人教版八年级数学上14.1整式的乘法教案
- 格式:doc
- 大小:2.26 MB
- 文档页数:21
《整式的乘法》教案【教学目标】1.知识与技能(1)理解单项式与单项式相乘的法则,会进行单项式与单项式相乘的运算;(2)理解单项式与多项式相乘的法则,并会进行单项式与多项式相乘的运算;(3)理解多项式与多项式相乘的法则,熟练运用多项式与多项式乘法法则进行计算。
2.过程与方法经历整数的乘法法则的形成,体会类比数学思想的重要作用。
3.情感态度和价值观养学生的自学能力,体验成功的喜悦,激发学习的兴趣。
【教学重点】单项式与单项式,单项式与多项式,多项式与多项式相乘的法则及其应用。
【教学难点】灵活进行整式的乘法运算。
【教学方法】自学与小组合作学习相结合的方法【课前准备】教学课件。
【课时安排】2课时【教学过程】一、复习导入课件展示复习题【过渡】上节课我们学习了几种不同的运算法则,现在我们来复习一下吧。
学生回答问题【过渡】大家对之前的知识的掌握还是不错的,今天我们就继续来学习新的关于整数的乘法的运算法则吧。
二、新课教学1.单项式乘以单项式【过渡】我们首先来看一下课本的问题二,大家能列出计算式吗?(学生回答)【过渡】计算式非常简单,那么现在大家思考,如何计算这个式子呢?(3×105)×(5×102)=(3×5)×(105×102)=1.5×108通过计算,我们知道,在计算过程中,我们运用了乘法交换律、结合律以及同底数幂的乘法运算法则。
如果我们将数字都换成字母,如ac5 ·bc2又该如何计算呢?同样的,大家运用乘法交换律、结合律以及同底数幂的乘法运算法则计算一下吧。
(学生回答计算过程)【过渡】从计算中,我们可以看到这两个单项式的相对简单的,如果我们将其变复杂,还能按照这样的方法进行计算吗?计算4a2x5•(-3a3bx2)【过渡】通过计算,大家能总结出单项式与单项式的运算法则吗?单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
人教版八年级上册14.1.4整式的乘法课程设计一、教学背景整式是代数学中的重点内容之一,在初中阶段就应该深入学习,为高中和大学的代数学习打下坚实的基础。
本次教学针对八年级学生的整式乘法知识掌握程度进行设计,旨在通过课前的预习、教师授课、课堂互动等多种形式,让学生对整式的乘法有更深入、更全面的理解。
二、教学目标1.掌握整式乘法的基本概念和方法;2.能够灵活运用整式乘法解决实际问题;3.培养学生的数学思维能力和解决问题的能力。
三、教学步骤步骤一:引入1.引出整式的乘法对于解决代数问题的重要性,引导学生思考整式乘法的应用;2.通过对相关专业名词的讲解,让学生理解关键概念,对下一步的学习打下基础。
步骤二:概念解释和示例讲解1.教师通过板书的形式,讲解整式的乘法基本规则和方法;2.通过样例的解析,让学生理解和掌握整式乘法解题的基本方法。
步骤三:练习1.分钟内让学生自行完成几道简单的乘法练习题;2.教师用保证答案正确的形式对学生成果进行纠正和点评。
步骤四:课堂互动1.让学生在小组内尝试解决难度较大的综合练习题;2.通过小组之间的竞争和互动,提高学生的整合应用能力。
步骤五:课后作业教师在课后留下一些练习题,让学生进一步巩固所学的知识点。
四、教学重点与难点教学重点1.整式的基本概念和基本运算法则;2.整式乘法的基本方法;3.整式乘法解决代数问题的实际应用。
教学难点整式乘法的综合应用能力。
五、教学策略1.以问题为导向,引导学生进行思考和讨论;2.引导学生自主探究和解决问题的能力;3.营造轻松愉快、积极进取的学习氛围,激发学生的学习热情。
六、教学效果评估1.以课堂作业和课后作业为参考,分析学生的学习情况;2.以学生的思维能力和解决问题的能力为重点,评估教学效果。
教学评估的结果将作为下一步教学的参考依据。
人教版数学八年级上册教学设计《14-1整式的乘法》(第1课时)一. 教材分析《14-1整式的乘法》是人教版数学八年级上册的教学内容,这部分内容是在学习了有理数、代数式、方程等基础知识后进行的教学。
整式的乘法是代数运算的重要部分,它不仅涉及到整式的加减乘除,还包括平方、立方等乘法运算。
这部分内容对于学生来说,既有挑战性,又具有实用性。
二. 学情分析八年级的学生已经具备了一定的数学基础,对代数式、方程等知识有了一定的了解,但整式的乘法运算相对较为复杂,需要学生对代数式的运算规则有更深入的理解。
同时,学生对于新的数学知识的学习兴趣较高,求知欲强,但可能在运算规则的理解和应用上存在困难。
三. 教学目标1.知识与技能目标:使学生掌握整式的乘法运算规则,能够正确进行整式的乘法运算。
2.过程与方法目标:通过小组合作、讨论交流等方式,培养学生独立思考、解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学的实用性。
四. 教学重难点1.教学重点:整式的乘法运算规则的理解和应用。
2.教学难点:整式乘法运算中,如何正确处理各种情况,如合并同类项、处理负数等。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解整式乘法的实际意义。
2.小组合作学习:引导学生进行小组讨论,共同探讨整式乘法的运算规则。
