(完整版)二元一次方程组的12种应用题型归纳
- 格式:doc
- 大小:30.70 KB
- 文档页数:8
二元一次方程应用题经典题型
二元一次方程组在数学中应用广泛,以下是一些经典的应用题型:
- 和差倍数问题:已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
- 产品配套问题:本题的第一个等量关系比较容易得出,即生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
- 工作量问题:把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。
- 利润问题:商品利润=商品售价-商品进价;利润率=利润÷进价×100%。
- 行程问题:路程=速度×时间;相遇问题:快行距+慢行距=原距;追及问题:快行距-慢行距=原距;航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度。
二元一次方程组常有题型二元一次方程组应用题(分派调运问题)某校师生到甲、乙两个工厂参加劳动,假如从甲厂抽两厂的人数同样;假如从乙厂抽 5 人到甲厂,则甲厂的人数是乙厂的数各是多少?9 人到乙厂,则2 倍,到两个工厂的人解:设到甲工厂的人数为x 人,到乙工厂的人数为y 人题中的两个相等关系:1、抽 9 人后到甲工厂的人数=到乙工厂的人数可列方程为:x- 9=2、抽 5 人后到甲工厂的人数=可列方程为:(行程问题)甲、乙二人相距6km ,二人同向而行,甲时相遇。
二人的均匀速度各是多少?解:设甲每小时走3 小时可追上乙;相向而行,x 千米,乙每小时走y 千米1 小题中的两个相等关系:1、同向而行:甲的行程=乙的行程+可列方程为:2、相向而行:甲的行程+=可列方程为:(百分数问题)某市现有厂1.1 % , 这样全市人口将增添42 万人口,计划一年后城镇人口增添%,乡村人口增添工1%,求这个市此刻的城镇人口与乡村人口?解:这个市此刻的城镇人口有题中的两个相等关系:1、此刻城镇人口+可列方程为:x 万人,乡村人口有=此刻全市总人口y 万人2、明年增添后的城镇人口+=明年全市总人口可列方程为:(%) x+=(分派问题)某少儿园分萍果,若每人 3 个,则剩 2 个,若每人 4 个,则有一个少问少儿园有几个小朋友?解:设少儿园有x 个小朋友,萍果有y 个题中的两个相等关系: 1 、萍果总数 =每人分 3 个 +1 个,可列方程为:2、萍果总数=可列方程为:(浓度分派问题)要配浓度是 45%的盐水 12 千克,现有 10%的盐水与 85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x 千克,含盐85%的盐水有 y 千克。
1、含盐 10%的盐水中盐的重量+含盐 85%的盐水中盐的重量=题中的两个相等关系:可列方程为:10%x+=2、含盐 10%的盐水重量 +含盐 85%的盐水重量 =可列方程为: x+y=(金融分派问题)需要用多少每千克售 4.2 元的糖果才能与每千克售 3.4 元的糖果混淆成每千克售 3.6 元的杂拌糖200 千克?解:设每千克售 4.2 元的糖果为x 千克,每千克售元的糖果为y 千克题中的两个相等关系:1、每千克售 4.2 元的糖果销售总价可列方程为:2、每千克售 4.2 元的糖果重量 +可列方程为:+==(几何分派问题)如图:用长方形的长和宽分别是多少?8 块同样的长方形拼成一个宽为48 厘米的大长方形,每块小解:设小长方形的长是x 厘米,宽是y 厘米题中的两个相等关系1、小长方形的长+:=大长方形的宽可列方程为:2、小长方形的长=可列方程为:(资料分派问题)一张桌子由桌面和四条脚构成, 1 立方米的木材可制成桌面作桌脚 300 条,现有 5 立方米的木材,问应怎样分派木材,能够使桌面和桌脚配套?50 张或制解:设题中的两个相等关系: 1、制作桌面的木材+=可列方程为:2、全部桌面的总数:全部桌脚的总数=可列方程为:(和差倍问题)一个两位数,十位上的数字比个位上的数字大5,假如把十位上的数字与个位上的数字互换地点,那么获得的新两位数比本来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为题中的两个相等关系:列方程为:2、新两位数 =y。
二元一次方程组题型总结题型一:二元一次方程的概念及求解例1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.二元一次方程3x +2y =15的正整数解为_______________.3.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.4.2x -3y =4x -y =5的解为_______________.题型二:方程组有解的情况。
(方程组有唯一解、无解或无数解的情况)方程组⎩⎨⎧=+=+222111c y b x a c y b x a 满足 条件时,有唯一解;满足 条件时,有无数解;满足 条件时,无解。
例1.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m2二元一次方程组23x y mx ny -=⎧⎨+=-⎩ 有无数解,则m= ,n= 。
类型三:方程组的解与待定系数例1.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.2.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 3:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
4 若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a = ,b= 。
5.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为6.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是7:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,下列各式中成立的是 ( )A 、a +4c =2B 、4a +c =2C 、a +4c +2=0D 、4a +c +2=0题型四:涉及三个未知数的方程,求出相关量。
二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它的特点是两个运动物体共同走完整个路程。
A车路程+B车路程=相距路程总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?A甲、乙二人相距2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。
根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。
甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。
二元一次方程组常考题型分类综述(超全
