入点求椭圆方程(2)求解长轴长、短轴长、焦距、离心率;考查概念辨析,属于基础题.8.(1)22143x y +=(2)2218x y += 【分析】(1)利用已知椭圆可得焦点的坐标,结合椭圆的定义可求a ,从而可得椭圆标准方程: (2)利用待定系数法,设出方程,代入两点的坐标,解方程可求.【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±, ∵椭圆过点3(1,)2,∴24a ==,∴2,a b ==, ∴椭圆的标准方程为22143x y +=. (2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241m n m n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=. 【点睛】本题主要考查椭圆方程的求解,待定系数法和定义法是常用的求解方法,侧重考查数学运算的核心素养.9.(1)10或22(2)1216F PF S ∆= 【分析】(1)设点M 到另一个焦点的距离为m ,由双曲线定义即可求得m 的值.(2)由双曲线定义及12·32PF PF =,可证明2221212PF PF F F +=,即12F PF ∆为直角三角形,即可求得12F PF ∆的面积. 【详解】(1)12,F F 是双曲线221916x y -=的两个焦点,则3,4,5,a b c ===设点M 到另一个焦点的距离为m , 由抛物线定义可知1626m a -==, 解得10m =或22m =,即点M 到另一个焦点的距离为10或22. (2)P 是双曲线左支上的点,1226PF PF a -==,则2211222·36PF PF PF PF -+=,代入12·32PF PF =, 可得221232321006PF PF +=+⨯=,即2212122100PF PF F F +==,所以12F PF ∆为直角三角形,所以12121·1232162F PF S PF PF ∆⨯===. 【点睛】本题考查了双曲线定义及性质的的简单应用,交点三角形面积求法,属于基础题.10.(1)1n >;(2)1k ≤ 【分析】(1)因为空间向量(1,0,)a n =,(1,1,1)b =-,可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,即可求得答案;(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线, 0n k ->,解得n k >,即可求得答案. 【详解】 (1)空间向量(1,0,)a n =,(1,1,1)b =-可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,∴要使p 成立,只需1n >(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线,∴0n k ->,解得n k >,若p 成立是q 成立的充分条件,∴k 的取值范围为1k ≤.【点睛】本题主要考查了根据命题成立求参数范围和根据充分条件求参数范围,解题关键是掌握充分条件定义,考查了分析能力和计算能力,属于基础题.11.(1)221106x y +=;(2)中点坐标为53,88⎛⎫- ⎪⎝⎭,4AB =. 【分析】(1)由题意设出椭圆方程并求得c ,由椭圆定义求得a ,再由隐含条件求得b ,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x 的一元二次方程,利用根与系数的关系及中点坐标公式求得AB 的中点坐标,再由弦长公式求弦长. 【详解】解:(1)由于椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>,由椭圆定义知2c =,2a ==,所以a =,所以222104b a c =-=-, 所求椭圆标准方程为221106x y +=.(2)设直线与椭圆的交点为()11,A x y ,()22,B x y ,联立方程2211061x y y x ⎧+=⎪⎨⎪=+⎩,得2810250x x +-=,得1254x x +=-,12258x x =-. 设AB 的中点坐标为()00,x y ,则120528x x x +==-,038y =, 所以中点坐标为53,88⎛⎫- ⎪⎝⎭.由弦长公式4AB ===. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.12.(1)221x y -=;(2)1.【分析】(1)由条件得22431caa b ⎧=⎪⎪⎨⎪-=⎪⎩,从而可得方程;(2)分别写出焦点坐标和渐近线方程,再由点到直线距离公式可得解. 【详解】(1)双曲线22221x y a b-=的离心率为e =(2,P ,可得22431caa b⎧=⎪⎪⎨⎪-=⎪⎩ ,解得:2211a b ⎧=⎨=⎩,所以221x y -=;(2)双曲线的焦点为(,渐近线为0x y ±=,1=,13.(1)2214x y +=;(2)1-. 【分析】(1)根据离心率公式,可得c a =222c a b =-,即可求得a ,b 的值,即可求得答案;(2)根据椭圆定义,结合条件,可得12,PF PF 的值,根据余弦定理,可求得12cos F PF ∠的值,带入数量积公式,即可求得答案. 