最新七年级上册代数式专题练习(解析版)
- 格式:doc
- 大小:805.50 KB
- 文档页数:12
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
第3章代数式——章末测试卷(时间:120分钟,满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.下面式子中符合代数式书写要求的是()A .3ab B .2123xy C .34mπD .3x +克2.下面计算正确的是()A .2233x x -=B .235325a a a +=C .33x x +=D .30.7504ab ba -+=3.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是45/km h ,水流速度是/akm h ,1h 后两船相距()km A .90B .4a C .2a D .180【详解】解:(45)1(45)190()a a km +⨯+-⨯=.故本题选:A .4.下列式子变形正确的是()A .()x y z x y z+-=++B .()x y x y --=--C .()a b a b -+=--D .222()x y z x z y +-=-+【详解】解:A 、()x y z x y z +-=+-,故A 不正确;B 、()x y x y --=-+,故B 不正确;C 、()a b a b -+=--,故C 正确;D 、222()x y z x z y +-=--,故D 不正确.故本题选:C .5.已知33n x y -与342m x y -是同类项,则式子20232024m n +的值是()A .1-B .0C .1D .2【详解】解:33n x y - 与342m x y -是同类项,33m ∴=,34n -=,1m ∴=,1n =-,20232024m n ∴+202320241(1)=+-11=+2=.故本题选:D .6.已知2241M a a =-++,2341N a a =-+-,则M 与N 的大小关系是()A .M N>B .M N <C .M N =D .以上都有可能【详解】解:M N - 22241(341)a a a a =-++--+-22241341a a a a =-+++-+220a =+>,M N ∴>.故本题选:A .7.下列判断正确的是()A .单项式33x y π-的系数是1-B .23m n 不是整式C .单项式322x y π-的次数是5D .2236x y x y -+是二次三项式D .2236x y x y -+是三次三项式,故本选项不正确.故本题选:C .8.多项式2||11(1)57m x y m y -++是关于x ,y 的三次二项式,则m 的值是()A .1B .1±C .1-D .0【详解】解: 多项式2||11(1)57m x y m y -++是关于x ,y 的三次二项式,∴||23(1)0m m +=⎧⎨-+=⎩,1m ∴=-.故本题选C .9.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n ,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为()A .160B .1168C .1252D .1280【详解】解:根据给出的数据可得:第2n -行的第一个数等于12n -,第1n -行的第一个数等于11n -,第二个数等于1121n n ---,第n 行的第一个数等于1n ,第二个数等于111n n --,第三个数等于()()1111221121n n n n n n n⎛⎫---= ⎪-----⎝⎭,则第8行第3个数(从左往右数)为()()2182818168=--1111()82881168-⨯=--.故本题选:B .10.在多项式x ﹣y ﹣z ﹣m ﹣n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x ﹣y ﹣|z ﹣m |﹣n =x ﹣y﹣z +m ﹣n ,|x ﹣y |﹣z ﹣|m ﹣n |=x ﹣y ﹣z ﹣m +n ,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A .0B .1C .2D .3【详解】解:|x ﹣y |﹣z ﹣m ﹣n =x ﹣y ﹣z ﹣m ﹣n ,故说法①正确;若使其运算结果与原多项式之和为0,需出现﹣x ,显然无论怎么添加绝对值,都无法使x 的符号为负号,故说法②正确;当添加一个绝对值时,共有4种情况,分别是|x ﹣y |﹣z ﹣m ﹣n =x ﹣y ﹣z ﹣m ﹣n ,x ﹣|y ﹣z |﹣m ﹣n =x ﹣y +z ﹣m ﹣n ,x ﹣y ﹣|z ﹣m |﹣n =x ﹣y ﹣z +m ﹣n ,x ﹣y ﹣z ﹣|m ﹣n |=x ﹣y ﹣z ﹣m +n ;当添加两个绝对值时,共有3种情况,分别是|x ﹣y |﹣|z ﹣m |﹣n =x ﹣y ﹣z +m ﹣n ,|x ﹣y |﹣z ﹣|m ﹣n |=x ﹣y ﹣z ﹣m +n ,x ﹣|y ﹣z |﹣|m ﹣n |=x ﹣y +z ﹣m +n ;综上,共有7种情况,因为有两对运算结果相同,所以共有5种不同运算结果,故说法③不符合题意.故本题选:C .二.填空题(共8小题,满分24分,每小题3分)11.将多项式322313xy x y x y --+按字母y 升幂排列,结果是.【详解】解:将多项式322313xy x y x y --+按字母y 升幂排列,结果是322313x y x y xy -+-+.故本题答案为:322313x y x y xy -+-+.12.下列式子:22323134,,,23,0,,,,,22m n m n x xy y y x a m y ab m n x --++--++,其中单项式有;多项式有;整式有.13.如图,两个大、小正方形的边长分别是4cm 和x (04)cm x <<,用含x 的式子表示图中阴影部分的面积为2cm .14.当k =时,多项式22(1)325x k xy y xy +----中不含xy 项.【详解】解:整理只含xy 的项得:(3)k xy -,30k ∴-=,3k =.故本题答案为:3.15.当2x =时,代数式334ax bx -+的值是7,则当2x =-时,这个代数式的值是.【详解】解:当2x =时,3348647ax bx a b -+=-+=,863a b ∴-=,∴当2x =-时,334864(86)4341ax bx a b a b -+=-++=--+=-+=.故本题答案为:1.16.粗心的小明在计算2532a a -+加上一个多项式时,误看成减去这个多项式得到223a a +,那么正确的计算结果应该是.【详解】解:根据题意得:222532[(532)(23)]a a a a a a -++-+-+222532(53223)a a a a a a =-++-+--22253253223a a a a a a =-++-+--2894a a =-+.故本题答案为:2894a a -+.17.用黑白两色棋子按下列方式摆图形,依照此规律,第n 个图形中黑色棋子共有个.【详解】解:第1个有黑色棋子3224⨯-=个黑色棋子,第2个有黑色棋子3327⨯-=个黑色棋子,第3个有黑色棋子34210⨯-=个黑色棋子,第4个有黑色棋子35213⨯-=个黑色棋子,⋅⋅⋅第n 个有黑色棋子3(1)231n n +-=+个黑色棋子.故本题答案为:(31)n +.18.如果一个四位自然数abcd 的各数位上的数字均不为0,且满足ab bc cd +=,那么称这个四位数为“共和数”.例如:四位数1235,122335+= ,1235∴是“共和数”;又如:四位数3824,388224+≠,3824不是“共和数”,若一个“共和数”为268m ,则m 的值为;若一个“共和数”M 的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的差,再减去2a ,结果能被7整除,则满足条件的M 的最大值与最小值的差是.又09d <,62971c ∴<.78c ∴<,7c ∴=,8d =,6178M ∴=;617816844494∴-=.故本题答案为:4;4494.三.解答题(共10小题,满分66分)19.(6分)化简:(1)2243322xy x xy y x ---+;(2)22223462a ab b ab b -+--.【详解】解:(1)原式22(43)(32)2xy xy x x y=-+-+-22xy x y =--;(2)原式2222(36)(42)a ab ab b b =+--+-22292a ab b =-+.20.(6分)把()a b +和()x y +各看成一个整体,对下列各式进行化简:(1)26()4()25()a b a b a b +++-+;(2)226()3()9()2()x y x y x y x y +++-+++.【详解】解:(1)原式(26425)()a b =+-+5()a b =+;(2)原式2(69)()(32)()x y x y =-++++.23()5()x y x y =-+++.21.(9分)化简:(1)()[32()]m n m m n +-+-+;(2)222222(45)(34)a b ab a b ab --+;(3)222223{6[48(46)]3}x xy x y xy y x -+----.【详解】解:(1)()[32()]m n m m n +-+-+(322)m n m m n =+--+322m n m m n=+-+-n =-;(2)222222(45)(34)a b ab a b ab --+2222224534a b ab a b ab =---2229a b ab =-;(3)222223{6[48(46)]3}x xy x y xy y x -+----.222223648463x xy x y xy y x =--++-+22222x xy y =-+.22.(6分)小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.(1)求这个多项式;(2)算出此题的正确的结果.【详解】解:(1)由题意可得:这个多项式是:223125a a a a +-+-+,2324a a =++;(2)由(1)可得:()2232425a a a a ++-+-2232425a a a a =++--+29a a =++,即此题的正确的结果是29a a ++.23.(6分)已知:223A a ab b =--,2226B a ab b =+-.(1)计算2A B -的表达式;(2)若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式2A B -的值.【详解】解:(1)222222(3)(26)A B a ab b a ab b -=---+-222222626a ab b a ab b =----+3ab =-;(2)22(26)(2351)x ax y bx x y +-+--+-22262351x ax y bx x y =+-+-+-+2(22)(3)67b x a x y =-++-+, 代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,220b ∴-=,30a +=,3a ∴=-,1b =,233(3)19A B ab ∴-=-=-⨯-⨯=.24.(8分)先化简,再求值:(1)2222(2)[2(3)1]4x y xy x xy y -+---+-+,其中x ,y 满足2(2)|1|0x y ++-=;(2)若关于x 的多项式32|2|4m x mx -+-与多项式32462x x x --+的和是二次三项式,求代数式2223[4(2)1]6m m m m ---++的值.【详解】解:(1)原式22222(2261)4x y xy x xy y =----+--+2222222614x y xy x xy y =---+-+++2535y xy =-+,2(2)|1|0x y ++-= ,∴2010x y +=⎧⎨-=⎩,解得:21x y =-⎧⎨=⎩,当2x =-,1y =时,原式56516=++=;(2)323232|2|4(462)(|2|4)(6)24m x mx x x x m x m x x -+-+--+=--+-+-,由题意得:|2|4060m m --=⎧⎨-≠⎩,解得:2m =-,2222223[4(2)1]63(421)6m m m m m m m m ---++=--+++223(21)6m m m =-+++226336m m m =---+33m =--,当2m =-时,33633m --=-=,∴代数式2223[4(2)1]6m m m m ---++的值为3.25.(8分)理解与思考:整体代换是数学的一种思想方法,例如:20x x +=,则21186x x ++=;我们将2x x +作为一个整体代入,则原式011861186=+=.仿照上面的解题方法,完成下面的问题:(1)若220x x +-=,则22021x x ++=;(2)如果6a b +=,求2()4421a b a b +--+的值;(3)若2222a ab +=,228b ab +=,求22232a b ab --的值.