3.案例教学法:通过典型例子的讲解,使学生掌握整式乘法的运算方法。
六. 教学准备1.教学课件:制作整式乘法的教学课件,包括知识点、例题、练习题等。
2.教学素材:准备一些与生活相关的整式乘法的实例,如长度、面积等。
3.练习题:准备一些整式乘法的练习题,包括简单和复杂的题目。
七. 教学过程1.导入(5分钟)利用生活实例,如长度、面积等,引导学生思考整式乘法的实际意义,激发学生的学习兴趣。
2.呈现(10分钟)展示整式乘法的运算规则,通过讲解和示范,使学生理解整式乘法的运算方法。
3.操练(10分钟)学生进行整式乘法的练习,教师给予指导和解答疑问。
初中数学人教版八年级上册实用资料第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点正确理解同底数幂的乘法法则.难点正确理解和应用同底数幂的乘法法则.一、提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.[师]1015×103如何计算呢?[生]根据乘方的意义可知1015×103=(10×10×…×10)15个10×(10×10×10)=(10×10×…×10)18个10=1018.[师]很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.二、探究新知1.做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)(a·a)=a5=a3+2.5m·5n=(5×5·…·5),\s\do4(m个5))×(5×5·…·5),\s\do4(n个5))=5m+n.[生]我们可以发现下列规律:a m·a n等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议(出示投影片)[师生共析]a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a×a·…·a)m个a·(a×a·…·a)n个a=a·a·…·a(m+n)个a=a m+n于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[例1]计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)x m·x3m+1.[例2]计算a m·a n·a p后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1),(2),(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7;(2)解:a·a6=a1·a6=a1+6=a7;(3)解:2×24×23=21+4·23=25·23=25+3=28;(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二::a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p;解法三:a m·a n·a p=(a·a…a)m个a·(a·a…a)n个a·(a·a…a)p个a=a m+n+p归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·am3·…am n=am1+m2+m3+…m n.[师]鼓励学生.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三、随堂练习1.m14可以写成()A.m7+m7B.m7·m7C.m2·m7D.m·m142.若x m=2,x n=5,则x m+n的值为()A.7 B.10 C.25D.523.计算:-22×(-2)2=________;(-x)(-x2)(-x3)(-x4)=________.4.计算:(1)(-3)2×(-3)5;(2)106·105·10;(3)x2·(-x)5;(4)(a+b)2·(a+b)6.四、课堂小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n是正整数).五、课后作业教材第96页练习.本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.重点会进行幂的乘方的运算.难点幂的乘方法则的总结及运用.一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:①a2·a5·a n;②a4·a4·a4.二、自主探究1.思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a().(m是正整数)2.小组讨论对正整数n,你认识(a m)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(a m)n=a m·a m·a m…a m n个=am+m+m+…m,\s\up6(n个m))=a mn字母表示:(a m)n=a mn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1.