【详解】 (1)依题意有2c a =,221314a b +=,222c a b =-, 解得2a =,1b =,则椭圆的方程为2214x y +=.(2)因为点P 在椭圆上,由椭圆定义得:1224PF PF a +==所以121242PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得13PF = ,21PF =,在12PF F △中,由余弦定理222121212121cos 23PF PF F F F PF PF PF +-∠==-,221112co 1s 3113PF PF PF PF F PF ⎛⎫⋅=⋅⋅⋅-=- ⎪⎝∠=⎭.14.(1)2212x y -=;(2)12. 【分析】(1)设所求双曲线方程为22(0)2x y k k -=≠,代入点坐标,求得k ,即可得答案;(2)设1122(,),(,)A x y B x y ,利用点差法,代入A 、B 的中点坐标为(1,1),即可求得斜率. 【详解】(1)因为所求双曲线与双曲线C有共同的渐近线,所以设所求双曲线方程为22(0)2x y k k -=≠,代入(1k =-,所以所求双曲线方程为2212x y -=;(2)设1122(,),(,)A x y B x y ,因为A 、B 在双曲线上,所以221122221(1)21(2)2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,(1)-(2)得12121212()()()()2x x x x y y y y -+=-+,因为A 、B 的中点坐标为(1,1),即12122,2x x y y +=+=, 所以1212121212()2l y y x x k x x y y -+===-+.15.(1)2213x y -=;(2)13k <<.【分析】(1)由条件可得a =2c =,然后可得答案;(2)联立直线与双曲线的方程消元,然后可得()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩,解出即可. 【详解】(1)设双曲线方程为22221x y a b-=(0a >,0b >).由已知得:a =2c =,再由222+=a b c ,∴21b =,∴双曲线方程为2213x y -=.(2)设()A A A x y ,,()B B B x y ,,将y kx =+2213x y -=,得()221390k x ---=,由题意知()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩解得13k <<.1k <<时,l 与双曲线左支有两个交点. 16.(1)22195x y +=;(2)maxAB =. 【分析】(1)由题意得2623a c a =⎧⎪⎨=⎪⎩,求出,a c ,从而可求出b 的值,进而可得椭圆C 的方程;(2)设()()1122,,A x y B x y ,直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系得1297m x x +=- 21294514m x x -=,再利用弦长公式可得AB==【详解】解:(1)由题意可得2623aca=⎧⎪⎨=⎪⎩,解得3,2a c==,所以2225b a c,所以椭圆C的方程为22195x y+=;(2)设()()1122,,A x yB x y222214189450195y x mx mx mx y=+⎧⎪⇒++-=⎨+=⎪⎩,由22(18)414(945)0m m∆=-⨯⨯->,得2140m-<1297mx x+=-,21294514mx x-=AB∴==≤所以当0m=时,max7AB=.17.(1)22184x y+=;(2)30x y-+=.【分析】(1)直接求出,b c,即可求解;(2)利用点差法,设()11,A x y,()22,B x y,由题意得22112222184184x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,然后,得到斜率()121212122y y x xkx x y y-+==--+,再代入中点,即可出k,进而求出直线l的方程【详解】(1)由题意可知24c =,2b = 所以24b =,24c =,2228a b c =+=所以椭圆Ω的方程为22184x y +=.(2)设()11,A x y ,()22,B x y ,由题意得22112222184184x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得22221212084x x y y --+=,即()()()()12121212084x x x x y y y y +-+-+=,所以直线l 的斜率()121212122y y x x k x x y y -+==--+.因为点(2,1)P -是线段AB 的中点, 所以124x x +=-,122y y +=,所以1k =所以直线l 的方程为1(2)y x -=+,即30x y -+=. 【点睛】关键点睛:利用点差法和中点求出斜率k 是解题关键,属于基础题18.(1)2212x y -=;(2)10-. 【分析】(1)设双曲线方程,由焦点及渐近线方程运算即可得解;(2)设()()1122,,,A x y B x y ,联立方程组,结合韦达定理可得12y y +=-121y y =-,再由斜率公式即可得解. 