【详解】解:(1)220x x +-= ,22x x ∴+=,22021220212023x x ∴++=+=,故本题答案为:2023;(2)6a b += ,2()4421a b a b ∴+--+2()4()21a b a b =+-++2()21a b =-++2621=-⨯+1221=-+9=;(3)2222a ab += ,228b ab +=,2222a ab ∴=-,282b ab =-,22232a b ab∴--2(222)3(82)2ab ab ab=----4442462ab ab ab=--+-20=.26.(8分)类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值都小于或等于1的项是“准同类项”.例如:34a b 与432a b 是“准同类项”.(1)给出下列三个单项式:①452a b ,②253a b ,③444a b -.其中与45a b 是“准同类项”的是(填写序号).(2)已知A ,B ,C 均为关于a ,b 的多项式,4534233(2)A a b a b n a b =++-,2324523n B a b a b a b =-+,C A B =-.若C 的任意两项都是“准同类项”,求n 的值.(3)已知D ,E 均为关于a ,b 的单项式,22m D a b =,43n E a b =,其中|1||2|m x x k =-+-+,(|1||2|)n k x x =---,x 和k 都是有理数,且0k >.若D 与E 是“准同类项”,则x 的最大值是,最小值是.【详解】解:(1)根据准同类项的定义可知:①③是准同类项,故本题答案为:①③;(2)4534233(2)A a b a b n a b =++- ,2324523n B a b a b a b =-+,23342(4)33n C A B n a b a b a b ∴=-=-++,当343a b 与23n a b 是准同类项,则3n =或4或5;当23(4)n a b -与23n a b 是准同类项,则2n =或3或4;综上,3n =或4;(3)22m D a b = ,43n E a b =是“准同类项”,3m ∴=或4或5,1n =或2或3,又|1||2|m x x k =-+-+ ,(|1||2|)n k x x =---,而|1||2|x x -+-表示x 到1和2的距离之和,最小为1,1m k ∴+,27.(9分)2.对于整数a ,b ,定义一种新的运算“ ”:当a b +为偶数时,规定2||||a b a b a b =++- ;当a b +为奇数时,规定2||||a b a b a b =+-- .(1)当2a =,4b =-时,求a b 的值.(2)已知0a b >>,()(1)7a b a b -+-= ,求式子31()(1)44a b a b -++-的值.(3)已知()1805a a a a =- ,求a 的值.综上,a的值为15或30或10.。
2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)专题02 代数式【题型1】代数式表示数、图形的规律1.(2022·河北廊坊·七年级期末)如图.用棋子按规律摆出下列一组图形,据此规律,第2022个,图形棋子的枚数为( )A.6065B.6068C.6069D.6071【答案】B【分析】由所给的图形不难看出第n个图形所棋子枚数是:3n+2,从而可求解.【详解】解:∵第1个图形棋子枚数为:5=3×1+2,第2个图形棋子枚数为:5+3=3×2+2,第3个图形棋子枚数为:5+3+3=3×3+2,∴第n 个图形棋子枚数为:3n +2,∴第2022个图形棋子枚数为:3×2022+2=6068,故B 正确.故选:B .【点睛】此题考查图形的变化规律,找出图形之间的联系,得出规律是解题的关键.【变式1-1】2.(2022·黑龙江大庆·期中)观察下面一系列等式:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,并用含有a 的字母表示这个规律__________.【答案】()()2221218a a a+--=【分析】根据题意观察式子,发现等式的左边为连续的两个奇数的平方差,右边为8与从1开始的自然数的乘积,据此用代数式表示即可求解.【详解】解:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,可得()()2221218a a a +--=.故答案为:()()2221218a a a +--=.【点睛】本题考查了用代数式表示式子的规律,发现规律是解题的关键.【题型2】代数式的书写方法1.(2021·福建·晋江市磁灶中学七年级期中)下列代数式书写规范的是( )A .2m n ´B .526abC .a b ¸D .3xD、该选项正确.故选D.【点睛】本题考查了代数式的书写要求,解决本题的关键是掌握代数式的书写要求.要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式.【变式2-1】2.(2022·全国·七年级课时练习)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.【题型3】代数式表示的实际意义1.(2022·内蒙古通辽·七年级期末)下列赋予4m实际意义的叙述中不正确的是()A.若一个两位数中的十位数字和个位数字分别为4和m,则4m表示这个两位数B.若正方形的边长为m厘米,则4m表示这个正方形的周长(单位:厘米)C.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额(单位:元)D.若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程(单位:千米)【答案】A【分析】根据两位数的表示=十位数字×10+个位数字;正方形周长=边长×4;金额=单价×重量;路程=速度×时间进行分析即可.【详解】解:A、若一个两位数中的十位数字和个位数字分别为4和m,则(4×10+m)表示这个两位数,原说法不正确,故此选项符合题意;B、若正方形的边长为m厘米,则4m表示这个正方形的周长,原说法正确,故此选项不符合题意;C、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,原说法正确,故此选项不符合题意;D、若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程,原说法正确,故此选项不符合题意;故选:A.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.【变式3-1】2.(2022·江苏·七年级)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义__.【答案】用100元买每斤9.8元的苹果x斤余下的钱【分析】根据题意结合图片得出代数式100﹣9.8x的实际意义.【详解】解:代数式100﹣9.8x 的实际意义为:用100元买每斤9.8元的苹果x 斤余下的钱.故答案为:用100元买每斤9.8元的苹果x 斤余下的钱.【点睛】此题主要考查了代数式,结合题意利用图片得出是解题关键.【题型4】求代数式的值1.(2021·湖北·公安县教学研究中心七年级阶段练习)已知|2|a =-,则a -5=( )A .3-B .3C .7-D .7【答案】A【分析】由绝对值的意义求出a 的值,再代入a -5中计算即可.【详解】∵|2|a =-,∴2a =,∴a -5=2-5=-3.故选A .【点睛】本题考查求一个数的绝对值,代数式求值.掌握正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题关键.【变式4-1】2.(2021·江西·宜春九中七年级阶段练习)已知150y x -++--=,则x y +=__________.一.选择题1.(2022·全国·七年级专题练习)某商店促销的方法是将原价x 元的衣服以(0.8x ﹣10)元出售,意思是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【答案】B【分析】根据先算乘法可知先打折,再减价.【详解】解:将原价x 元的衣服以(0.8x ﹣10)元出售,意思是原价打8折后再减去10元,故选:B .【点睛】本题考查代数式的实际意义.理解运算中乘为打折,减是减价是解题关键.2.(2021·湖南·宁远县教研室七年级期中)下列式子中不是代数式的是( )A .32a b +B .52+C .1a b +=D .1b a +【答案】C【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项.【详解】解:A 、是代数式,故不符合题意;B 、是代数式,故不符合题意;C 、中含有“=”,不是代数式,故符合题意;D 、是代数式,故不符合题意;故选C .【点睛】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键.3.(2022·全国·七年级专题练习)下列各式中,符合整式书写规则的是( )A .5x ´B .72xyC .124xyD .1x y-¸【答案】B【分析】利用代数式的书写要求分别判断得出答案.【详解】解:A 、5x ´不符合代数式的书写要求,应为5x ,故此选项不符合题意;4.(2022.湖北.利川市思源实验学校七年级阶段练习)小王利用计算机设计了一个程序,输入和输出的数据如下表:输入 (1)2345…输出…1225310417526…那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .8675.(2021·全国·七年级单元测试)已知3257x y -+=,那么多项式15102x y -+的值为( )A .8B .10C .12D .35【答案】C【分析】由多项式3257x y -+=,可求出322x y -=,从而求得1510x y -的值,继而可求得答案.【详解】解:∵3257x y -+=∴322x y -=∴151010x y -=∴1510+2x y -10+212==故选C .【点睛】本题考查了求多项式的值,关键在于利用“整体代入法”求代数式的值.6.(2019·海南·中考真题)当m =-1时,代数式2m+3的值是( )A .-1B .0C .1D .2【答案】C【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=´-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.二、填空题7.(2018·上海·中考真题)某商品原价为a 元,如果按原价的八折销售,那么售价是_____元.(用含字母a 的代数式表示).【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.8.(2020·河北·模拟预测)若4x y +=,a ,b 互为倒数,则1()52x y ab ++的值是_________9.(2019·广东·中考真题)已知23x y =+,则代数式489x y -+的值是_____.【答案】21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.10.(2022·全国·七年级课时练习)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510´本甲种书及3310´本乙种书,Q =______(用科学记数法表示).【答案】 4m +5n 43.510´【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510´+5×3310´=20×310+15×310=35×310=43.510´.故答案为:4m +5n ,43.510´.【点睛】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.三、解答题11.(2021·全国·七年级单元测试)如图所示,有长为l 的篱笆,利用它和一面墙围城长方形园子,在园子的长边上开了1米的门,园子的宽为t .(1)用关于l ,t 的代数式表示园子的面积.(2)当l =100m ,t =30m 时,求园子的面积.【答案】(1)()12S l t t =+-;(2)21230m 【分析】(1)表示出长,利用长方形的面积列出算式即可;(2)把l =100m ,t =30m 代入(1)求得答案即可;【详解】解:(1)宽为t,长为:l +1-2t 面积为:()12S l t t =+-(2)当l =100m ,t =30m 时S=()()12100123030l t t +-=+-´´=1230故园子的面积为21230m 【点睛】本题考查根据实际,列出代数式,再代入求值,关键在于找到等量关系.12.(2022·全国·七年级专题练习)(1)观察下面的点阵图与等式的关系,并填空:第1个点阵2213112++=+第2个点阵13531++++=______+______第3个点阵++++++=______+______.1357531(2)通过猜想,写出第n个点阵相对应的等式.【答案】(1)22,32,32,42(2)1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2【分析】(1)根据点阵图即可求解;(2)根据(1)中的3个等式得出规律,进而写出第n个点阵相对应的等式.【详解】(1)第1个点阵1+3+1=12+22,第2个点阵1+3+5+3+1=22+32,第3个点阵1+3+5+7+5+3+1=32+42.