面)精编版
前言
二元一次方程组是中学数学中最基础和核心的概念之一。
在数学竞赛和考试中,二元一次方程组也是一个非常重要的考点,掌握二元一次方程组的解法和应用对学生的高考和升学十分有帮助。
本文将对常见的二元一次方程组题型进行分类和综述,希望对读者有所帮助。
题型分类
- 线性方程组
- 二次项系数相等的方程组
- 系数之和或乘积相等的方程组
- 附加条件的方程组
- 同余方程组
- 参数方程组
- 应用题型
题型解答和应用
- 线性方程组:通过高斯消元法、逆矩阵法、克莱姆法则等方
法求解,应用题中多涉及物品单价、销售利润等问题。
- 二次项系数相等的方程组:通过代数公式或配方法解题,应
用题中多涉及面积和周长的相关问题。
- 系数之和或乘积相等的方程组:通过因式分解或构造法解题,应用题中多涉及水桶注水、人和船渡河等问题。
- 附加条件的方程组:通过加条件方程、联立方程组等方法解题,应用题中多涉及全年销售、人口迁移等问题。
- 同余方程组:通过同余方程组的求解和解的唯一性证明等方
法解题,应用题多涉及小学奥数和计数学等问题。
- 参数方程组:通过参数的求解和解的判定等方法解题,应用
题中多涉及直线和曲线等几何问题。
- 应用题型:通过识别题目中的信息、设定变量和方程等方法
解题,如鸡兔同笼、三角形三边长等问题。
结论
掌握二元一次方程组的解法和应用对学习数学和提高综合素质
都是十分有益的。
通过分类和综述常见的二元一次方程组题型,读
者可以更好地理解和应用二元一次方程组,达到事半功倍的效果。
(二元一次方程组实际应用〔1〕(列方程解应用题的根本关系量(〔1〕行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆(水速度=静水速度—水流速度(2〕工程问题:工作效率×工作时间=工作量(3〕浓度问题:溶液×浓度=溶质(4〕银行利率问题:免税利息=本金×利率×时间(二元一次方程组解决实际问题的根本步骤(1、审题,搞清量和待求量,分析数量关系.〔审题,寻找等量关系〕(2、考虑如何根据等量关系设元,列出方程组.〔设未知数,列方程组〕(3、列出方程组并求解,得到答案.〔解方程组〕(4、检查和反思解题过程,检验答案的正确性以及是否符合题意.〔检验,答〕(列方程组解应用题的常见题型(1〕和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2〕产品配套问题:加工总量成比例(3〕速度问题:速度×时间=路程(4〕航速问题:此类问题分为水中航速和风中航速两类(1.顺流〔风〕:航速=静水〔无风〕中的速度+水〔风〕速(2.逆流〔风〕:航速=静水〔无风〕中的速度--水〔风〕速(5〕工程问题:工作量=工作效率×工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问(题(6〕增长率问题:原量×〔1+增长率〕=增长后的量,原量×〔1+减少率〕(=减少后的量(7〕浓度问题:溶液×浓度=溶质(8〕银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9〕利润问题:利润=售价—进价,利润率=〔售价—进价〕÷进价×100%(10〕盈亏问题:关键从盈〔过剩〕、亏〔缺乏〕两个角度把握事物的总量(11〕数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12〕几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13〕年龄问题:抓住人与人的岁数是同时增长的【典题精析】例1〔南京市〕某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x辆,小型汽车有y辆.由题意,得x y 50,6x4y230.x15,解得,35.y故中型汽车有15辆,小型汽车有35辆.例2〔四川省眉山市〕某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:销售方式直接销售粗加工后销售精加工后销售每吨获利〔元〕100250450现在该公司收购了140吨蔬菜,该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨〔两种加工不能同时进行〕.〔1〕如果要求在18天内全部销售完这140吨蔬菜,请完成以下表格:销售方式全部直接全部粗加工尽量精加工,剩余局部销售后销售直接销售获利〔元〕〔2〕如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,那么应如何分配加工时间?解:〔1〕全部直接销售获利为:100×140=14000〔元〕;全部粗加工后销售获利为:250×140=35000〔元〕;尽量精加工,剩余局部直接销售获利为:450×〔6×18〕+100×〔140-6×18〕=51800〔元〕.〔2〕设应安排x天进行精加工,y天进行粗加工.由题意,得x y15,6x16y140.x10,解得,y 5.故应安排10天进行精加工,5天进行粗加工.1、小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的3、〔分配问题〕某幼儿园分萍果,假设每人3个,那么剩2个,假设每人4个,邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票那么有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,题中的两个相等关系:萍果有y个=总枚数1、10分邮票的枚数可列方程为:+20分邮票的枚数题中的两个相等关系:1、萍果总数可列方程为:2、萍果总数=每人分=3个+2、10分邮票的总价+=全可列方程为:部邮票的总价可列方程为:10X+=4、〔金融分配问题〕需要用多少每千克售元的糖果才能与每千克售元的糖果混合成每千克售糖果为x千克,每千克售元的杂拌糖200千克?解:设每千克售元的糖果为y千克元的2、小兰在玩具工厂劳动,做题中的两个相等关系:4个小狗、7个小汽车用去3小时42分,做5个元的糖果销售总价+=1、每千克售小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时可列方程为:间?2、每千克售元的糖果重量+=题中的两个相等关系:可列方程为:1、做4个小狗的时间+=3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:二元一次方程组实际应用〔1〕〔李老师〕姓名:一、和差倍分例1、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,那么乙盒球就是甲盒球数的6倍,假设从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?例2、我区某学校原方案向内蒙察右旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原方案的120%,高中学生捐赠了原方案的115%,问初中学生和高中学生各比原方案多捐赠了图书多少册?