下列各式的计算中,正确的是()A.(x3)2=x5B.(x3)2=x6C.(x n+1)2=x2n+1D.x3·x2=x62.计算:(1)(103)5; (2)(a4)4;(3)(a m)2; (4)-(x4)3.四、归纳小结幂的乘方的意义:(a m)n=a mn.(m,n都是正整数)五、布置作业教材第97页练习.运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.14.1.3积的乘方1.经历探索积的乘方和运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.重点积的乘方运算法则及其应用.难点幂的运算法则的灵活运用.一、问题导入[师]提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.[师]积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙.二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.(出示投影片)1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b();(2)(ab)3=________=________=a()b();(3)(ab)n=________=________=a()b().(n是正整数)2.把你发现的规律先用文字语言表述,再用符号语言表达.3.解决前面提到的正方体体积计算问题.4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法.5.完成教材第97页例3.学生探究的经过:1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2),(3)题;(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=(ab)·(ab)·…·(ab)n个ab=a·a·…·an个a·b·b·…·bn个b=a n b n.2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n.(n是正整数)3.正方体的V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3).通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)n=a n·b n·c n.(n为正整数) 4.积的乘方法则可以进行逆运算.即a n·b n=(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n=(a×a×…×a)n个a(b×b×…×b)n个b——幂的意义=(ab)(ab)(ab)(ab)…(ab)n个(ab)——乘法交换律、结合律=(a·b)n——乘方的意义5.[例3](1)(2a)3=23·a3=8a3;(2)(-5b)3=(-5)3·b3=-125b3;(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4;(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质.如(abc)n=a n·b n·c n;(n为正整数)(3)积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n.(n为正整数)三、随堂练习1.教材第98页练习.(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(-2xy)3;(2)(5x3y)2;(3)[(x+y)2]3;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。
14.1 整式的乘法(第1课时)教学内容同底数幂的乘法.教学过程一、导入新课1二、探究新知1.同底数幂乘法公式问题1 一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?分析:它工作103 s可进行运算的次数为1015×103,怎样计算1015×103呢?列式:你能写出运算结果吗?.教师引导学生探究规律,并写出计算过程.探究:根据乘法的意义填空,观察计算结果,你能发现什么规律吗?(1)23×24=2().(2)53×54=5().(3)a3×a4=a().通过以上多个式子的计算过程,我们猜想:一般地,对于任意底数a与任意正整数m,N,因此,我们有同底数幂的乘法法则:a m·a n=a m+n(m、n都是正整数).即同底数幂相乘,底数不变,指数相加.提示:①同底数幂是指底数相同的幂.如(-3)2与(-3)5,(ab3)2与(ab3)5,(x-y)2与(x-y)3 等.②同底数幂的乘法法则的表达式中,左边两个幂的底数相同,且是相乘的关系;右边得到一个幂,且底数不变,指数相加.2.公式的应用例1 计算:(1)x2·x5 (2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.