故答案为22,32,32,42;(2)根据(1)中的3个等式,可以发现,第n个点阵的对角点最多有2n+1个,而且等号右侧是22++,n n(1)∴第n个点阵相对应的等式为:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2.【点睛】本题考查了规律型:图形的变化类,要求学生通过观察,分析、归纳发现其中的规律.13.(2022·全国·七年级专题练习)用同样大小的两种不同颜色(白色.灰色)的正方形纸片,按如图方式拼成长方形.[观察思考]第(1)个图形中有212=´张正方形纸片;´+==´张正方形纸片;第(2)个图形中有2(12)623´++==´张正方形纸片;第(3)个图形中有2(123)1234第(4)个图形中有2(1234)2045´+++==´张正方形纸片;……以此类推(1)[规律总结]第(5)个图形中有__________张正方形纸片(直接写出结果).(2)根据上面的发现我们可以猜想:123n ++++=L __________.(用含n 的代数式表示)(3)[问题解决]根据你的发现计算:101102103200++++L .14.(2022·全国·七年级专题练习)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:①取0x =时,直接可以得到00a =;②取1x =时,可以得到432106a a a a a ++++=;③取1x =-时,可以得到432106a a a a a -+-+=-;④把②,③的结论相加,就可以得到4222a a +020+=a ,结合①00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4(2)8(3)0【分析】(1)观察等式可发现只要令x =1即可求出a 0;(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值;(3)令x =2即可求出等式①,令x =0即可求出等式②,两个式子相加即可求出来.(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =´=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.15.(2019·贵州贵阳·中考真题)如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.【答案】(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)S =ab ﹣a ﹣b +1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;【点睛】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.。
七年级数学上册代数式专题卷(附答案)一、选择题(题型注释)1.在代数式22352,1,32,,,33x x a b cd x π--+-中,单项式有( ) A .3个 B .4个 C .5个 D .6个2.多项式2xy-3xy 2+25的次数及最高次项的系数分别是 ( )A .3,-3B .2,-3C .5,-3D .2,33.多项式3222m n --是( )A .五次二项式B .三次二项式C .四次二项式D .二次二项式4.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为( )全月应纳税金额 税率(%)不超过500元 5超过500元到2000元 10超过2000元至5000元 15…… ……A .1900元B .1200元C .1600元D .1050元5.下列计算正确的是( )A. B. C.D. 6.下列代数式中,不是单项式的是( )A .B .﹣C .tD .3a 2b7.若代数式2y 2+3y+7的值为8,那么4y 2+6y ﹣9的值为( )A .2B .﹣17C .﹣7D .78. 当2,1-==b a 时,代数式b a 422-的值为____________9.若单项式2x 2y a+b 与﹣13x a ﹣b y 4是同类项,则a ,b 的值分别为( ) A .a=3,b=1 B .a=﹣3,b=1 C .a=3,b=﹣1 D .a=﹣3,b=﹣110.下列式子:22x +,14a +,237ab ,ab c ,-5x ,0中,整式的个数是: ( ) A 、6 B 、5 C 、4 D 、311. 李老师做了个长方形教具,其中一边长为2a+b ,另一边长为a ﹣b ,则该长方形周长为( )A. 6a+bB. 6aC. 3aD. 10a ﹣b12.下列运算正确的是A .(a+b )2=a 2+b 2B .x 3+x 3=x 6 325.(2x 2)(﹣3x 3)=﹣6x 5二、填空题(题型注释) 13.单项式π33r 的系数是 ;多项式122+-ab a 是 次三项式. 14.若x m-1y 4 与-2x 3y n 是同类项,则 m-n= .15.-b a 231π的系数是 ,次数是 .16.单项式232r π的系数是 ;当r=3时,这个代数式的值是 (结果保留到0.01).17.已知n 是自然数,多项式23423x x x x n +-+是三次三项式,那么n 可以取的数是 .18.单项式5)2(32y x -的系数是_____,次数是______. 19.若-4x m y 3与2y 2x n 是同类项,则m -n = .20. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高_________ m 。
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.(1)第二年的年待遇:A公司为________元,B公司为________元;(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.【答案】(1)20200;20250(2)解:A公司:20000+200(n-1)=200n+19800B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,∴从应聘者的角度考虑的话,选择B家公司有利.【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.3.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;4.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.5.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.6.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.7.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。
专题10 程序流程图与代数式求值1.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( )A .1个B .2个C .3个D .4个2.按下面的程序计算:若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.4【答案】B【分析】由3x+1=22,解得x=7,即开始输入的x为111,最后输出的结果为556;当开始输入的x 值满足3x+1=7,最后输出的结果也为22,可解得x=2即可完成解答.【详解】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数7,当两次后输出22时,3x+1=7,解得:x=2;故答案为B.【点睛】本题考查了一元一次方程的应用,根据程序框图列出方程和理解循环结构是解答本题的关键.3.按如图所示的程序计算,若开始输入的x的值为16,我们发现第1次得到的结果是8,第2次得到的结果为4…请探索第2020次得到的结果为()A.8B.4C.2D.1∴第2020次得到的结果为1,故选D.【点睛】此题考查了数字的变化规律、代数式求值,由题意得出规律是解本题的关键.4.根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x的值是7,则输出y的值是()A.1B.-1C.2D.-2y=,则m的值等于______.5.下图是一个运算程序:若2x=-,3【答案】-7【分析】因为-2<3,所以将x=-2,y=3代入|x|-3y进行计算.【详解】解:∵-2<3,∴当x=-2,y=3时,|x|-3y=|-2|-3×3=2-9=-7,故答案为:-7.【点睛】此题考查了利用运算程序解决整式运算的能力,关键是能通过数学讨论选择正确的整式进行代入计算.6.按下面的程序计算,若输出结果为16,则满足条件的正数a为______.7.按下面的程序计算,如果输入﹣1,则输出的结果为___________.【答案】5【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:当x=﹣1时,x+2﹣(﹣5)﹣4=﹣1+2+5﹣4=2<3,当x=2时,x+2﹣(﹣5)﹣4=2+2+5﹣4=5>3,则输出5,故答案为:5.【点睛】本题考查代数式求值,理解“数值转换机”的转化法则是解决问题的前提,理解“循环输入”是得出正确答案的关键.8.有一数值转换器,原理如图所示.(1)若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2022次输出的结果是______;(2)若输入的x值为整数,且第二次输出的结果与开始输入的数值相等,则x的值为______.(2)当x 为偶数时,第一次输出12x ,若12x 也为偶数,则第二次输出14x ,依题意可得:1=4x x ,解得=0x ;若12x 为奇数,则第二次输出152x +,依题意可得:15=2x x +,解得=10x ;当x 为奇数时,第一次输出5x +,则5x +是偶数,故第二次输出()152x +,依题意可得:()15=2x x +,解得=5x ;故答案为:0或10或5.【点睛】本题考查了有理数的数式规律问题,解题的关键是发现规律,以及能利用分类讨论的思想列出一元一次方程解决问题.9.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=3,输出结果m的值与输入y的值相同,求y的值.10.解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是 ;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是 ;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.11.【知识背景】在学习计算框图时,可以用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条)【尝试解决】(1)如(图1),当输入数2x =时,输出数y =_______.(2)如(图2),当输入数2x =-时,输出数y =_______.(3)如(图3),当输出的值27y =,求x 的值.【答案】(1)2;(2)-26;(3)35或-5【分析】(1)将x =2代入计算即可求出值;(2)将x =-2代入计算,判断与-15的关系,从而再次代入计算即可求出值;(3)分x >0和x <0,根据流程图中的方法分别计算即可求解.【详解】解:(1)46y x =-,∴当2x =时,4262y =´-=,故答案为:2.(2)当2x =-,232815-´-=->-,∴当8x =-时,8322615-´-=-<-,∴26y =-,故答案为:-26.(3)若0x >,则827x -=,∴35x =.若0x <,则2227x +=,∴225x =,x=-,∴5x=或5-.∴35【点睛】此题考查了代数式求值,属于程序框图型试题,弄清题意是解本题的关键.12.有一个数值转换机,原理如图所示,若开始输入的x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,...依次继续下去(1)请列式计算第3次到第8次的输出结果;(2)你根据(1)中所得的结果找到了规律吗?计算2013次输出的结果是多少?【点睛】此题主要考查了代数式求值问题,以及探寻规律问题,要熟练掌握,解答此题的关键要明确:从第二次输出的结果开始,每次输出的结果分别是6、3、8、4、2、1、6、3、…,每6个数一个循环.13.明明在计算机中设计了一个有理数运算的程序:()()2221*21a b a b a a b b éù=----¸-êúëû;当输入a ,b 的数据时,屏幕会根据运算程序显示出结果.(1)求()12*2-的值;(2)芳芳在运用这个程序计算时,输入a ,b 的数据后屏幕显示“操作无法进行”,请你猜想芳芳输入数据时可能出现了什么情况,为什么?14.如图,按程序框图中的顺序计算,当运算结果小于或等于0.99时,则将此时的值返回第一步重新运算,直至运算结果大于0.99才输出最后的结果,若输入的初始值为0.则最后输出的结果是多少?