陕西省高中数学人教新课标A版必修2第三章直线与方程3.2.2直线的两点式方程
- 格式:doc
- 大小:135.01 KB
- 文档页数:5
3.2.2 直线的两点式方程3.2.3 直线的一般式方程知识导图学法指导1.体会直线的两点式方程、截距式方程的推导过程,并由此求直线的方程.2.明确平面上的直线和二元一次方程的区别与联系.3.弄清楚直线的一般式方程和其他几种形式之间的关系以及每种形式的适用条件,在解题时注意选择恰当的直线方程.4.明确利用直线方程的几种形式判断直线平行和垂直问题的方法.高考导航1.利用两点坐标求直线的方程或利用直线的截距式求直线的方程是常考知识点,分值5分.2.由直线的一般式方程判断直线的位置关系或求参数的值也是高考的常考题型,以选择题或填空题为主,分值5分.知识点一直线的两点式、截距式方程1.截距式方程中间以“+”相连,右边是1.2.a 叫做直线在x 轴上的截距,a∈R ,不一定有a >0.知识点二 线段的中点坐标公式若点P 1(x 1,y 1),P 2(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.知识点三 直线的一般式方程 1.直线与二元一次方程的关系在平面直角坐标系中的直线与二元一次方程的对应关系如下:2.直线的一般式方程式子:关于x ,y 的二元一次方程Ax +By +C =0; 条件:A ,B 不同时为零; 简称:一般式.3.直线的一般式方程与其他四种形式的转化认识直线的一般式方程(1)方程是关于x ,y 的二元一次方程;(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列; (3)x 的系数一般不为分数和负数;(4)平面直角坐标系内的任何一条直线都有一个二元一次方程与它相对应,即直线的一般式方程可以表示任何一条直线.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)不经过原点的直线都可以用方程x a +y b=1表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1) (x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)√2.经过点A (-3,2),B (4,4)的直线的两点式方程为( ) A.y -22=x +37 B.y -2-2=x -37C.y +22=x -37D.y -2x +3=27解析:由方程的两点式可得直线方程为y -24-2=x --4--,即y -22=x +37.答案:A3.在x 轴和y 轴上的截距分别为-2,3的直线方程是( ) A.x 3+y -2=1 B.x 2+y-3=1 C.x -2+y 3=1 D.x -3+y2=1 解析:由直线的截距式方程,可得直线方程是x -2+y3=1.答案:C4.直线x 3+y4=1化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12解析:直线x 3+y4=1化成一般式方程为4x +3y -12=0. 答案:C。
§3.2.2直线的两点式方程[教材]人教A版数学必修2:第三章直线与方程 3.2直线的方程第2课时[学情分析]我校为一所普通高中,部分学苗基础较差,学生在态度习惯、知识结构、思维品质、数学能力等方面相对薄弱。
本节课是在学生学习完直线的方程第一节:直线的点斜式方程之后,学生已经建立了两种具体的直线方程:点斜式、斜截式的概念及会应用它们求直线方程,并对直线方程、方程直线的概念有了一定的理解和认识,已形成了一定的认知结构。
另外对于两点确定一条直线,直线的纵截距的概念也已经明确清晰,所以对本节课的学习,学生应该具备了一定的认知和实践能力的条件。
但由于部分学生观察、类比、迁移、化归、计算等方面能力的薄弱,可能在两点式方程形式的导出、综合性应用的问题上会有一定难度。
[学习内容分析]直线方程共有四种特殊形式,本节课是学习第三、四种特殊形式,在本大节3.2直线的方程中重要性略低于前两种形式,使用频率也不高。
但它在体现点斜式方程的应用,衬托点斜式方程的重要性,及为学习一般式方程作铺垫,体现由特殊到一般的知识归纳提升过程有着重要意义。
本节的主要知识点是两个方程的导出及应用,它们的教学基于点斜式方程,同时引领学生学会一个数学方法即待定系数法,说明这种方法在确定曲线方程问题中是常用的重要方法。
另外把方程思想、数形结合思想贯穿于课堂教学的始终,强调解析几何的一般方法和思想。
通过对两点式、截距式方程形式美的认识,让学生感受数学的对称美、和谐美等美的特质。
通过对两点式方程由分式到整式的变形,为学生了解一般式方程中系数A、B的几何意义(直线的方向向量即为(B,-A),法向量为(A,B)),为学习直线的参数方程做一铺垫。
