第五章 经典假设条件不满足时 笔记
- 格式:docx
- 大小:2.45 MB
- 文档页数:9
思考与练习(第五章) BY 缪嘉伦 思考题1. 解释原假设与备择假设的含义,并归纳常见的几种建立原假设与备择假设的原则。
答:原假设(null hypothesis )通常是研究者想悼念证据予以反对的假设,也称零假设,用H 0表示。
备择假设(alternative hypothesis)通常是研究者想悼念证据予以支持的假设,也称研究假设,用H l 或 H a 表示。
几种常见的原则:第一, 原假设和备择假设是一个完备事件组,而且相互对立。
第二, 在建立原假设时,通常是先确定备择假设,然后再确定原假设。
第三, 在假设检验中,等号“=”总是放在原假设上。
第四, 在面对某一实际问题时,由于不同的研究者有不同的研究目的,即使对同一问题也可能提出截然相反的原假设和备择假设。
第五, 假设检验的目的主要是收集证据拒绝原假设。
3.什么是显著性水平?它对于假设检验决策的意义是什么?与置信水平的区别?答:显著性水平(level of significance )是指当原假设实际上是正确时,检验统计量落在拒绝域的概率,记为α。
它是人们事先指定的犯第I 类错误概率α的最大允许值。
显著性水平α越小,犯第I 类错误的可能性自然就越小,但犯第∏类错误的可能性随之增大。
置信水平是指变量落在置信区间的可能性,记为1-α。
4.什么是P 值?P 值检验和统计量检验有什么不同?答:P 值(P value )就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。
如果P 值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P 值越小,我们拒绝原假设的理由越充分。
总之,P 值越小,表明结果越显著。
但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P 值的大小和实际问题来解决。
区别:从显著性水平来比较,如果选择的α值相同,所有检验结论的可靠性都一样;通过计算P 值,可测量出样本观测数据与原假设的值0μ的偏离程度。
使用普通最小二乘法,此时最小化的残差平方和为()211niii y x β=-∑利用一元微积分可以证明,1β必须满足一阶条件()110niiii x y x β=-=∑从而解出1β为:1121ni ii nii x yxβ===∑∑当且仅当0x =时,这两个估计值才是相同的。
2.2 课后习题详解一、习题1.在简单线性回归模型01y x u ββ=++中,假定()0E u ≠。
令()0E u α=,证明:这个模型总可以改写为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。
证明:在方程右边加上()0E u α=,则0010y x u αββα=+++-令新的误差项为0e u α=-,因此()0E e =。
新的截距项为00αβ+,斜率不变为1β。
2(Ⅰ)利用OLS 估计GPA 和ACT 的关系;也就是说,求出如下方程中的截距和斜率估计值01ˆˆGPA ACT ββ=+^评价这个关系的方向。
这里的截距有没有一个有用的解释?请说明。
如果ACT 分数提高5分,预期GPA 会提高多少?(Ⅱ)计算每次观测的拟合值和残差,并验证残差和(近似)为零。
(Ⅲ)当20ACT =时,GPA 的预测值为多少?(Ⅳ)对这8个学生来说,GPA 的变异中,有多少能由ACT 解释?试说明。
答:(Ⅰ)变量的均值为: 3.2125GPA =,25.875ACT =。
()()15.8125niii GPA GPA ACT ACT =--=∑根据公式2.19可得:1ˆ 5.8125/56.8750.1022β==。
根据公式2.17可知:0ˆ 3.21250.102225.8750.5681β=-⨯=。
因此0.56810.1022GPA ACT =+^。
此处截距没有一个很好的解释,因为对样本而言,ACT 并不接近0。
如果ACT 分数提高5分,预期GPA 会提高0.1022×5=0.511。
(Ⅱ)每次观测的拟合值和残差表如表2-3所示:根据表可知,残差和为-0.002,忽略固有的舍入误差,残差和近似为零。
1. 总离差平方和可分解为回归平方和与残差平方和。