【答案】0.992【分析】本题考查的是有理数的计算,根据程序框图中的顺序计算即可【详解】输入“0”后按框图顺序计算:()()0+6520.8-¸--=éùëû0.80.99<,所以再次输入0.8计算,()()0.8+6520.96-¸--=éùëû0.960.99<,所以再次把0.96输入计算()()0.96+6520.992-¸--=éùëû0.9920.99>,所以输出值为0.992【点睛】本题的关键是按照程序框图中的顺序计算15.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,满足条件的x 的不同值最多有几个?请分别求出来.【答案】4个 ;131,26,5,0.8.【分析】根据输出的结果是656列出一元一次方程,然后依次进行计算,直至x 小于等于1即可.【详解】∵最后输出的数为656,∴5x +1=656,得:x =131,∴5x +1=131,得:x =26,∴5x +1=26,得:x =5,∴5x +1=5,得:x =0.8,故x 的值可取131,26,5,0.8,故答案为有4个,分别是:131,26,5,0.8.【点睛】此题考查代数式求值,解题关键在于掌握其运算公式.16.小刚设计了一个如图所示的数值转换程序(1)当输入x =2时,输出M 的值为多少?(2)当输入x =8时,输出M 的值为多少?(3)当输出M =10时,输入x 的值为多少?17.在学习代数式的值时,介绍了计算程序中的框图:用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条).按图所示的程序计算(输入的x为正整数).例如:输入5,结果依次为16、8、4、2、1,即运算循环5次(第5次计算结果为1)结束.(1)输入6,结果依次为3、___________________、16、8、4、2、1.(依次填入循环计算所缺的几次结果)(2)输入26,运算循环__________次结束.(3)输入正整数x,经过7次运算结束,试求x的值.【答案】(1)10,5(2)10(3)3,20,21,128【分析】(1)将x=3代入,可得可得输出的数为10,将x=10代入,可得输出的数为5,将x=5代入,可得输出的数为16,可得答案;(2) 将x=26代入,依次计算可得经过10次计算后,x=1;(3)分后6个数为64、32、16、8、4、2、1时候与后6个数为10、5、16、8、4、2、1时候两种情况讨论,可得x的值.【详解】(1) 将x=3代入,可得输出的数为:3´3+1=10;将x=10代入,可得输出的数为:10¸2=5;将x=5代入,可得输出的数为:5´3+1=16,故答案:10,5(2)将x=26代入,可得输出的数为:26¸2=13;将x=13代入,可得输出的数为:13´3+1=40;将x=40代入,可得输出的数为:40¸2=20;将x=20代入,可得输出的数为:20¸2=10;将x=10代入,可得输出的数为:10¸2=5;将x=5代入,可得输出的数为:5´3+1=16;将x=16代入,可得输出的数为:16¸2=8;将x=8代入,可得输出的数为:8¸2=4;将x=4代入,可得输出的数为:4¸2=2;将x=2代入,可得输出的数为:2¸2=1;故共10次;(3) ①当后6个数为64、32、16、8、4、2、1时候,可得x=21或x=128;②当后6个数为10、5、16、8、4、2、1时候,可得x=3或x=20,故答案:3,20,21,128.【点睛】本题主要考查代数式的求值,及有理数的混合运算注意运算的准确性.18.如图是一个数值转换机的示意图.(1)若输入x的值为2,输入y的值为﹣2,求输出的结果;(2)用含x,y的代数式表示输出的结果为:;(3)若输入x的值为2,输出的结果为8,求输入y的值;(4)若y是x的k倍(k为常数),且不论x取任意负数时,输出的结果都是0,求k的值.(4)根据题意可得y=kx,则3x+|y|=0即3x+|kx|=0所以|kx|=3x所以k=±3.【点睛】本题考查了有理数的混合运算,解绝对值方程,列代数式,理解题意是解题的关键.19.如图是计算机程序计算图.(1)若开始输入为-1,请你根据程序列出综合算式并计算出输出结果;(2)若最后输出为-1,请你求输入的值.(不要求写出过程)【答案】(1) 2 (2)2或-2【详解】试题分析:(1)根据题中所给的运算法则列出式子,再由有理数混合运算的法则进行计算即可;(2)设输入的值为x,再由输出结果为1求出x的值即可.试题解析:解:(1)2;(2)设输入的值为x,则)[2x+(-3)]×(-1)=-1,解得x=2或-2.考点:有理数的混合运算20.在学习代数式的值时,介绍了计算框图:用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条)(1)①如图1,当输入数2x=-时,输出数y=____________;②如图2,第一个带?号的运算框内,应填___________;第二个带?号运算框内,应填___________;x=时,输出数y=___________;(2)①如图3,当输入数1y=,则输入的值x=__________;②如图4,当输出的值26(3)为鼓励节约用水,决定对用水实行“阶梯价”:当每月用水量不超过15吨时(含15吨),以2元/吨的价格收费;当每月用水量超过15吨时,超过部分以3元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量x,输出数为水费y.【答案】(1)①-9;②×5,-3;(2)①-43;②42或-6;(3)见解析,【分析】(1)①根据图形列出算式,即可求出答案;②根据图形列出算式,即可求出答案;(2)①根据图形列出算式,即可求出答案;②根据图形列出算式,即可求出答案;(3)根据图4画出即可.【详解】解:(1)①当x=-2时,y=-2×2-5=-9,故答案为:-9;②第一个运算框“×5”内;第二个运算框“-3”内,故答案为:×5,-3;(2)①当x=-1时,y=-1×2-5=-7>-20,-7×2-5=-19>-20,-19×2-5=-43<-20,故答案为:y=-43;②分为两种情况:当x>0时,x-5=37,解得:x=42;当x<0时,x2+1=37,解得:x=±6,x=6舍去;故答案为:42或-6;(3)因为当每月用水量不超过15吨时(含15吨),以2元/吨的价格收费;当每月用水量超过15吨时,超过部分以3元/吨的价格收费,所以水费收缴分两种情况,x≤15和x>15,分别计算,所以可以设计如框图如图..【点睛】本题考查了求代数式的值的应用,能读懂图形是解此题的关键.。
新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
第三章 代数式 单元训练2024-2025学年人教版数学七年级上册(1)一、单选题1.用表示的数一定是( )A .负数B .正数或负数C .负整数D .以上全不对2.李爷爷今年岁,杨伯伯今年岁,过年后,他们相差( )岁.A .x B .20C .D .3.当,时,代数式的值是( )A .6B .C .9D .4.在式子,,,,中属于代数式的有( )A .3B .4C .5D .65.下列各式中,书写正确的是( )A .B .C .D .6.某商场出售一件商品,在原标价基础上实行以下四种调价方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价10%,再打八折C .先提价30%,再降价35%D .先打七五折,再提价10%7.按照如图所示的程序计算,若开始输入的值为,则最后输出的结果可能是( )A .B .C .D .128.已知和互为相反数,则的值为( )A .B .C .D .09.已知 ,那么代数式的是( )A .B .0C .3D .910.观察下列代数式:,,,,….按此规律,则第n 个代数式是( )a -a ()20a -x 20x -20x +2m =-5n =()3m n -+6-9-5a a b +0m n +>223x y 112mn x y ÷1()4a b +3-6-15-42-5m +52n -2m n +5-52-52122a b a c +=+=-,()()2924b c c b ----1-12a -54a98a -1316aA .B .C .D .二、填空题11.某工程队要修路,计划平均每天修,则计划完成此项工程的时间为 天.12.为了丰富班级的课余活动,王老师预购置副羽毛球拍和个羽毛球,已知买一副羽毛球拍要元,买一个羽毛球要元.王老师一共要花 元(用含、的式子表示).13.已知,代数式的值为 .14.若代数式,则的最小值是.三、解答题15.如图,是一个“数值转换机”的示意图.(1)输出的结果用代数式表示为________;(2)计算当输入时,输出的值.16.边长分别为a 和的两个正方形按如图的样式摆放,求图中阴影部分的面积.17.如图所示,在数轴上有三个点A ,B ,C ,回答下列问题:(1)A ,C 两点间的距离是(2)若点E 与点B 的距离是4,则点E 表示的数是 .(3)若点F 与点B 的距离是 (>0),请你求出点F 表示的数是 . (用含字母 的代数()14312n n na +--()14312n n n a +--()4312n n na --()4312n n n a--m a m b 520a b a b 23a b -=-()32243b a b a +---312410x x y y -+++++-=23x y +13x =2a a a a式表示).(4)如果点G 表示的数是 ,将点G 向右移动 个单位长度,再向左移动个单位长度,那么终点H 表示的数是 ;G 、H 两点间的距离是 _____________.(用含绝对值符号“| |”的代数式表示).18.为了培养德智体美劳全面发展的学生,某校为了增强学生的体质,准备购买足球50个,实心球x 个,足球定价80元/个,实心球定价20元/个,甲、乙两商店向学校提供了各自的优惠方案:商店甲:买一个足球送一个实心球;商店乙:足球和实心球都按定价的付款.(1)若该校到甲、乙商店分别购买,分别需付款多少元?(用含x 的代数式表示)(2)若时,通过计算说明此时哪间商店购买较为合算?(3)当时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并把付款的钱算出来.m n p ()50x >90%200x =300x =参考答案:1.D2.B3.D4.B5.D6.D7.B8.D9.D10.D11.12.13.3014.15.(1);(2).16.17.(1)5;(2)-6或2;(3)-2-或-2+;(4)+-;18.(1)元,元(2)去甲商店购买较为合算(3) 解: x=300时甲: 20×300+3000=9000 (元) ,乙: 18×300+3600=9000 (元),更省钱的方案为: 去甲商店买50个足球 (送50个实心球) 去乙商店买250个实心球.50×80+250×20×90%=4000+4500=8500 (元) .ab()520a b +8-23x -73-22a a a m n p n p -()203000+x ()183600+x。
专题08 代数式重难考点分类练(七大考点)一.代数式必考---化简求值1.先化简,再求值:2xy +(﹣3x 2+5xy +2)﹣2(3xy ﹣x 2+1),其中x =−23,y =32.试题分析:原式去括号,合并同类项进行化简,然后代入求值.答案详解:解:原式=2xy ﹣3x 2+5xy +2﹣6xy +2x 2﹣2=﹣x 2+xy ,当x =−23,y =32时,原式=﹣(−23)2+(−23)×32=−49−1=−139.实战训练2.先化简,再求值:3(2x 2﹣xy )﹣(﹣xy +3x 2),其中x =﹣1,y =12.试题分析:将分式去括号、合并同类项化简后,把x =﹣1,y =12代入计算即可. 答案详解:解:3(2x 2﹣xy )﹣(﹣xy +3x 2)=6x 2﹣3xy +xy ﹣3x 2=3x 2﹣2xy ,当x =﹣1,y =12时,3x 2﹣2xy=3×(﹣1)2﹣2×(﹣1)×12=3+1=4.3.已知:A =3x 2+2xy +3y ﹣1,B =x 2﹣xy .(1)计算:A ﹣3B ;(2)若A ﹣3B 的值与y 的取值无关,求x 的值.试题分析:(1)利用去括号的法则去掉括号再合并同类项即可;(2)令y 的系数的和为0,即可求得结论.答案详解:解:(1)A ﹣3B=(3x 2+2xy +3y ﹣1)﹣3(x 2﹣xy )=3x 2+2xy +3y ﹣1﹣3x 2+3xy=5xy +3y ﹣1;(2)∵A ﹣3B =5xy +3y ﹣1=(5x +3)y ﹣1,又∵A ﹣3B 的值与y 的取值无关,∴5x +3=0,∴x =−35.4.已知单项式3x a ﹣1y 5与﹣2x 2y 3b ﹣1是同类项,(1)填空:a = 3 ,b = 2 ;(2)先化简,在(1)的条件下再求值:3(ab ﹣2a 2)﹣2(4ab ﹣a 2).试题分析:(1)根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得答案;(2)根据整式的加减,可得答案.答案详解:解:(1)∵a ﹣1=2,3b ﹣1=5,∴a =3,b =2所以答案是:3,2;(2)原式=3ab ﹣6a 2﹣8ab +2a 2=﹣4a 2﹣5ab ,当a =3,b =2时,原式=﹣4×32﹣5×3×2=﹣66.二.新定义--紧扣定义,化归思想5.对于任意有理数a 、b ,如果满足a 2+b 3=a b 23,那么称它们为“伴侣数对”,记为(a ,b ).