同时教给学生这个整式形式的方程是已知两点求直线方程并化为一般方程的一个小技巧,并为学生感性认识行列式为进一步学习高等数学埋下伏笔。
以体现搭建共同基础,提供发展平台的课程理念。
[教学目标]1.知识与技能:掌握直线的两点式、截距式方程并会用于求直线方程的相关问题;2.过程与方法:理解两点式方程的导出过程,掌握求直线方程的直接法及间接法(待定系数法);3.态度、情感、价值观:通过对方程形式美的发现,感受数学美和数学文化,进一步体会方程思想、数形结合思想、分类讨论思想。
第23课时 直线的两点式方程直线的两点式方程A .2 B .-3 C .-27 D .27 答案 D解析 由两点式得直线方程为y -65-6=x +32+3,即x +5y -27=0.令y =0,得x =27.2.已知点P(3,m)在过点M(2,-1)和N(-3,4)的直线上,则m 的值是( ) A .5 B .2 C .-2 D .-6 答案 C解析 由两点式方程,得 直线MN 的方程为y --4--=x -2-3-2,化简,得x +y -1=0. 又点P(3,m)在此直线上,代入得3+m -1=0,解得m =-2.直线的截距式方程A .x 2-y 3=1 B .x 2+y3=1 C .y 3-x 2=1 D .x 2+y3=0 答案 A解析 根据截距式方程x a +yb=1,(其中a ,b 分别为x 轴和y 轴上的截距)得所求直线方程为x 2+y -3=1,即x 2-y3=1,选A .4.过点(5,2),且在y 轴上的截距是在x 轴上截距的2倍的直线方程是( ) A .x 6+y 12=1 B .x 6+y 12=1或y =25x C .x -y 2=1 D .x -y 2=1或y =25x答案 B解析 当直线过原点时满足题意,所求方程为y =25x ;当直线不过原点时,可设其截距式为x a +y 2a =1,由该直线过点(5,2),解得a =6,对应的方程为x 6+y12=1.故选B .直线方程的应用形各边所在的直线方程.解 由题意可知A(-4,0),C(4,0),B(0,-3),D(0,3),由截距式方程可知直线AB 的方程为x -4+y-3=1,即3x +4y +12=0.同理可得直线BC 的方程为3x -4y -12=0, 直线CD 的方程为3x +4y -12=0, 直线AD 的方程为3x -4y +12=0.6.已知线段BC 的中点为D3,32.若线段BC 所在直线在两坐标轴上的截距之和是9,求BC 所在直线的方程.解 由已知得直线BC 的斜率存在且不为0.设直线BC 在x 轴上的截距为a ,在y 轴上的截距为b .则直线BC 的截距式方程为x a +yb =1.由题意得a +b =9, ① 又点D3,32在直线BC 上,∴3a +32b =1,∴6b+3a =2ab , ② 由①②联立得2a 2-21a +54=0,即(2a -9)(a -6)=0,解得a =92或a =6.∴⎩⎪⎨⎪⎧a =92,b =92或⎩⎪⎨⎪⎧a =6,b =3.故直线BC 的方程为2x 9+2y 9=1或x 6+y3=1,即2x +2y -9=0或x +2y -6=0.一、选择题1.有关直线方程的两点式,有如下说法:①直线方程的两点式适用于求与两坐标轴不垂直的直线方程; ②直线方程y -y 1y 2-y 1=x -x 1x 2-x 1也可写成y -y 2y 1-y 2=x -x 2x 1-x 2;③过点P 1(x 1,y 1),P 2(x 2,y 2)的直线可以表示成(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1). 其中正确说法的个数为( ) A .0 B .1 C .2 D .3 答案 D解析 ①正确,从两点式方程的形式看,只要x 1≠x 2,y 1≠y 2,就可以用两点式来求解直线的方程.②正确,方程y -y 1y 2-y 1=x -x 1x 2-x 1与y -y 2y 1-y 2=x -x 2x 1-x 2的形式有异,但实质相同,均表示过点(x 1,y 1)和(x 2,y 2)的直线.③显然正确.2.若直线x a +yb =1过第一、二、三象限,则( )A .a>0,b>0B .a>0,b<0C .a<0,b>0D .a<0,b<0 答案 C解析 因为直线过第一、二、三象限,所以结合图形可知a <0,b >0.3.一条光线从A ⎝ ⎛⎭⎪⎫-12,0处射到点B(0,1)后被y 轴反射,则反射光线所在直线的方程为( )A .y =2x +1B .y =-2x +1C .y =12x -12D .y =-12x -12答案 B解析 由光的反射定律可得,点A ⎝ ⎛⎭⎪⎫-12,0关于y 轴的对称点M ⎝ ⎛⎭⎪⎫12,0在反射光线所在的直线上.再由点B(0,1)也在反射光线所在的直线上,用两点式可求得反射光线所在的直线的方程为y -01-0=x -120-12,即y =-2x +1.4.