( 对 )2. 整个多元回归模型在统计上是显着的意味着模型中任何一个单独的解释变量均是统计显着的。
( 错 )3. 多重共线性只有在多元线性回归中才可能发生。
( 对 )4. 通过作解释变量对时间的散点图可大致判断是否存在自相关。
( 错 )5. 在计量回归中,如果估计量的方差有偏,则可推断模型应该存在异方差( 错 )6. 存在异方差时,可以用广义差分法来进行补救。
( 错 )7. 当经典假设不满足时,普通最小二乘估计一定不是最优线性无偏估计量。
( 错 )8. 判定系数检验中,回归平方和占的比重越大,判定系数也越大。
( 对 )9. 可以作残差对某个解释变量的散点图来大致判断是否存在自相关。
( 错 )做残差)n 5、经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量将有偏的。
错,,即使经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量仍然是无偏的。
因为222)()ˆ(βμββ=+=∑ii K E E ,该表达式成立与否与正态性无关。
1、在简单线性回归中可决系数2R 与斜率系数的t 检验的没有关系。
错误,在简单线性回归中,由于解释变量只有一个,当t 检验显示解释变量的影响显着时,必然会有该回归模型的可决系数大,拟合优度高。
2、异方差性、自相关性都是随机误差现象,但两者是有区别的。
正确,异方差的出现总是与模型中某个解释变量的变化有关。
自相关性是各回归模型的随机误差项之间具有相关关系。
3、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与模型有无截距项无关。
错误,模型有截距项时,如果被考察的定性因素有m个相互排斥属性,则模型中引入m-1个虚拟变量,否则会陷入“虚拟变量陷阱”;模型无截距项时,若被考察的定性因素有m个相互排斥属性,可以引入m个虚拟变量,这时不会出现多重共线性。
4、满足阶条件的方程一定可以识别。
big data《大数据时代》精华观点和核心语句不再追求精确度,不再追求因果关系,而是承认混杂性,探索相关关系。
如同工业革命要开放物质交易、流通一样,开放、流通的数据是时代趋势的要求。
开放所带来的改变远远大于拥有权和隐私性保护所带来的问题。
要全体不要抽样,要效率不要绝对精确,要相关不要因果。
作者认为相关关系比因果关系重要,译者表示反对,认为放弃因果等于放弃人类的智力优势,是末日之始。
导致相关关系比因果关系重要的原因在于,我们机器学习和以结果为导向的研究思路误导人类。
公共医疗:Google通过分析03到08的流感相关搜索词条,将45中词条组合输入一个数学模型之后,得到的流感预测数据和官方统计数据有97%吻合。
09年判断准确,及时预报流感。
商业:farecast利用十万亿条飞机票价记录,预测飞机票价准确度高达75%,利用farecast购买机票的旅客平均每张机票节省50美元。
不再需要一致性的数据库和僵化的层次结构,不再需要结构化查询语言sql,最新的数据库为非关系型数据库nosql。
美国股市每天成交量高达70亿股,其中三分之二都是由数学模型和算法之上的计算机程序自动完成的,这些程序利用海量数据来预测利益和降低风险。
数据爆炸式增长,绝大部分为数字信息,极少部分为模拟数据。
数据每三年多翻一番。
数据规模的量变产生质变,就比如万有引力对生物体大小的关系,纳米技术对现实生活物质的性质有所改变一样,空气阻力和重量和形状关系一样。
大数据的核心在于预测,把数学算法运用到海量数据中来预测事情发生的可能性。
不再依赖于随机采样,不在热衷于追求精确度。
并非完全放弃精确度,只是不再沉迷于此。
不在热衷于寻找因果关系,而是寻找事物之间的相关性。
数据化意味着从一切事物中汲取数据,甚至包括我们以前认为和“信息”搭不上边的事情。
比方说,一个人所在的位置、引擎的振动、桥梁的承重等等。
如同电影《点石成金》中,棒球球探们在统计学家面前相形见绌——直觉的判断被迫让位于精准的数据分析。
第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。
2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。