例3、(2021年浙江省宁波市)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表〞生活用水阶梯式计费价格表的一局部信息:小王家2021年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元,求a,b的值自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a超过17吨不超过30吨的局部b超过30吨的局部例4、为满足市民对优质教育的需求,某中学决定改变办学条件,方案撤除一局部旧校舍,建造新校舍,撤除旧校舍每平方米需80元,建新校舍每平方米需700元.方案在年内撤除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了方案的80%,而撤除旧校舍那么超过了方案的10%,结果恰好完成了原方案的拆、建总面积.1〕求:原方案拆、建面积各是多少平方米?2〕假设绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?同步练习:1、班上有男女同学32人,女生人数的一半比男生总数少10人,假设设男生人数为x人,女生人数为y人,那么可列方程组为2、甲乙两数的和为10,其差为2,假设设甲数为x,乙数为y,那么可列方程组为3、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为4、学校购置35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,那么列方程组,方程组的解是5、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为6、〔2021广东肇庆〕顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,那么到两地旅游的人数各分别为7、〔2021湖北咸宁〕某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,那么入住单人间和双人间各5个共需元.8、在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,那么这个队胜了场,平了场,负了场。
初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。
为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。
类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。
类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。
二元一次方程组解应用题之典型题题型一配套问题1.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?题型二调配问题2.某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?题型三工程问题3.某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的的一条大河的水引到城市中来,把这个工程交给了甲乙两个施工队,工期为50天,甲、乙两队合作了30天后,乙队因另有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队保持现在的速度不变,乙队也比原来多修0.4千米,结果如期完成。
问甲乙两队原计划每天各修多少千米?题型四方案决策问题1.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.9.某地生产的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨.该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕.为此,公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成.你认为选择哪种方案获利最多?为什么?。
二元一次方程组的12种应用题型归纳
类型一:行程问题
【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发
2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、
乙两人每小时各走多少千米?
解:设甲的速度为x 千米/时,乙的速度为y 千米/时。
{(2.5+2)x +2.5y =363x +(3+2)y =36
解得{x =6y =3.6 答:甲的速度为6千米/时,乙的速度为3.6千米/时。
【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这
艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为x 千米/时,水流速度为y 千米/时。
{14(x +y)=28020(x −y)=280
解得{x =17y =3 答:这艘船在静水中的速度为17千米/时,水流速度为3千米/时。
类型二:工程问题
【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元;
若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若
只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请
你说明理由。
解:设甲公司每周的工作效率为x ,乙公司每周的工作效率为y 。
{6x +6y =14x +9y =1 解得{x =110y =
115 ∴1÷110=10(周) 1÷115=15(周)
∴甲公司单独完成这项工程需10周,乙公司单独完成这项工程需15周。
设甲公司每周的工钱为a 万元,乙公司每周的工钱为b 万元。
{6a +6b =5.24a +9b =4.8 解得{a =35b =415
此时10a=6(万元) 15b=4(万元) 6>4
答:从节约开支的角度考虑,小明家应选择乙公司。
类型三:商品销售利润问题
【例1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜
每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多
少亩?
解:设李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。
{x +y =102000x +1500y =18000
解得{x =6y =4 答:李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。
【例2】某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如
下表,求该商场购进A 、B 两种商品各多少件。
注:获利 = 售价 - 进价。