过点P(2,3),并且在两坐标轴上的截距互为相反数的直线l 的方程是( ) A .x -y +1=0B .x -y +1=0或3x -2y =0C .x +y -5=0D .x +y -5=0或3x -2y =0 答案 B解析 若直线l 过原点,则方程为y =32x ,即3x -2y =0;若直线l 不过原点,则设直线方程为x a -ya =1,将(2,3)代入方程,得a =-1,故直线l 的方程为x -y +1=0.所以直线l的方程为3x -2y =0或x -y +1=0.5.若直线过点(1,1)且与两坐标轴所围成的三角形的面积为2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 C解析 设直线的方程为x a +yb=1,∵直线经过点(1,1),且与两坐标轴所围成的三角形的面积为2,∴1a +1b =1,12|ab|=2,解得⎩⎪⎨⎪⎧a =2,b =2或⎩⎨⎧a =-22-2,b =22-2或⎩⎨⎧a =22-2,b =-22-2.∴满足条件的直线有3条.二、填空题6.直线l 与两直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 的中点是(1,-1),则l 的斜率是________.答案 -23解析 设P(m ,1),由线段PQ 的中点是(1,-1),得Q(2-m ,-3),∴2-m -(-3)-7=0,∴m=-2,∴P(-2,1),∴直线l 的斜率k =1---2-1=-23.7.已知直线l 经过点A(-4,-2),且点A 是直线l 被两坐标轴截得的线段中点,则直线l 的方程为________.答案 x +2y +8=0解析 设直线l 与两坐标轴的交点为(a ,0),(0,b),由题意知a +02=-4,b +02=-2,∴a=-8,b =-4.∴直线l 的方程为x -8+y-4=1,即x +2y +8=0.8.已知A(1,-2),B(5,6),经过线段AB 的中点M ,且在两坐标轴上的截距相等的直线方程为________.答案 2x -3y =0或x +y -5=0解析 点A(1,-2),B(5,6)的中点M 的坐标为(3,2).当直线过原点时,方程为y =23x ,即2x -3y =0;当直线不过原点时,设直线的方程为x +y =m ,把中点M 的坐标(3,2)代入直线的方程,得m =5,故所求直线的方程是x +y -5=0.综上,所求的直线方程为2x -3y =0或x +y -5=0.三、解答题9.已知△ABC 中,A(1,-4),B(6,6),C(-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的方程并化为截距式方程; (2)BC 边的中线所在直线的方程并化为截距式方程.解 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x 136+y-138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117+y-11=1.10.已知直线l :x m +y4-m=1.(1)若直线l 的斜率等于2,求实数m 的值;(2)若直线l 分别与x 轴、y 轴的正半轴交于A ,B 两点,O 是坐标原点,求△AOB 面积的最大值及此时直线l 的方程.解 (1)直线l 过点(m ,0),(0,4-m), 则k =4-m -m =2,则m =-4.(2)由m >0,4-m >0,得0<m <4, 则S =-2=--2+42,易知当m =2时,S 有最大值2, 此时直线l 的方程为x +y -2=0.。
3.2.2 直线的两点式方程一、教学目标1. 知识与技能(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围.2. 过程与方法让学生掌握直线的两点式方程的推导过程,学会分析、比较,有特殊情况特殊处理的意识.3. 情态与价值观感受两点确定一条直线这一几何意义的代数转化,体验解析几何的代数美感.二、教学重点、难点:1. 重点:直线方程两点式。
2. 难点:两点式推导过程的理解及截据式方程.三、教学方法启发,引导探究,练习四、教学过程(一)复习旧知,导入课题复习:已经学过的点斜式方程和斜截式方程及其特点思考:已知直线经过两点P 1(x 1,y 1),P 2(x 2,y 2),(x 1≠x 2 ,y 1≠y 2),如何求出这两个点的直线方程呢?生:经过一点,且已知斜率的直线,可以写出它的点斜式方程. 可以先求出斜率,再选择一点,得到点斜式方程.(二)师生互动,探究新知1. 利用点斜式解答如下问题:(1)已知直线l 经过两点12(8,1),(2,4)P P --,求直线l 的方程.(2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程.