【详解】(1)设双曲线的方程为()22221,0,0x y a b a b-=>>,由题意,223a b +=,该双曲线的渐近线方程by x a=±,又双曲线的一条渐近线方程为0x +=,所以2b a =, 所以222,1a b ==,所以双曲线C 的方程为2212x y -=;(2)设()()1122,,,A x y B x y ,由22120x y x y ⎧-=⎪⎨⎪-+=⎩,消去x化简可得210y +-=,0∆>,所以12y y +=-121y y =-,所以12121212121211112x x y y k k y y y y y y ⎛⎫--+=+=+=-+ ⎪⎝⎭121222101y y y y +-=-=-=--. 【点睛】关键点点睛:解决本题的关键是联立方程组,结合韦达定理对1211k k +变形.19.(1)22143x y +=;(2)35. 【分析】(1)由椭圆的定义结合平面几何的知识可直接求得a 、b ,即可得解; (2)联立直线方程与椭圆方程,求得点8,55M ⎛⎫ ⎪ ⎪⎝⎭,(0,N ,再由22MN MF y NF y =即可得解. 【详解】(1)因为12AF F △为等边三角形,1OA =即b =,又O 到直线2AF的距离d =2b d ==2a =, 则椭圆C 的标准方程为22143x y +=;(2)倾斜角为60°的直线经过椭圆C 的右焦点()21,0F ,则直线的方程为)1y x =-,联立)221143y x x y ⎧=-⎪⎨+=⎪⎩,解得0x y =⎧⎪⎨=⎪⎩85x y ⎧=⎪⎪⎨⎪=⎪⎩, 因为M 点在N点的上方,所以8,55M ⎛ ⎝⎭,(0,N , 所以2235M N MF y NF y ==. 20.(1)p =4,m =±4;(2)-4. 【分析】(1)利用抛物线的定义及题干条件,可求得p 的值,将M 点坐标代入,即可求得m 值; (2)当直线l 的斜率不存在时,方程为:x =2,代入抛物线方程,求得A 、B 点坐标,即可求得OA OB k k ⋅的值,当直线l 的斜率存在时,设直线为y =k (x -2),与抛物线联立,利用韦达定理,求得12y y ,12x x 的值,即可求得OA OB k k ⋅的值,综合即可得答案. 【详解】(1)抛物线C :y 2=2px (p >0)的焦点为(,0)2pF ,准线为2p x =-, 由抛物线定义知:点M (2,m )到F 的距离等于M 到准线的距离, ∴||242pMF =+=,∴p =4, 故抛物线C 的方程为y 2=8x , ∵点M (2,m )在抛物线C 上,∴m 2=16,∴m =±4,∴p =4,m =±4;(2)由(1)知:抛物线C 的方程为y 2=8x ,焦点为F (2,0),答案第17页,总17页 若直线l 的斜率不存在,则其方程为:x =2,代入y 2=8x ,可得:A (2,4),B (2,-4), 从而404042020OA OB k k ---=⨯=---⋅; 若直线l 的斜率存在,设为k (k ≠0),则其方程可表示为:y =k (x -2),由2(2)8y k x y x=-⎧⎨=⎩,消去x ,得:21(2)8y k y =-,即ky 2-8y -16k =0(k ≠0), Δ=64+64k 2>0,设A (x 1,y 1),B (x 2,y 2),则121616k y y k-==-, ∴22221212121111(()(16)4886464)()x x y y y y ===⨯-=⋅, 从而OA k ⋅1212121200164004OB y y y y k x x x x ---=⨯===---, 综上所述:直线OA 、OB 的斜率之积为-4.【点睛】处理抛物线问题,需熟练应用抛物线定义,在联立直线与抛物线方程时,消x 得到关于y 的一元二次方程为常用办法,可简化计算,提高正确率,属基础题.。
圆锥曲线大题集锦
1.在平面直角坐标系xOy 中,F 是椭圆22
22:1(0)x y a b a b
Γ+=>>的右焦点,已知
点A (0,-2)与椭圆左顶点关于直线y x =对称,且直线AF 的斜率为
3
. (1)求椭圆Γ的方程;
(2)过点Q (-1,0)的直线l 交椭圆Γ于M ,N 两点,交直线x =-4于点E ,
,MQ QN ME EN λμ==,证明:λμ+为定值.
2已知定圆M :16)3(2
2=++y x ,动圆N 过点)0,3(F 且与圆M 相切,记圆心N 的
轨迹为E 。
(1)求轨迹E 的方程;
(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且CB AC =,当ABC ∆的面积最小时,求直线AB 的方程。
3.已知1F ,2F 分别是椭圆C :22221(0)x y a b a b
+=>>的两个焦点,)22
1(,P 是椭圆上一
点,且12PF ,21F F ,22PF
成等差数列. (1)求椭圆C 的标准方程;
(2)已知动直线l 过点2F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得7
16
QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.
(2)假设在x 轴上存在点0Q m (,)
,使得7
16
QA QB ⋅=-恒成立.