(1)若(x ,2)是“伴侣数对”,求x 的值;(2)若(m ,n )是“伴侣数对”,求3n +12[5(3m +2)﹣2(3m +n )]的值.试题分析:(1)根据新定义内容列方程求解;(2)先将原式去括号,合并同类项进行化简,然后根据新定义内容列出等式进行化简,最后代入求值.答案详解:解:(1)∵(x ,2)是“伴侣数对”,∴x 2+23=x 223,整理,可得:x 2+23=x 25,解得:x =−89,即x 的值为−89;(2)原式=3n +12(15m +10﹣6m ﹣2n )=3n +152m +5﹣3m ﹣n =2n +92m +5,∵(m ,n )是“伴侣数对”,∴m 2+n 3=m n 23,整理,可得:m =−49n ,∴原式=2n+92×(−49n)+5=2n﹣2n+5=5.6.规定:f(x)=|x+1|,g(y)=|y﹣3|,例如:f(﹣5)=|﹣5+1|=4,g(﹣5)=|﹣5﹣3|=8.有下列结论:①f(4)+g(﹣2)=2;②若f(x)+g(y)=0,则3x+2y=3;③若x≤﹣1,则f (x)+g(x)=2﹣2x;④式子f(x﹣2)+g(x﹣1)的最小值是3.其中正确的是 ②③④ (填序号).试题分析:利用新定义的规定进行运算,再利用非负数的意义,绝对值的意义对每个选项的结论进行逐一判断即可得出结论.答案详解:解:∵f(4)=|4+1|=5,g(﹣2)=|﹣2﹣3|=5,∴f(4)+g(﹣2)=10,∴①的结论不正确;∵f(x)+g(y)=0,∴|x+1|+|y﹣3|=0,∴x+1=0,y﹣3=0,∴x=﹣1,y=3.∴3x+2y=3×(﹣1)+2×3=﹣3+6=3,∴②的结论正确;∵x≤﹣1,∴x+1≤0,x﹣3<0,∴f(x)+g(x)=|x+1|+|x﹣3|=﹣x﹣1+3﹣x=2﹣2x,∴③的结论正确;∵f(x﹣2)+g(x﹣1)=|x﹣2+1|+|x﹣1+3|=|x﹣1|+|x+2|,当﹣2≤x≤1时,|x﹣1|+|x+2|有最小值为3,∴式子f(x﹣2)+g(x﹣1)的最小值是3,∴④的结论正确,综上,正确的是②③④,所以答案是:②③④.7.对于正数x ,规定f(x)=11x ,例如f(4)=114=15,f(14)=11=45,则f(2021)+f(2020)+⋯+f(2)+f(1)+f(12)+⋯+f(12020)+f(12021)的结果是= 40412 .试题分析:计算出f (2),f (12),f (3),f (13)的值,总结出其规律,再求所求的式子的值即可.答案详解:解:∵f (2)=112=13,f (12)=11223,f (3)=113=14,f (13)=11=34,…,∴f (2)+f (12)=13+23=1,f (3)+f (13)=14+34=1,∴f (x )+f (1x)=1,∴f(2021)+f(2020)+⋯+f(2)+f(1)+f(12)+⋯+f(12020)+f(12021)=[f (2021)+f (12021)]+[f (2020)+f (12020)]+…+[f (2)+f (12)]+f (1)=1×(2021﹣1)+f (1)=2020+12=40412.所以答案是:40412.8.规定符号(a ,b )表示a ,b 两个数中较小的一个,规定符号[a ,b ]表示a ,b 两个数中较大的一个.例如:(3,1)=1,[3,1]=3.(1)计算:(−2,3)+[−13,−14]= −94 ;(2)若(m ,m ﹣2)+3[﹣m ,﹣m ﹣1]=﹣4,则m 的值为 1 .试题分析:(1)根据定义得出(﹣2,3),[−13,−34]表示的数,再根据有理数的加法法则计算即可;(2)根据定义可得关于m 的一元一次方程,再解方程即可求出m 的值.答案详解:解:(1)由题意可知:(−2,3)+[−13,−14] =﹣2+(−14)=−94;所以答案是:−94;(2)根据题意得:m ﹣2+3×(﹣m )=﹣4,解得m =1.所以答案是:1.三.数形结合--图形与代数式9.操作与思考:一张边长为a 的正方形桌面,因为实际需要,需将正方形边长增加b ,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:(1)方案中大正方形的边长都是 (a +b ) ,所以面积为 (a +b )2 ;(2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示 (a 2+2ab +b 2) ;(3)你有什么发现,请用数学式子表达 (a +b )2=a 2+2ab +b 2 ;(4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.试题分析:(1)根据图形得出正方形的边长,再利用正方形的面积公式即可得;(2)将四个小四边形的面积相加,再合并同类项即可得;(3)由大正方形面积不变可得等式;(4)利用所得等式将原式变形为(20.18+19.82)2,再进一步计算可得.答案详解:解:(1)方案中大正方形的边长都是(a +b ),所以面积为(a +b )2,所以答案是:(a +b ),(a +b )2;(2)方案中大正方形的面积还可以用四块小四边形的面积和来表示:a 2+ab +ab +b 2=a 2+2ab +b 2,所以答案是:(a 2+2ab +b 2);(3)根据大正方形的面积不变可知(a +b )2=a 2+2ab +b 2,所以答案是:(a +b )2=a 2+2ab +b 2.(4)20.182+2×20.18×19.82+19.822=(20.18+19.82)2=402=1600.10.如图,长方形的长为x ,宽和扇形的半径均为y .(1)求阴影部分的面积s ;(用含x 、y 的代数式表示)(2)当x =6,y =4时,求s 的值(结果保留π).试题分析:(1)四分之一圆的面积加长方形的面积,再减去三角形的面积,就是阴影部分的面积;(2)利用(1)结果,代入数据求值.答案详解:解(1)S =14πy 2+xy −12y (x +y )=π−24y 2+12xy ;(2)∵x =6,y =4,∴S =π−24y 2+12xy ∴S =π−24×42+12×6×4=4π+4;∴S =4π+4.11.如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a ,宽为2a ,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为 36−π8a 2 .(用含a 的代数式表示,将结果化为最简)试题分析:先根据题意表示出游泳池和半圆形休息区面积,再用娱乐场的面积减去这两部分的面积列式、化简即可.答案详解:解:由题意知游泳池的面积为a •32a =32a 2,半圆形休息区面积为12•π•(a 2)2=π8a 2,则绿地面积为2a •3a −32a 2−π8a 2=36−π8a 2,所以答案是:36−π8a 2.12.七张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影部分,设左上角与右下角的阴影部分的面积的差为S =S 1﹣S 2,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的关系式是 a =3b .试题分析:表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式即可.答案详解:解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .所以答案是:a =3b .四.巧求代数式的值--整体思想13.当x=2时,代数式px3+qx+1的值等于2016,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2015B.﹣2015C.2014D.﹣2014试题分析:首先根据当x=2时,代数式px3+qx+1的值等于2016,求出8p+2q的值是多少;然后判断出当x=﹣2时,把代数式px3+qx+1化为﹣8p﹣2q+1,再把求出的8p+2q的值代入﹣8p﹣2q+1,求出算式的值是多少即可.答案详解:解:当x=2时,px3+qx+1=8p+2q+1=2016,∴8p+2q=2015,∴当x=﹣2时,px3+qx+1=﹣8p﹣2q+1=﹣(8p+2q)+1=﹣2015+1=﹣2014即当x=﹣2时,代数式px3+qx+1的值为﹣2014.所以选:D.14.数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015= 32016−12 (结果用幂表示)试题分析:(1)根据题意可以对所求式子变形,从而可以解答本题;(2)根据题意可以对所求式子变形,从而可以解答本题.答案详解:解:(1)设s=1+2+22+23+…+22015①,则2s=2+22+23+…+22015+22016②,②﹣①,得s=22016﹣1,即1+2+22+23+…+22015=22016﹣1;(2)设s=1+3+32+33+…+32015①,则3s=3+32+33+…+32015+32016②,②﹣①,得2s=32016﹣1,∴s=32016−12,所以答案是:32016−12.15.已知多项式4a3﹣2a+5的值是7,则多项式2(﹣a)3﹣(﹣a)+1的值是 0 .试题分析:由已知代数式的值求出2a3﹣a的值,原式变形后代入计算即可求出值.答案详解:解:∵4a3﹣2a+5=7,即2a3﹣a=1,∴原式=﹣(2a3﹣a)+1=﹣1+1=0,所以答案是:016.若a、b互为相反数,且a≠0,c,d互为倒数,|m|=3,求a bm+mcd+ba的值.试题分析:根据已知求出ba=−1,cd=1,m=±3,代入代数式求出即可.答案详解:解:∵a、b互为相反数,c,d互为倒数,|m|=3,∴ba=−1,cd=1,m=±3,①m=3时,原式=0+3﹣1=2;②m=﹣3时,原式=0﹣3﹣1=﹣4,综上所述,a bm+mcd+ba的值为2或﹣4.五.同类项定义的理解---两相同,得方程17.关于m 、n 的单项式2m a n b 与﹣3m 2(a ﹣1)n 的和仍为单项式,则这个和为 ﹣m 2n .试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同),求出n ,m 的值,再代入代数式计算即可.答案详解:解:∵2m a n b 与﹣3m 2(a ﹣1)n 的和仍为单项式,∴2m a n b 与﹣3m 2(a ﹣1)n 是同类项,∴a =2(a ﹣1),b =1,∴a =2a ﹣2,b =1,∴a =2,b =1,∴2m a n b 与﹣3m 2(a ﹣1)n=2m 2n +(﹣3m 2n )=2m 2n ﹣3m 2n=﹣m 2n .所以答案是:﹣m 2n .18.已知单项式﹣3a m +5b 3与16a 2b n−1是同类项,则m n = 81 .试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程n ﹣1=2,m +2=3,求出n ,m 的值,再代入代数式计算即可.答案详解:解:∵﹣3a m +5b 3与16a 2b n ﹣1是同类项,∴m +5=2,n ﹣1=3,∴m =﹣3,n =4,∴m n =(﹣3)4=81.所以答案是:81.六.代数式取值与某项(字母)无关---该项(字母)系数和为019.已知关于x 的代数式2x 2−12bx 2﹣y +6和ax +17x ﹣5y ﹣1的值都与字母x 的取值无关,则a +b = ﹣13 .试题分析:根据已知列出关于a 、b 的方程,求出a 、b 的值,再代入即可得到答案. 答案详解:解:∵关于x 的代数式2x 2−12bx 2﹣y +6和ax +17x ﹣5y ﹣1的值都与字母x 的取值无关,∴2−12b =0,a +17=0,∴a =﹣17,b =4,∴a +b =﹣17+4=﹣13.所以答案是:﹣13.20.已知整式M =x 2+5ax ﹣3x ﹣1,整式M 与整式N 之差是3x 2+4ax ﹣x .(1)求出整式N ;(2)若a 是常数,且2M +N 的值与x 无关,求a 的值.试题分析:(1)根据题意,可得N =(x 2+5ax ﹣3x ﹣1)﹣(3x 2+4ax ﹣x ),去括号合并即可;(2)把M 与N 代入2M +N ,去括号合并得到最简结果,由结果与x 值无关,求出a 的值即可. 答案详解:(1)N =(x 2+5ax ﹣3x ﹣1)﹣(3x 2+4ax ﹣x )=x 2+5ax ﹣3x ﹣1﹣3x 2﹣4ax +x=﹣2x 2+ax ﹣2x ﹣1;(2)∵M =x 2+5ax ﹣3x ﹣1,N =﹣2x 2+ax ﹣2x ﹣1,∴2M +N =2(x 2+5ax ﹣3x ﹣1)+(﹣2x 2+ax ﹣2x ﹣1)=2x 2+10ax ﹣6x ﹣2﹣2x 2+ax ﹣2x ﹣1=(11a ﹣8)x ﹣3,∵结果与x 值无关,∴11a ﹣8=0,解得:a =811.七..(超级难点)看错类--将错就错来改错21.有这样一道计算题:3x 2y +[2x 2y ﹣(5x 2y 2﹣2y 2)]﹣5(x 2y +y 2﹣x 2y 2)的值,其中x =12,y =﹣1.小明同学把“x =12”错看成“x =−12”,但计算结果仍正确;小华同学把“y =﹣1”错看成“y =1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.试题分析:原式去括号合并得到最简结果,即可作出判断.