教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1)11(8)2y x +=-- (2))(112121x x x x y y y y ---=- 教师指出:当21y y ≠时,方程可以写成 ),(2121121121y y x x x x x x y y y y ≠≠--=-- 由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ).2. 若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?教师引导学生通过画图、观察和分析,发现当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;当21y y =时,直线与y 轴垂直,直线方程为:1y y =.(三) 概念辨析,巩固提高例 3 已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l 的方程?那种方法更为简捷?然后由求出直线方程.中,b a ,的几何意义和截距式方程的概念. 教师指出:在方程例4 已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程.教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC 所在的直线方程和该边上中线所在直线方程。
陕西省高中数学人教新课标A版必修2 第三章直线与方程 3.2.2直线的两点式方程姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分) (2018高一下·石家庄期末) 若直线在轴、轴上的截距分别是-2和3,则
,的值分别为()
A . 3,2
B . -3,-2
C . -3,2
D . 3,-2
2. (2分) (2016高一下·淄川开学考) 已知直线mx+3y﹣12=0在两个坐标轴上截距之和为7,则实数m的值为()
A . 2
B . 3
C . 4
D . 5
3. (2分)直线x+6y+2=0在x轴和y轴上的截距分别是()
A . 2,
B . -2,-
C . -,-3
D . ﹣2,﹣3
4. (2分) (2016高二上·重庆期中) 过点A(1,4),且横、纵截距的绝对值相等的直线的条数为()
A . 1
B . 2
C . 3
D . 4
5. (2分)过点(5,2)且在y轴上的截距是在x轴上的截距的2倍的直线有()
A . 1条
B . 2条
C . 3条
D . 不能确定
6. (2分) (2018高二上·武邑月考) 下列四个结论中不正确的是()
A . 经过定点P1(x1 , y1)的直线都可以用方程y-y1=k(x-x1)表示
B . 经过任意不同两点P1(x1 , y1),P2(x2 , y2)的直线都可以用方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示
C . 不过原点的直线都可以用方程表示
D . 经过点A(0,b)的直线都可以用方程y=kx+b表示
7. (2分)如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
8. (2分) (2016高一上·东莞期末) 过点P(3,2)且在两坐标轴上的截距相等的直线方程是()
A . x﹣y﹣1=0
B . x+y﹣5=0或2x﹣3y=0
C . x+y﹣5=0
D . x﹣y﹣1=0或2x﹣3y=0
二、填空题 (共3题;共3分)
9. (1分) (2016高二上·屯溪期中) 过两直线3x+y﹣5=0,2x﹣3y+4=0的交点,且在两坐标轴上截距相等的直线方程为________.
10. (1分) (2018高一下·安庆期末) 直线在轴和轴上的截距相等,则实数
=________.
11. (1分) (2017高二上·红桥期末) 过点P(﹣2,3)且在两坐标轴上的截距相等的直线l的方程为________
三、解答题 (共3题;共25分)
12. (10分) (2018高二上·太原期中) 已知的三个顶点的坐标是.
(1)求BC边所在直线的方程;
(2)求的面积.
13. (5分)求经过点A(﹣2,3),且在x轴上的截距等于在y轴上截距的2倍的直线方程.
14. (10分) (2018高二上·长寿月考) 已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点
(1)求AB边所在的直线方程;
(2)求中线AM的长.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
三、解答题 (共3题;共25分)
12-1、答案:略
12-2、
13-1、14-1、14-2、。