提示:不要忽视指数为1的因数,如(2).注意:以上是公式的正用,公式也可逆用,可以把一个幂分解成两个同底数幂的积,其中它们的底数与原来幂的底数相同,它的指数之和等于原来幂的指数.如:25=23×22=2×24等.练习已知a m=3,a n=8,求a n+m 的值.让学生把a m+n改写成a m·a n的形式,再带入已知完成此题.a m+n=a m·a n=3×8=24.三、课堂小结1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,•使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,•底数和指数,它既可以取一个或几个具体数,也可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.四、布置作业习题14.1.1第(1)(2)题.教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
14.1整式的乘法〔第3课时〕14.1.4 整式的乘法〔第1课时〕〔刘小兰〕一、教学目标〔一〕学习目标1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性.2.理解单项式与单项式相乘的法那么和单项式与多项式相乘的法那么,并会运用法那么进展计算.3.两个法那么的熟练,灵活运用.〔二〕学习重点单项式与单项式、单项式与多项式相乘的运算法那么的理解及其运用.〔三〕学习难点灵活地运用单项式与单项式、单项式与多项式相乘的法那么进展计算.二、教学设计〔一〕课前设计〔1〕单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.〔2〕单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.〔1〕计算:3425a b a【知识点】单项式与单项式相乘的法那么.【数学思想】【解题过程】343434725(25)()1010a b a a a b a b a b +=⨯==【思路点拨】利用单项式与单项式相乘的法那么计算.【答案】 710a b .〔2〕计算:23()(2)a a -【知识点】单项式与单项式相乘的法那么.【数学思想】【解题过程】23235()(2)()(8)8a a a a a -=-=-【思路点拨】先进展积的乘方运算,再利用单项式与单项式相乘的法那么计算.【答案】 58a -.〔3〕322(3)c c -【知识点】单项式与多项式相乘的法那么.【数学思想】转化思想【解题过程】32323532(3)22326c c c c c c c -=-⨯=-【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法那么.【答案】5326c c -.〔4〕23(3)(41)m m m --+【知识点】单项式与多项式相乘的法那么.【数学思想】转化思想【解题过程】23232322532(3)(41)9(41)994919369m m m m m m m m m m m m m m --+=-+=-+⨯=-+【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法那么,注意符号确实定.【答案】5329369m m m -+.(二)课堂设计〔1〕同底数幂的乘法的性质:同底数幂相乘,底数不变,指数相加.即m n m n a a a +=〔m ,n 为正整数〕.〔2〕幂的乘方的性质:幂的乘方,底数不变,指数相乘.即()m n mn a a =〔m ,n 为正整数〕.〔3〕积的乘方的性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即()n n n ab a b =〔n 为正整数〕.探究一:回忆旧知,创设情境,引入新课.●活动① 回忆旧知,回忆乘法交换律,乘法结合律,乘法分配律乘法交换律:a b b a =乘法结合律:()()ab c a bc =乘法分配律:()m a b c ma mb mc ++=++【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动② 整合旧知,引出课题问题1:探索火星、月球以及其他星球的奥秘已逐渐被世人关注,飞向月球、进入太空也不再是遥远的事,浩瀚的宇宙期待着人们的光临.天文学上计算星球之间的距离的一种单位叫“光年〞,即光在一年里通过的距离.一年约等于7310⨯s ,光的速度约为5310⨯km /s ,那么1光年大约是多少千米?学生容易得出:1光年大约是〔7310⨯〕×〔5310⨯〕km .问题2:如何计算〔7310⨯〕×〔5310⨯〕呢?师:学习了今天的知识,你一定就会迎刃而解了.【设计意图】用光年知识,激发学生对新知主动探索的欲望,调动学生学习兴趣.●活动①大胆猜测,探究单项式与单项式相乘的法那么.问题1:怎样计算〔7310⨯〕×〔5310⨯〕?计算过程中用到哪些运算律及运算性质? 学生计算后,展示计算过程:〔7310⨯〕×〔5310⨯〕7512(33)(1010)910=⨯⨯⨯=⨯运用了乘法交换律、乘法结合律及同底数幂的乘法的性质.