答案详解:解:原式=3x 2y +2x 2y ﹣5x 2y 2+2y 2﹣5x 2y ﹣5y 2+5x 2y 2=﹣3y 2,结果不含x ,且结果为y 2倍数,则小明与小华错看x 与y ,结果也是正确的.22.某同学解方程5y ﹣1=口y +4时,把“口”处的系数看错了,解得y =﹣5,他把“口”处的系数看成了( )A .5B .﹣5C .6D .﹣6试题分析:设口为a ,把y =﹣5代入方程,得到关于a 的一元一次方程,解方程即可. 答案详解:解:设口为a ,把y =﹣5代入方程得:5×(﹣5)﹣1=﹣5a +4,∴﹣5a +4=﹣26,∴﹣5a =﹣30,∴a =6,所以选:C .23.由于看错了符号,某学生把一个代数式减去﹣3x 2+3y 2+4z 2误认为加上﹣3x 2+3y 2+4z 2,得出答案2x 2﹣3y 2﹣z 2,你能求出正确的答案吗?(请写出过程)试题分析:本题是整式的加减综合运用,首先利用和减去一个加数,求得原整式,再利用减法求解即可.答案详解:解:设原来的整式为A ,则A +(﹣3x 2+3y 2+4z 2)=2x 2﹣3y 2﹣z 2∴A =5x 2﹣6y 2﹣5z 2∴A ﹣(﹣3x 2+3y 2+4z 2)=5x 2﹣6y 2﹣5z 2﹣(﹣3x 2+3y 2+4z 2)=5x 2﹣6y 2﹣5z 2+3x 2﹣3y 2﹣4z 2=8x 2﹣9y 2﹣9z 2.∴原题的正确答案为8x 2﹣9y 2﹣9z 2.24.有这样一道计算题:“计算(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =12,y =﹣1”,甲同学把x =12错看成x =−12,但计算结果仍正确,你说是怎么一回事?试题分析:先对原代数式化简,结果中不含x 项,故计算结果与x 的取值无关,故甲同学把x =12错看成x =−12,但计算结果仍正确. 答案详解:解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,∵结果中不含x 项,∴与x 的取值无关.∴甲同学把x=12错看成x=−12,但计算结果仍正确.25.小刚在做“计算(5a2﹣3b2)﹣3(a2﹣b2)+(b2﹣a2)的值,其中a=2,b=﹣1”这道题时,把a=2,b=﹣1错看成“a=﹣2,b=1”,但他计算的结果也是正确的,请你说明这是怎么回事.试题分析:先去括号,再合并同类项,由结果发现无论“a=2,b=﹣1”还是“a=﹣2,b=1”,计算的结果总相等.答案详解:解:原式=5a2﹣3b2﹣3a2+3b2+b2﹣a2=a2+b2,无论a取2还是﹣2,b取﹣1还是1,a2、b2的取值相等,所以无论“a=2,b=﹣1”还是“a=﹣2,b=1”,计算的结果总相等.26.李兵同学在计算A﹣(ab+2bc﹣4ac)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc,请你帮助李兵同学求出这道题的正确结果.试题分析:先根据题意求出A的表达式,再列出整式相加减的式子进行计算即可.答案详解:解:∵由题意得,A=(3ab﹣2ac+5bc)﹣(ab+2bc﹣4ac)=3ab﹣2ac+5bc﹣ab﹣2bc+4ac=2ab+2ac+3bc.∴A﹣(ab+2bc﹣4ac)=(2ab+2ac+3bc)﹣(ab+2bc﹣4ac)=2ab+2ac+3bc﹣ab﹣2bc+4ac=ab+6ac+bc.。
专题14 代数式规律类:图形变化类1.探索规律,观察图中由※组成的图案和算式,解答问题:(1)请猜想1357919+++++⋯+= 100 ; (2)请猜想13579(21)n +++++⋯+-= .【解答】解:(1)由21342+==, 213593++==, 21357164+++==, 213579255++++==,⋯,1357919+++++⋯+共有10个数,2135791910100∴+++++⋯+==.故答案为:100;(2)由(1)得,213579(21)n n +++++⋯+-=. 故答案为:2n .2.如图所示,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分⑧是部分②面积的一半,依此类推⋯ (1)根据图形填写下表;(3)猜想:①11112482n +++⋯+= ; ②当10n =时,请用两种方法计算:1011112482+++⋯+的值(结果用分数表示).【解答】解:(1)观察图形可知:部分①的面积为:12, 部分②的面积为21124=, 部分③的面积为31128=, 故答案为:12,14,18; (2)阴影部分的面积是611264=; (3)①由(1)知:11111124822n n +++⋯+=-, 故答案为:112n-; ②当10n =时, 方法一:由①知:1111248++10112-;方法二:原式91010111111111122448222=-+-+-+⋯+-=-. 3.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2019颗黑色棋子?说明理由. 【解答】解:(1)观察图形发现: 第一个图形有236⨯=个棋子, 第二个图形有339⨯=个棋子, 第三个图形有4312⨯=个棋子,⋯第n 个图形有(33)n +个棋子;所以第5个图形有35318⨯+=个棋子; (2)当332019n +=时, 解得:672n =,所以第672个图形有2019颗黑色棋子.4.《庄子天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代入在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题. 【规律探索】(1)如图1所示的是边长为1的正方形,将它剪掉一半,则1112S =-=阴影 12; 如图2,在图1的基础上,将阴影部分再裁剪掉一半,则22111()22S =--=阴影 ; 同种操作,如图3,2331111()()222S =---=阴影 ; 如图4,234411111()()()2222S =----=阴影 ; ⋯⋯若同种地操作n 次,则2311111()()()2222n n S =----⋯-=阴影 ;【规律归纳】 (2)直接写出2361112222+++⋯+的化简结果: ; 【规律应用】 (3)直接写出算式23611112222+++⋯+的值: .【解答】解:(1)因为11111222-== 221111111()222442--=-==23311111111()()2224882---=-== 23441111111()()()2222216----== 23111111()()()22222n n ----⋯-= 故答案为12、14、18、116、12n ; (2)因为2366111111()22222-+++⋯+=所以236611111122222+++⋯+=- 故答案为6112-; (3)23661111116311222226464+++⋯+=-=-=. 故答案为6364. 5.用火柴棒按如图的方式搭图形:(1)图①有 4 根火柴棒;图②有 根火柴棒;图③有 根火柴棒. (2)按上面的方法继续下去,第个图形中有多少根火柴棒?【解答】解:(1)观察图形可知:图①有4根火柴棒;图②有7根火柴棒;图③有10根火柴棒.(2)观察图形发现:第一个图形需要4根火柴,多一个正方形,多用3根火柴,则第n 个图形中,需要火柴43(1)31n n +-=+. 当100n =时,313100301n +=⨯=.6.某数学兴趣小组再用黑色围棋进行摆放图案的游戏中,小雨同学现已摆放了如下的图案,请根据图中的信息完成下列的问题.(1)填写下表:个图形中棋子为颗围棋;(2)小雨同学如果继续摆放下去,那么第n个图案就要用颗围棋;(3)如果小雨同学手上刚好有90颗围棋子,那么他按照这种规律从第①个图案摆放下去,是否可以摆放成完整的图案后刚好90颗围棋子一颗不剩?如果可以,那么刚好摆放完成几个完整的图案?如果不行,那么最多可以摆放多少个完整图案,还剩余几颗围棋子?(只答结果,不说明理由)【解答】解:根据图形的规律可知:第①个图案中用了123+=颗围棋;第②个图案中用了1236++=颗围棋;第③个图案中用了123410+++=颗围棋;⋯;第n个图案中用了(1)(2)123(1)2n nn+++++⋯++=颗围棋.故答案为:(1)在第②个图案中用了6颗围棋,在第③个图案中用了10颗围棋,在第50个图案中,用了1326颗围棋,(2)小雨同学如果继续摆放下去,那么第n个图案就要用(1)(2)2n n++颗围棋.(3)不可以,刚好摆放完成6个完整图案,还剩下7个棋子.7.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:(1)填写下表:n个图形的棋子数为.(3)你知道第153个图形需要几颗棋子吗?【解答】解:第一个图需棋子314+=;第二个图需棋子3217⨯+=;第三个图需棋子33110⨯+=;⋯第n 个图需棋子31n +枚. (1)填表如下:n(3)当153n =时,31531460⨯+=;8.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式; (2)通过猜想写出与第n 个点阵相对应的等式.【解答】解:(1)④:213574+++=;⑤2135795++++=;(2)21357(21)(1n n n ++++⋯+-=的整数). 9.下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有 13 个,第六个图形共有个;(2)第n 个图形中有个;(3)根据(2)中的结论,第几个图形中有2014个?【解答】解:(1)观察发现,第1个图形五角星的个数是,134+=, 第2个图形五角星的个数是,1327+⨯=, 第3个图形五角星的个数是,13310+⨯=, 第4个图形五角星的个数是,13413+⨯=,⋯第6个图形五角星的个数是,13619+⨯=, (2)第n 个图形五角星的个数是,1331n n +⨯=+,n+=(3)312014n=.解得671第671个图形中有2014个★.n+.故答案为:13;19;3110.一张方桌周围可坐8人,试探索把桌子按下图排放时周围可坐人数的变化规律.(1)当排3张方桌时,周围可坐16人;(2)当排n张方桌时,周围可坐人;(3)现有52人坐这种排列的桌子,每人只坐一个座位,至少要排张桌子.+⨯=(人);【解答】解:(1)根据分析得:有3桌时可坐的人数为:82416(2)根据分析得:有n桌时可坐的人数为:84(1)44+⨯-=+(人);n nn+,(3)由以上数据可得规律:4452x,解得:12∴现有52人坐这种排列的桌子,每人只坐一个座位,至少要排12张桌子.n+,12.故答案为:16,4411(1)按图示规律填写下表:(3)按照这种方式摆下去,1000个棋子能摆多少个正方形?【解答】解:(1)图(1)棋子个数为4;⨯=;图(2)棋子个数为248⨯=;图(3)棋子个数为3412图(4)棋子个数为4416⨯=; 图(5)棋子个数为5420⨯=; 图(6)棋子个数为6424⨯=;⋯第n 个正方形需要棋子数为4n ;(2)当10n =时,440n =; 故第10个正方形需要40个棋子;(3)当41000n =时,250n =, 故1000个棋子能摆250个正方形.12.为庆祝“六一”儿童节,某幼儿园举行用火柴棒按图所示的规律摆“金鱼”的比赛.(1)小明只搭了4条金鱼,则他用了 26 根火柴棒;(2)小颖把老师分给她的50根火柴棒全部用完,则她搭了多少条金鱼?【解答】解:(1)①中火柴棒有(26)+根,②中有(262)+⨯根,③中有(263)+⨯根,∴按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为(26)n +根,当4n =时,需要金鱼(264)+⨯=根; (2)根据题意得到:2650n += 解得:8n =,所以小颖共搭了8条金鱼.13.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n 次时,手张共有S 张纸片.根上述情况:(1)当小王撕到第2次时,手中共有几张纸片?第3次呢? (2)用含n 的代数式表示S ;(3)当小王撕到第几次时,他手中共有70张小纸片?【解答】解:(1)从图中可以看出,当小王撕了1次时,手中有4张纸311=⨯+; 当小王撕了2次时,手中有7张纸321=⨯+;⋯可以发现:小王撕了几次后,他手中纸的张数等于3与几的乘积加1. 所以,当小王撕了3次时,手中有33110⨯+=张纸. 答:当小王撕了3次时,手中有10张纸;(2)由题目中的“每次都将其中-片撕成更小的四片”, 可知:小王每撕一次,比上一次多增加3张小纸片. 43(1)31s n n ∴=+-=+;(3)当70s =时,有3170n +=,23n =.即小王撕纸23次.14.用火柴棒按图中的方式搭图形 .(1) 按图示规律填空:个这样的三角形需要 根火柴棒, 搭出n 个这样的三角形需要 根火柴棒 . 【解答】解: 搭一个三角形需 3 根火柴,搭 2 个三角形中间少用 1 根, 需要 5 根火柴棒, 搭 3 个三角形中间少用 2 根, 需要 7 根火柴棒, 搭 4 个三角形中间少用 3 根, 需要 9 根火柴棒, 搭 5 个三角形中间少用 5 根, 需要 13 根火柴棒;⋯搭n 个三角形中间少用(1)n -根, 需要[3(1)]21n n n --=+根火柴棒; (1) 填表如下:=根火柴121n+根火柴棒.棒,搭出n个这样的三角形需要21n+.故答案为:7 ,9 ;21 ,2115.