3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。
4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
经典回归模型假定条件的不成立用OLS 法得到的估计模型通过统计检验后,还要检验摸型是否满足假定条件。
由3.1 节知,只有模型的6个假定条件都满足时,用OLS 法得到的估计量才具有最佳线性无偏特性。
当一个或多个假定条件不成立时,OLS 估计量将丧失上述特性。
本节讨论当假定条件不成立时,对参数估计带来的影响以及相应的补救措施。
以下讨论都是在某一个假定条件被违反,而其他假定条件都成立的情况下进行。
分为5个步骤。
(1)回顾假定条件。
(2)假定条件不成立对模型参数估计带来的影响。
(3)定性分析假定条件是否成立。
(4)假定条件是否成立的检验(定量判断)。
(5)假定条件不成立时的补救措施。
第五章 异方差同方差假定-224681012050100150200XY图5.1 同方差情形 图5.2 同方差情形模型的假定条件⑴ 给出V ar(u ) 是一个对角矩阵,V ar(u ) = E(u u ' ) = σ 2I = σ 210101⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (5.1)且u 的方差协方差矩阵主对角线上的元素都是常数且相等,即每一误差项的方差都是有限的相同值(同方差假定);且非主对角线上的元素为零(非自相关假定),当这个假定不成立时,V ar(u ) 不再是一个纯量对角矩阵。
V ar(u ) = σ 2 Ω = σ 211220..00...0 00...TT σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦≠σ 2 I (5.2) 当误差向量u 的方差协方差矩阵主对角线上的元素不相等时,称该随机误差系列存在异方差,即误差向量u 中的元素u t 取自不同的分布总体。
非主对角线上的元素表示误差项之间的协方差值。
比如 Ω 中的 σi j 与σ 2的乘积 ,(i ≠ j )表示与第i 组和第j 组观测值相对应的u i 与 u j 的协方差。
若 Ω 非主对角线上的部分或全部元素都不为零,误差项就是自相关的。
本节讨论异方差。
下一节讨论自相关问题。
第五章经典假设条件不满足时的问题及对策
无偏性有效性一致性
OLS估计量令人满意的性质,是根据一组假设条件而得到
的。
在实践中,如果某些假设条件不能满足,则OLS就不
再适用于模型的估计。
误设定(Misspecification 或specification error)
多重共线性(Multicollinearity)
异方差性(Heteroscedasticity或Heteroskedasticity)
自相关(Autocorrelation)
随机解释变量(Stochastic explanatory variables)
第一节误设定
模型中遗漏了对因变量有显著影响的解释变量的后果是:将使模型参数估计量不再是无偏估计量。
X1和X2间存在一定的相关。
模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。
R12一般不等于0。
在模型设定中的一般原则是尽量不漏掉有关的解释变量。
因为估计量有偏比增大误差更严重。
但如果方差很大,得
到的无偏估计量也就没有多大意义了,因此也不宜随意乱
增加解释变量。
多项式是一种强有力的曲线拟合装置,但并不是万能的。
第二节多重共线性(multicollinearity)
完全/近似的多重共线性
解决多重共线性的方法
●增加数据
●对模型施加某些约束条件
●删除一个或几个共线变量
●将模型适当变形
●有滞后变量的情形
●主成分法
第三节异方差性(本质?)
案例:高低收入家庭
异方差性的后果:
1.参数估计量不再具有最小方差的性质
2.系数的显著性检验结果不可信赖
布鲁奇—帕根检验(Breusch-Pagan)(和
怀
特
检
验
很
像
)
广义最小二乘法(Generalized least squares)
看书P111有比较详细的解说第四节自相关
自相关的原因:
(1)冲击的延期影响(惯性)(2)误设定
DW法要检验的原假设是H0: ρ=0。