问题2:如果将上式中的数字改为字母,比方52ac bc ,怎样计算这个式子呢?学生独立思考后,展示:52527()()ac bc a b c c abc ==.【设计意图】学生通过类比〔7310⨯〕×〔5310⨯〕的计算,来计算52ac bc ,体会由特殊到一般,具体的数字抽象到字母的学习方法,让学生在独立思考,实践中获得计算的方法. 问题3:你能根据52ac bc 的计算方法,来计算以下式子吗?〔1〕2732m m ; 〔2〕23425(2)(3)p q p q m --.学生动手计算.展示答案:〔1〕96m ; 〔2〕6556p q m .【设计意图】让学生通过类比〔7310⨯〕×〔5310⨯〕和52ac bc 的计算方法,用前面获得经历来计算2732m m 和23425(2)(3)p q p q m --,从四个题目的计算,使单项式与多项式相乘的法那么在学生心中根本成型.●活动② 集思广益,归纳单项式与单项式相乘的法那么.师:观察52ac bc ,2732m m ,23425(2)(3)p q p q m --都是单项式与单项式相乘,通过刚刚的尝试,终究怎样进展单项式与单项式的乘法运算呢?先独立思考,再小组讨论.小组派代表发表小组的观点.学生发言,教师完善,得出结论:单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.【设计意图】通过小组合作,用文字语言表述单项式与单项式相乘的法那么,培养学生的独立思考,观察,猜测,归纳,语言表达能力,和小组合作意识.例1计算:〔1〕2(5)(3)a b a --;〔2〕32(2)(5)x xy -.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】解:〔1〕2(5)(3)a b a --[]23(5)(3)()15a a ba b =-⨯-=〔2〕32(2)(5)x xy -[]3232428(5)8(5)()40x xy x x y x y =-=⨯-=-【思路点拨】注意运算顺序,先算乘方,再算乘法,先确定运算中的符号,再利用单项式与单项式相乘的法那么进展计算.【答案】〔1〕315a b ;〔2〕4240x y -.练习:1.计算: 〔1〕2335x x ;〔2〕32(2)(3)a a --.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】〔1〕2335x x =515x ;〔2〕32(2)(3)a a --=518a -【思路点拨】确定运算顺序,先算乘方,再算乘法,注意确定运算中的符号,再利用单项式与单项式相乘的法那么进展计算.【答案】〔1〕515x ; 〔2〕518a -.2.下面计算对不对?如果不对,应当怎样改正?〔1〕326326a a a =;〔2〕3515538y y y =.【知识点】单项式与单项式相乘的法那么【数学思想】【解题过程】〔1〕325326a a a =;〔2〕3585315y y y =【思路点拨】利用单项式与单项式相乘的法那么来判断【答案】〔1〕不对,应当为56a ;〔2〕不对,应当为815y .【设计意图】稳固新知,到达强化的目的.回忆课前引例,1光年大约是多少千米?怎样计算〔7310⨯〕×〔5310⨯〕?〔7310⨯〕×〔5310⨯〕7512(33)(1010)910=⨯⨯⨯=⨯实际上就是把〔7310⨯〕×〔5310⨯〕看作是单项式与单项式相乘,运用单项式与单项式相乘的法那么计算得到.【设计意图】解决引例,前后照应,让学生对引例问题豁然开朗,同时也让给学生感受到数学源于生活,又效劳于生活.探究三:再探新知,升华提高,探究单项式与多项式相乘的法那么,并会运用法那么计算.★●活动①展示实际问题,引出单项式与多项式相乘的法那么的思考.问题1:如图,为了扩大绿地面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边加宽a米和c米,你能用几种方法表示扩大后的绿地面积?学生思考.师生共同得出结论:方法一:()++;m a b c++.方法二:ma mb mc师:这两种方法结果有什么样的关系?学生思考得出关系:相等关系,即:()++=++.m a b c ma mb mc师:观察上式,左边是一个单项式与一个多项式的乘积,右边是几个单项式的和,怎样进展单项式与多项式的乘法运算呢?【设计意图】由生活中的实际问题,从不同的面积计算方法,引发对单项式与多项式相乘的运算法那么的思考,表达数学源于生活,渗透数形结合思想.同时让学生从直观上感知单项式与多项式的乘法运算.●活动②集思广益,归纳单项式与多项式相乘的法那么.师:观察式子()++=++,可以根据运算律得到这个等式吗?m a b c ma mb mc思考得出:可以根据乘法对加法的分配律得到.师:你能说说单项式与多项式的相乘的法那么吗?学生独立思考,再小组讨论,小组派代表发表看法学生发言,教师完善,得出结论:单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【设计意图】让学生从面积问题和乘法分配律两个角度,得到单项式与多项式的相乘的法那么,使得学生理解更深入,通过法那么的得出,培养学生的合作意识和归纳能力.