如图,用白萝卜等材料做一个正方体,并把正方体表面涂上颜色.(1)如图①,正方体有8个顶点;有条棱;有个面;(2)如图②,把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有个,两面涂色的有个;一面涂色的有个;各面都没有涂色的有个.(3)猜想:如果把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中三面被涂成红色有个;两面被涂成红色有个;一面被涂成红色有有个;各面都没有涂色的有个.【解答】解:(1)如图①,正方体有8个顶点;有12条棱;有6个面;(2)如图②,把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;一面涂色的有6个;各面都没有涂色的有1个.(3)猜想:如果把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中三面被涂成红色有8个;两面被涂成红色有24个;一面被涂成红色有有24个;各面都没有涂色的有8个.故答案为:(1)8,12,6;(2)8,12,6,1;(3)8,24,24,8.16.如图是一个形如正六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,⋯,依此类推.(1)填写下表:n;n2)(3)写出n 层的正六边形点阵的总点数(2)n ;(4)如果点阵中所有层的总点数为331,请求出它共有几层?【解答】解:(1)如表:(2)第一层上的点数为1; 第二层上的点数为616=⨯; 第三层上的点数为6626+=⨯; 第四层上的点数为66636++=⨯;⋯;第n 层上的点数为(1)666n n -⨯=-.(3)第二层开始,每增加一层就增加六个点,即n 层六边形点阵的总点数为, 1162636(1)n +⨯+⨯+⨯+⋯+-⨯, 16[1234(1)]n =+++++⋯+-,(1)162n n -=+⨯, 13(1)n n =+-.第n 层六边形的点阵的总点数为:213(1)331n n n n +-=-+.(4)令2331331n n -+= 解得:10n =-(舍去)或11n = 答:共有11层. 17.观察图回答问题:图中的圆被线段隔开分成了四层,则第一层有1个圆,第二层有3个圆,第三层有5个圆⋯, (1)如继续画下去,第五层有 9 个圆,第n 层应画 个圆; (2)某一层上有99个圆,则这是在第 层;(3)前三层共有个圆;前十层共有个圆;(4)请推算,这种图前n层共有多少个圆?【解答】解:根据题意得:(1)第三层有5个圆,第四层有7个圆;∴层应该9个圆,5每一层都比其前一层多2个圆,n-个圆;∴第n层有(21)n-=(2)2199n=,解得:50故50层有99个圆;(3)前三层共有9个圆;前十层共有100个圆;(4)2++==;2+++==;135716413593+==;21342则n层的圆的个数和是2+++⋯+-=;n n1351n-;(2)50;(3)9,100.故答案为:(1)9,2118.火柴棒按图中所示的方法搭图形.(1)填写下表n【解答】解:(1)3、5、7、9、11;(2)由图形得到:+=根;第一个图形要火柴123++=根;第二个图形要火柴1225第三个图形要火柴12227+++=根;⋯故第n 个图形要火柴122212n +++⋯+=+根. 19.用牙签按下图方式搭图. (1)根据上面的图形,填写下表:n【解答】解:(1)观察图形得: 图①牙签根数:331=⨯, 图②牙签根数:93(12)=⨯+, 图③牙签根数:183(123)=⨯++, 所以,图④牙签根数:3(1234)30⨯+++=, 图⑤牙签根数:3(12345)45⨯++++=, 故答案为:3,9,18,30,45.(2)根据(1)得到的规律,第n 个图形的牙签数英表示为:133(12345)3(1)(1)22n n n n n ⨯+++++⋯+=⨯+=+.所以第n 个图形有3(1)2n n +根牙签.20.按图所示,用火柴棒摆图形.(1)填写下表(2)要拼出有n (1)n >个三角形的图形,需要多少根火柴棒? (3)要拼出有40个三角形的图形,分别需要多少根火柴棒? 【解答】解:(1)3、5、7、9、11;(2)由图形得到:第一个图形要火柴123+=根; 第一个图形要火柴1225++=根; 第一个图形要火柴12227+++=根;⋯故第n 个图形要火柴122212n +++⋯+=+根. (3)当40n =时,12124081n +=+⨯=,故要拼出有40个三角形的图形,需要81根火柴棒.。
一、初一数学代数式解答题压轴题精选(难)1.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。
②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。
2.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍(2)解:设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【解析】【分析】(1)算出十字框中的五个数的和,即可发现是16的5倍;(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10 ,利用整式加法法则即可算出十字框中的五个数的和;(3)假设能够框出满足条件的五个数,设中间的数为x ,根据(2)计算的结果及这五个数的和是2016,,列出方程,求解如解是整数即可,不是整数即不可。
一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。
(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,3.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.4.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:① 买一件夹克送一件T恤;② 夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x >30).(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【答案】(1)3000;;2400;(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。
人教版七年级上册《3.1列代数式表示数量关系》2024年同步练习卷(1)一、选择题:本题共3小题,每小题3分,共9分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A. B. C. D.2.在下列表达式中,不能表示代数式“6a”意义的是()A.6个a相乘B.a的6倍C.6个a相加D.6的a倍3.在式子,,,,中,符合代数式书写要求的有()A.1个B.2个C.3个D.4个二、填空题:本题共4小题,每小题3分,共12分。
4.列式表示:产量由akg增长,就达到______5.苹果每千克a元,梨每千克b元,则整式表示购买______。
6.购买单价为a元的牛奶3盒,单价为b元的面包4个,共需______元;用含a,b的代数式表示全校学生总数是x,其中女生人数占总数的,则女生人数是______,男生人数是______;巧克力糖的单价为每千克a元,奶糖的单价为每千克b元,将m千克巧克力糖和n千克奶糖混合,这样得到的混合糖的平均单价是每千克______元.7.在下列各题的横线上填上适当的代数式:三个连续整数,中间一个数是n,其余两个数分别是______,______;三个连续奇数,中间一个是,其余两个数分别是______,______;一个两位数的个位数字是a,十位数字是b,用代数式表示这个两位数是______;一个三位数的百位数字是a,十位数字是b,个位数字是c,用代数式表示这个三位数是______.三、解答题:本题共5小题,共40分。
解答应写出文字说明,证明过程或演算步骤。
8.本小题8分下列各式哪些是代数式?哪些不是代数式?;;;;;米;9.本小题8分下列代数式可以表示什么?;10.本小题8分在某地,人们发现在一定温度下,某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀叫的次数n除以7,然后再加上3,就近似地得到该地当时的温度用代数式表示该地当时的温度;当蟋蟀叫的次数为是100时,该地当时的温度约为多少?精确到个位11.本小题8分体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元,说明代数式表示的意义.12.本小题8分某超市出售一种商品,其原价为a元,现有三种调价方案:方案一,先提价,再降价;方案二,先提价,再降价;方案三,先降价,再提价用这三种方案调价,结果是否一样?在方案三中,若先降价,要想恢复原价,需提价百分之几?列方程解决答案和解析1.【答案】A【解析】【分析】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.由总价=单价数量,可用含a,b的代数式表示出需付金额,此题得解.【解答】解:依题意,需付元.故选:2.【答案】A【解析】解:代数式“6a”意义是6与a相乘,故B、C、D正确;A、6个a相乘表示为:,故命题错误.故选代数式“6a”意义是6与a相乘,根据乘法的意义即可判断.本题考查了代数式的意义,理解乘法的意义是关键.3.【答案】C【解析】解:应写为,应写为,符合代数式书写要求的有三个,故选:代数式是由运算符号加、减、乘、除、乘方、开方把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.本题考查了代数式的相关知识,解题关键在于熟记该定义.4.【答案】【解析】解:故答案为:根据产量=原产量+增长的产量,列式即可.本题考查了列代数式,理解题意,找出基本数量关系是解决问题的关键.5.【答案】2千克苹果和1千克梨的钱数【解析】解:苹果每千克a元,表示2千克苹果的钱数,则整式表示购买2千克苹果和1千克梨的钱数,故答案为:2千克苹果和1千克梨的钱数。
一、初一数学代数式解答题压轴题精选(难)1.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.2.阅读:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m,k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m,k的值.(2)若代数式x2﹣6x+a可化为(x﹣b)2﹣1的形式,求b﹣a的值.【答案】(1)解:∵ x2+6x+15=x2+6x+32+6=(x+3)2+6,∴m=3.k=6;(2)解:∵x2﹣6x+a=x2﹣6x+9﹣9+a=(x﹣3)2+a﹣9=(x﹣b)2﹣1,∴b=3,a﹣9=﹣1,即a=8,b=3,∴b﹣a=﹣5.【解析】【分析】(1)根据完全平方公式的结构,按照要求x2+6x+15=x2+6x+32+6=(x+3)2+6,可知m=3.k=6,从而得出答案.(2)根据完全平方公式的结构,按照要求x2-6x+a=x2-6x+9-9+a=(x-3)2+a-9=(x-b)2-1,即可知b=3,a-9=-1,然后将求得的a、b的值代入b-a,并求值即可.注意完全平方公式:(a±b)2=a2±2ab+b23.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。