①当直线l 的斜率不存在时,A ,(1,B ,
由于(7(1,
(1,2216m m ---=-,解得54m =或3
4
m =;
4.已知定点C (-1,0)及椭圆x 2+3y 2
=5,过点C 的动直线与椭圆相交于A ,B 两点. (1)若线段AB 中点的横坐标是-1
2
,求直线AB 的方程;
(2)在x 轴上是否存在点M ,使MA MB 为常数?若存在,求出点M 的坐标;若不存在,请说明理由.
解:(1)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1), 将y =k (x +1)代入x 2
+3y 2
=5,消去y 整理得(3k 2
+1)x 2
+6k 2
x +3k 2
-5=0. 设A (x 1,y 1),B (x 2,y 2),
则⎪⎩
⎪⎨⎧+-=+>-+-=∆②
.136①,0)53)(13(4362
2
21224k k x x k k k
由线段AB 中点的横坐标是21-
,得2
1
221-=+x x ,解得33±
=k 都满足① 所以直线AB 的方程为013=+-y x 或013=++y x (2)假设在x 轴上存在点M (m ,0),使MA MB
⋅
(ⅰ)当直线AB 与x 轴不垂直时,由(1)知x 1+x 2=-6k 2
3k 2+1,x 1x 2=3k 2
-5
3k 2+1. ③
所以MA MB ⋅=(x 1-m )(x 2-m )+y 1y 2=(x 1-m )(x 2-m )+k 2
(x 1+1)(x 2+1) =(k 2
+1)x 1x 2+(k 2
-m )(x 1+x 2)+k 2
+m 2
. 将③代入,整理得MA MB ⋅=(6m -1)k 2
-53k 2
+1
+m 2
=222114(2)(31)23331
m k m m k -+--
++=m 2+2m -13-6m +143(3k 2
+1). 注意到MA MB ⋅是与k 无关的常数,从而有6m +14=0,此时73m =-,此时4
9
MA MB ⋅=. (ⅱ)当直线AB 与x 轴垂直时,此时点A 、B 的坐标分别为(1-
、(1-
,),
当73m =-时,也有49MA MB ⋅=.综上,在x 轴上存在定点7
(,0)3
M -使MA MB ⋅为常数.
5设椭圆C :12222=+b
y a x (a >b >0)的一个顶点与抛物线C :x 2
=43y 的焦点重合,F 1,F 2分
别是椭圆的左、右焦点,且离心率e =1
2,过椭圆右焦点F 2的直线l 与椭圆C 交于M ,N 两点.
(1)求椭圆C 的方程;
(2)若OM →·ON →
=-2,求直线l 的方程;
(3)若AB 是椭圆C 经过原点O 的弦,MN ∥AB ,求证:|AB |
2
|MN |为定值.
(1)解 由题意知,椭圆的一个顶点为(0,3),即b =3,e =c a =1
2
,∴a =2,
∴椭圆的标准方程为x 24+y 2
3
=1.
(2)解 由题意可知,直线l 与椭圆必相交. ①当直线斜率不存在时,经检验不合题意.
②当斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0),且M (x 1,y 1),N (x 2,y 2).
由⎪⎩
⎪⎨⎧-==+)1(1342
2x k y y x ,得(3+4k 2)x 2-8k 2x +4k 2
-12=0, x 1+x 2=8k 2
3+4k 2,x 1x 2=4k 2
-12
3+4k 2,
OM →
·ON →
=x 1x 2+y 1y 2=x 1x 2+k 2
[x 1x 2-(x 1+x 2)+1]=4k 2
-123+4k 2+k 2(4k 2
-12
3+4k 2-8k 2
3+4k
2+1)=
-5k 2
-12
3+4k
2=-2, 解得k =±2,故直线l 的方程为y =2(x -1)或y =-2(x -1), 即2x -y -2=0或2x +y -2=0.
(3)证明 设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4),由(2)可得 |MN |
=1+k
2
|x 1
-
x 2|=
1+k
2
[x 1+x 2
2
-4x 1x 2]=
1+k
2
[8k 2
3+4k 2
2
-44k 2
-123+4k 2]=12k 2
+13+4k
2
, 由⎪⎩
⎪⎨⎧==+kx y y x 1342
2, 消去y 并整理得x 2
=123+4k 2, |AB |=1+k 2
|x 3-x 4|=4
31+k
2
3+4k
2
,∴|AB |
2
|MN |=48
1+k
2
3+4k 212k 2
+1
3+4k
2
=4,为定值.。