例2 计算〔1〕2(4)(31)x x -+;〔2〕221(2)32ab ab ab -. 【知识点】单项式与多项式相乘的法那么.【数学思想】将单项式与多项式相乘转化成单项式与单项式相乘,渗透转化思想【解题过程】解:〔1〕2(4)(31)x x -+222232(4)(3)(4)1(43)()(4)124x x x x x x x x =-+-⨯=-⨯+-=--〔2〕221(2)32ab ab ab - 22322211(2)32213ab ab ab ab a b a b =+-=- 【思路点拨】利单项式与多项式相乘的法那么计算,要注意〔1〕单项式乘多项式,结果仍是多项式,且项数与原多项式的项数一样;〔2〕符号确实定.【答案】〔1〕32124x x --;〔2〕232213a b a b -. 练习:1.计算:〔1〕3(52)a a b -;〔2〕(3)(6)x y x --.【知识点】单项式与多项式相乘的法那么.【数学思想】【解题过程】〔1〕3(52)a a b -=2156a ab -;〔2〕(3)(6)x y x --=2618x xy -+.【思路点拨】运用单项式与多项式相乘的法那么计算【答案】〔1〕2156a ab -;〔2〕2618x xy -+.2.化简:(1)2(1)3(25)x x x x x x -++--.【知识点】单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】(1)2(1)3(25)x x x x x x -++--222222615316x x x x x xx x =-++-+=-+【思路点拨】运用单项式与多项式相乘的法那么计算,注意各项符号确实定.【答案】2316x x -+.【设计意图】稳固新知,到达强化的目的.●活动③ 灵活运用两个法那么进展计算.例3 化简求值: 2224(2)(3)(3)(2)y x y x x y x y --++-,其中4x =-,12y = 【知识点】单项式与单项式,单项式与多项式相乘的法那么,合并同类项【数学思想】【解题过程】2224(2)(3)(3)(2)y x y x x y x y --++-2322223222232223483(3)(4)48312(4312)8118xy y x xy x y xy y x xy xy xy y x x xy y =---+-=----=----=---当4x =-,12y =时,223118x xy y ---=-6 【思路点拨】根据单项式与单项式,单项式与多项式相乘的法那么计算,翻开括号,注意各项符号确实定,再根据整式加法的合并同类项法那么得223118x xy y ---,最后把4x =-,12y =值代入223118x xy y ---从而求解.【答案】-6练习:化简求值:223(43)(2)(3)a a a a a -+--,其中2a =-【知识点】单项式与单项式,多单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】223(43)(2)(3)a a a a a -+--322323321239(2)(9)123918639a a a a a a a a a a a a =-+-=-+-=--+当2a =-时,3263918a a a --+=【思路点拨】根据单项式与单项式,单项式与多项式相乘的法那么计算,翻开括号,注意各项符号确实定,再根据整式加法合并同类项法那么得32639a a a --+,再把2a =-代入32639a a a --+从而求解.【答案】18【设计意图】稳固所学两个法那么,灵活运用两个法那么进展计算.例422x y =,求523(243)xy x y x y x --的值.【知识点】单项式与多项式相乘的法那么【数学思想】整体代换思想【解题过程】解:523(243)xy x y x y x --63422232222432()4()3x y x y x yx y x y x y =--=--因为22x y =,所以:23222322()4()32242326x y x y x y --=⨯-⨯-⨯=-【思路点拨】用单项式与多项式相乘的法那么对式子化简,再观察条件22x y =中,x y 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将22x y =整体代入,从而求解.【答案】-6练习:3mn =,求322(234)(2)m n m n m n -+-的值.【知识点】单项式与多项式相乘的法那么【数学思想】整体代换思想【解题过程】解:322(234)(2)m n m n m n -+-3322324684()6()8m n m n mnmn mn mn=-+-=-+- 因为3mn =,所以:32324()6()8436383108542478mn mn mn-+-=-⨯+⨯-⨯=-+-=-【思路点拨】用单项式与多项式相乘的法那么对式子化简,再观察条件3mn =中,m n 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将3mn =整体代入,从而求解.【答案】-78【设计意图】熟练运用法那么进展计算,渗透整体代换的数学思想.3.