3.3代数式的值分层练习考察题型一求代数式的值1.当3x =-时,代数式25x +的值是()A .7-B .2-C .1-D .11【详解】解:当3x =-时,252(3)51x +=⨯-+=-.故本题选:C .2.按照如图所示的程序计算,若开始输入的值为4-,则最后输出的结果是()A .8-B .23-C .68-D .32-【详解】解:将4x =-代入31x +中得1120->-,将11x =-代入31x +中得3220-<-,故输出的结果是32-.故本题选:D .3.已知a 、b 互为相反数,c 、d 互为倒数,则代数式2()3a b cd +-的值为()A .2B .3-C .1-D .0【详解】解:已知a 、b 互为相反数,0a b ∴+=,已知c 、d 互为倒数,1cd ∴=,把0a b +=,1cd =代入2()3a b cd +-得:20313⨯-⨯=-.故本题选:B .4.若a 、b 互为相反数,c 、d 互为倒数,||3m =,求2354a bm cd m m++-+的值.【详解】解:a 、b 互为相反数,c 、d 互为倒数,||3m =,5.若4162b a ==,求代数式2a b +的值.【详解】解:因为441622b a ===,所以2a =,4b =,则222410a b +=+⨯=.6.若()2120a b ++-=,试求()()a b a b -⨯+与22a b -的值.7.若关于x 的多项式4(3)b a x x x ab --+-为二次三项式,则当1x =-时,这个二次三项式的值是()A .10-B .9C .8-D .7【详解】解:x 的多项式4(3)b a x x x ab --+-为二次三项式,30a ∴-=,2b =,3a ∴=,2b =,∴这个二次三项式为26x x -+-.当1x =-时,原式2(1)(1)6=--+--116=---8=-.故本题选:C .8.我校七年级(3)班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米).(1)此长方体包装盒的体积为立方毫米(用含x ,y 的式子表示).(2)若内部粘贴角料的面积占长方体表面纸板面积的110,则当30x=,52y=时,制作这样一个长方体共需要纸板多少平方毫米?9.盱眙县防疫部门配送新冠疫情物资,甲、乙两仓库分别有防疫物资30箱和50箱,A、B两地分别需要防疫物资20箱和60箱.已知从甲、乙仓库到A、B两地的运价如表:到A地到B地甲仓库每箱15元每箱12元乙仓库每箱10元每箱9元(1)若从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为箱,从乙仓库将防疫物资运到B地的运输费用为元;(2)求把全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(用含x的代数式表示并化简);(3)如果从甲仓库运到A地的防疫物资为10箱时,那么总运输费为多少元?【详解】解:(1) 甲仓库有防疫物资30箱,从甲仓库运到A 地的防疫物资为x 箱,∴从甲仓库运到B 地的防疫物资为(30)x -箱;B 地需要防疫物资60箱,从甲仓库运到B 地的防疫物资为(30)x -箱,∴从乙仓库运到B 地的防疫物资为:6030(30)x x -+=+箱,∴从乙仓库将防疫物资运到B 地的运输费用为:9(30)(2709)x x ⨯+=+元,故本题答案为:(30)x -,(2709)x +;(2)总运费:1512(30)10(20)9(30)(2830)x x x x x +-+-++=+元,∴全部防疫物资从甲、乙两仓库运到A 、B 两地的总运输费(2830)x +元;(3)当10x =时,2830210830850x +=⨯+=,∴总运输费为850元.10.某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价-每套西服的进价).(1)按原销售价销售,每天可获利润元;(2)若每套降低10元销售,每天可获利润元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式,若每套降低10x 元(04x ,x 为正整数)请列出每天所获利润的代数式;(4)计算2x =和3x =时,该商场每天获利润多少元?(5)根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案?【详解】解:根据题意得: 依据利润=每件的获利⨯件数,∴(1)(290250)2008000-⨯=(元),(2)(280250)(200100)9000-⨯+=(元);(3)(4010)(200100)x x -+;(4)当2x =时,利润为(40102)(2001002)8000-⨯+⨯=(元),当3x =时,利润为(40103)(2001003)5000-⨯+⨯=(元);(5)由题意可知:04x ,x 为正整数,当0x =时,上式(40100)(2001000)8000=-⨯+⨯=(元),当1x =时,上式(40101)(2001001)9000=-⨯+⨯=(元),当4x =时,上式(40104)(2001004)0=-⨯+⨯=(元),所以每套降低10元销售时获利最多,作为商场的经理应以每套280元的价格销售.考察题型二整体法求代数式的值1.若代数式23x y -=,则代数式22(2)421x y y x -+-+的值为()A .7B .13C .19D .25【详解】解:23x y -= ,22(2)421x y y x ∴-+-+22(2)2(2)1x y x y =---+223231=⨯-⨯+1861=-+13=.故本题选:B .2.若2320a a -+=,则2162(a a +-=)A .5B .5-C .3D .3-【详解】解:由题意知:232a a -=-,221622(3)12(2)15a a a a ∴+-=--+=-⨯-+=,故本题选:A .3.已知多项式3425a a -+的值是7,则多项式32()()1a a ---+的值是.【详解】解:34257a a -+= ,即321a a -=,∴原式3(2)1110a a =--+=-+=.故本题答案为:0.4.当1x =时,代数式31px qx ++的值为2023,则当1x =-时,代数式31px qx ++的值为()A .2019-B .2021-C .2022D .2023【详解】解:当1x =时,代数式31px qx ++的值为2023,31112023p q ∴⋅+⨯+=12023p q ∴++=,2022p q ∴+=,∴当1x =-时,代数式31px qx ++的值3(1)(1)1p q =⋅-+⋅-+1p q =--+()1p q =-++20221=-+2021=-.故本题选:B .5.已知22347217x xy y m -+=-,225612x xy y m ++=+,则式子2215722x xy y --的值为()A .41-B .412-C .72-D .72【详解】解:第一个等式减去第二个等式的2倍得:221441x xy y --=-,∴2215417222x xy y --=-.故本题选:B .1.如图所示的运算程序中,若开始输入x 的值为3,则第2023次输出的结果是()A .4-B .2-C .3-D .6-【详解】解:输入3x =,3 是奇数,∴输出352-=-;输入2x =-,2- 是偶数,∴输出1212-⨯=-;输入1x =-,1- 是奇数,2.若55432543210(21)x a x a x a x a x a x a -=+++++,试求:135a a a ++.【详解】解:当1x =时,5543210(21)a a a a a a -=+++++,即0123451a a a a a a +++++=①;当1x =-时,5543210(21)a a a a a a --=-+-+-+,即012345243a a a a a a -+-+-=-②;由①-②得1352()244a a a ++=,所以135122a a a ++=.。
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。
(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.3.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.4.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
5.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.注:水费按月结算.则应收水费________元;(2)若该户居民3月份用水a m3(其中6<a<10),则应收水费多少元?(用含a的整式表示并化简)(3)若该户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元?(用含x的整式表示并化简)【答案】(1)8(2)解:根据题意得,62+4(a-6)=12+4a-24=4a-12(元)答:应收水费(4a-12)元.(3)解:由5月份用水量超过了4月份,可知,4月份用水量少于7.5m3,①当4月份用水量少于5m3时,则5月份用水量超过10m3,该户居民4,5月份共交水费为:2x+[62+44+8(15-x-10)]=2x+(12+16+40-8x)=-6x+68(元);②当4月份用水量不低于5m3,但不超过6m3时,则5月份用水量不少于9m3,但不超过10m3,该户居民4,5月份共交水费为:2x+[62+4(15-x-6)]=2x+(12+36-4x)=-2x+48(元);③当4月份用水量超过6m3,但少于7.5m3时,则5月份用水量超过7.5m3但少于9m3,该户居民4,5月份共交水费为:[62+4(x-6)]+[62+4(15-x-6)]=(12+4x-24)+(12+36-4x)=36.答:该户居民4,5月份共交水费为(-6x+68)元或(-2x+48)元或36元.【解析】【解答】(1)根据题意得,24=8(元)【分析】(1)根据表格中“不超出6 m3的部分”的收费标准,求出水费即可;(2)根据a 的范围,求出水费即可;(3)由5月份用水量超过了4月份,可知,4月份用水量少于7.5m3,进而再细分出三种情况:①当4月份用水量少于5m3时,②当4月份用水量不低于5m3,但不超过6m3时,③当4月份用水量超过6m3,但少于7.5m3时,分别求出水费即可.6.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=________,b=________,c=________.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.【答案】(1)﹣24;﹣10;10(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,∴t=2s或5s时,P到A、B、C的距离和为40个单位.(3)解:当点P追上T的时间t1= .当Q追上T的时间t2= .当Q追上P的时间t3= =20,∴当<t<时,位置如图,∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,故答案为﹣24,﹣10,10.【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的性质即可解决问题.7.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.【答案】(1)(50x+7000);(45x+7200)(2)解:当时方案①:方案②:答:此时按方案①购买较为合算.(3)解:用方案①买20套西装送20条领带,再用方案②买10条领带.总价钱为所以可以【解析】【解答】解:(1)按方案①购买,需付款:400×20+(x-20)×50= 元;按方案②购买,需付款:400×90%×20+50×90%×x= (元)【分析】(1)根据题意分别列出代数式,并整理;(2)把x=30代入(1)中两个代数式,计算结果得结论;(3)抓住省钱想方案.两种方案都选用.8.某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x 不超过2000时,甲厂的收费为________元,乙厂的收费为________元;(2)若x 超过2000时,甲厂的收费为________元,乙厂的收费为________元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?【答案】(1)0.5x+1000;1.5x(2)1000+0.5x;0.25x+2500(3)解:当x=8000时,甲厂费用为1000+0.5×8000=5000元,乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;(4)解:当x⩽2000时,1000+0.5x=1.5x,解得:x=1000;当x>2000时,1000+0.5x=0.25x+2500,解得:x=6000;答:印刷1000或6000本证书时,甲乙两厂收费相同.【解析】【解答】解:(1)若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元,故答案为:0.5x+1000,1.5x;(2)若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元,故答案为:1000+0.5x, 0.25x+2500;【分析】(1)根据印刷费用=数量×单价可分别求得;(2)根据甲厂印刷费用=数量×单价、乙厂印刷费用=2000×1.5+超出部分的费用可得;(3)分别计算出x=8000时,甲、乙两厂的费用即可得;(4)分x≤2000和x>2000分别计算可得.9.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1)如图(1),若AD=7,AB=8,求与的值;(2)如图(1),若长方形ABCD的面积为35,其中阴影部分的面积为20,求长方形ABCD的周长;(3)如图(2),若AD的长度为5,AB的长度为 .①当 =________, =________时,,的值有无数组;②当 ________, ________时,,的值不存在.【答案】(1)解:由图得,解得:(2)解:由图可得:5个小长方形面积=长方形ABCD的面积-阴影部分的面积,∴,∴ab=3,∵阴影部分的面积为20,∴,∴,∴a+b= ,方形ABCD的周长=2[(2a+b)+(2b+a)]=6(a+b)=6×4=24(3)4;10;4;≠10.【解析】【解答】解:(3)由图(2)得:,由①得a=5-2b,③将③代入②得2(5-2b)+mb=n,∴(m-4)b=n-10,∴当时,a,b的解有无数组;即m=4,n=10时,a,b的值有无数组;当时,方程组无解,即m=4,n≠10时,a,b的值不存在.故答案为:①m=4,n=10;②m=4,n≠10【分析】(1)由长方形的性质和图中的信息可得关于a、b的方程组,从而求解;(2)由图和已知条件可列方程组:,解方程组即可求解;(3)由题意联立解方程组,当两直线重合时,有无数组解;当两直线平行时,无解。