课堂总结知识梳理〔1〕单项式与单项式相乘的法那么:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.〔2〕单项式与多项式相乘的法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.〔3〕计算时要注意的方面:运算顺序,符号确实定重难点归纳:〔1〕两个法那么的理解及灵活熟练运用;〔2〕学习和运用法那么过程中,类比,特殊到一般等方法的运用,渗透了转化,整体代换,数形结合等数学思想.〔三〕课后作业根底型 自主突破1.计算262x x 结果正确的选项是〔 〕A .212xB .38xC .28xD .312x【知识点】单项式与单项式相乘法那么【数学思想】【解题过程】236212x x x =【思路点拨】利用单项式与单项式相乘法那么计算【答案】D .2.以下计算正确的选项是〔 〕A .23622x x x =B .2324(2)2ab a b a b -=-C .2236611()28x y xy x y -=- D .322398()(3)27m n mn m n --=- 【知识点】单项式与单项式相乘法那么【数学思想】【解题过程】3223623698()(3)(27)27m n mn m n m n m n --=-=-【思路点拨】利用单项式与单项式相乘法那么计算【答案】D .3.计算42(31)x x -结果正确的选项是〔 〕A .552x x -B . 561x -C . 562x x -D .462x x -【知识点】单项式与多项式相乘的法那么【数学思想】【解题过程】452(31)62x x x x -=-【思路点拨】利用单项式与多项式相乘的法那么计算【答案】C .4.以下计算正确的选项是〔 〕A.22()xy x y x y xy -=+B.2323(21)363m m m m m m --=--C.23(1)1x x x x x --=--D.2322(1)222a a a a a a ---=---【知识点】单项式与多项式相乘的法那么【数学思想】【解题过程】2323(21)363m m m m m m --=--【思路点拨】利用单项式与多项式相乘的法那么计算,注意符号确实定.【答案】B .5.假设2(2)()x ax x -+-的展开式中2x 项的系数为4-,那么a 的值为〔 〕A.4-B.2-C.2D.4【知识点】单项式与多项式相乘的法那么【数学思想】对应思想【解题过程】2(2)()x ax x -+-322x ax x =-+-因为原式中的2x 的系数为4-,所以4a =-【思路点拨】单项式与多项式相乘的法那么,展开括号,再根据要求,对应求出a .【答案】A .6.通过计算几何图形的面积可表示一些代数恒等式,如下图的几何图形的面积可表示的代数恒等式是〔 〕A.222()2a b a ab b +=++B.22()()a b a b a b +-=-C.222()2a b a ab b -=-+D.22()22a a b a ab +=+【知识点】通过面积恒等反映单项式与多项式相乘的运算方法.【数学思想】数形结合思想【解题过程】几个图形的面积相加得:222a ab +,长乘以宽得长方形的面积为2()a a b +,即:22()22a a b a ab +=+【思路点拨】大长方形由两个面积相等的正方形和两个面积相等的的长方形组成,因此,面积有两种算法:一是由几个图形的面积相加得:22222a a ab ab a ab +++=+;二是由长乘以宽得长方形的面积为2()a a b +,所以可以得到一个恒等式:22()22a a b a ab +=+【答案】D .能力型 师生共研7.“三角〞表示3abc ,“方框〞 表示4y z x w -,那么×=__________.【知识点】单项式与单项式相乘的法那么【数学思想】对应思想【解题过程】525236(33)(4)9(4)36mn n m mn n m m n ⨯-=-=-【思路点拨】根据题中新定义化简所求的式子,利用单项式与单项式相乘的法那么计算即可得结果.【答案】3636m n -.8.解以下方程:24(3)3(3)(2)0a a a a a a +--++-+=【知识点】单项式与多项式相乘的法那么,解一元一次方程.【数学思想】【解题过程】24(3)3(3)(2)0a a a a a a +--++-+=2224412932031204a a a a a a a a +----+=--==-【思路点拨】利用单项式与多项式相乘的法那么计算,把左边化简,再解关于a 一元一次方程.【答案】4a =-.探究型 多维突破9.有理数,m n 满足条件2231(35)0m n m n -++++=,求代数式222(2)()(6)mn n mn --的值.【知识点】单项式与单项式相乘的法那么,等式的非负性.【数学思想】方程思想【解题过程】222222236(2)()(6)4()(6)24mn n mn m n n mn m n --=-=- 因为2231(35)0m n m n -++++= 所以22310,(35)0m n m n -+≥++≥2310350m n m n -+=⎧⎨++=⎩ 解得21m n =-⎧⎨=-⎩,所以3624192m n -= 【思路点拨】根据单项式与单项式相乘的法那么进展计算化简,在化简过程中注意运算顺序和符号确实定,再根据等式非负性组成方程组求出,m n 的值,将,m n 的值代入化简的式子,从而求解.【答案】192.10.试说明:对于任意自然数x ,代数式[](3)(9)6x x x x +--+的值能被6整除.【知识点】单项式与多项式相乘的法那么,合并同类项【数学思想】【解题过程】[](3)(9)6x x x x +--+22223(96)3961266(21)x x x x x x x x x x =+--+=+-+-=-=-因为代数式[](3)(9)6x x x x +--+计算后的结果为6和21x -的积,所以原代数式能被6整除.【思路点拨】化简式子后,观察是6的倍数.【答案】见解答过程.自助餐1.假设51015()m n x y xy x y =,那么3(1)m n +的值为〔 〕A .9B .15C .18D .10【知识点】单项式与单项式相乘的法那么【数学思想】对应思想【解题过程】51155555()()m n m n m n x y xy x y x y ++++==因为 51015()m n x y xy x y =,所以 55551015m n x y x y ++=,所以55105515m n +=⎧⎨+=⎩,解得:12m n =⎧⎨=⎩,即3(1)9m n += 【思路点拨】先计算括号内单项式与单项式的乘法,再利用积的乘方得到55551015m n x y x y ++=,组成方程组55105515m n +=⎧⎨+=⎩,求出m ,n 的值,再代入式子求解. 【答案】A .2.假设三角形的底边为21x +,高为2x ,那么此三角形的面积为〔 〕A .241x +B .242x x +C . 2122x x +D .22x x + 【知识点】单项式与多项式相乘的法那么【数学思想】 【解题过程】21(21)222x x x x +=+ 【思路点拨】根据三角形面积公式求面积【答案】D .3.计算232221()3(2)2a b ab c ab -=____________ 【知识点】单项式与单项式相乘的法那么【数学思想】 【解题过程】232221()3(2)2a b ab c ab - 6322499134832a b ab c a b a b c =-=- 【思路点拨】根据单项式与单项式相乘法那么计算,对于三个单项式相乘,单项式与单项式相乘法那么仍然适用. 【答案】9932a b c -. 4.单项式A 、B 满足234(3)7x A x x y B -=+,那么A =_________,B =_________.【知识点】单项式与多项式相乘的法那么【数学思想】对应思想【解题过程】24(3)412x A x Ax x -=-因为234(3)7x A x x y B -=+,所以2347Ax x y =,212B x =-所以 374A xy = 【思路点拨】利用单项式与多项式相乘的法那么化简,与右边局部对应相等,从而求解【答案】 374A xy =,212B x =-. 5.小敏家新购了一套构造如图的住房,正准备装修.〔1〕试用代数式表示这套住房的总面积;〔2〕假设x =2.6m ,y =3.1m, ,装修客厅和卧室至少需要准备多少面积的木地板?【知识点】单项式与单项式相乘的法那么【数学思想】数学源于生活,又效劳于生活【解题过程】解:〔1〕24222x y x y x y x y +++15xy =〔2〕客厅和卧室的总面积为:4812xy xy xy +=,将x =2.6,y =3.1代入,得12xy =12×2.6×3.1=〔2m 〕.【思路点拨】先根据单项式乘以单项式法那么求出总面积,再根据条件,代入求出答案.【答案】〔1〕15xy ;〔2〕〔2m 〕.6.2232(2)(36)4m m pm m m ----+中不含3m 项,求p 的值.【知识点】单项式与多项式相乘的法那么,合并同类项.【数学思想】【解题过程】解:2232(2)(36)4m m pm m m ----+43232432621246(24)13m pm m m m m p m m=-++-+=-+-+因为原式不含3m 项,所以240p -=,p =2 【思路点拨】先利用单项式与多项式相乘的法那么将式子化简,在合并同类项,得出3m 的系数为24p -,再根据条件,得到240p -=,从而求出p 值.【答案】2.。
14.1 整式的乘法(第1课时)教学目标1.探索并理解同底数幂的乘法法则,并能运用其熟练地进行运算.2.运用同底数幂的乘法法则解决一些简单的实际问题,体会数式通性的思想方法.教学重点同底数幂的乘法法则.教学难点正确理解与推导同底数幂的乘法法则.一、创设情景,明确目标七年级的时候我们学习过整式的加减,a2+2a2同学们肯定会计算,因为它们是同类项,相同字母的指数相同,当指数不一样的时候还能计算吗?如a2+a3?如果我们把加法转化为乘法,a2·a3能计算吗?等于多少呢?要想解开这个疑惑的话就认真学习第十四章的第一节同底数幂的乘法,相信学完以后都能解开谜底了.二、自主学习,指向目标自学教材第95页至96 页,思考下列问题:1.回顾乘法与幂的相关知识:①a n的意义是n个a相乘,我们把这种运算叫做乘方,乘方的结果叫幂,a叫做底数,n是指数; 24=2×2× 2×2;10×10×10×10×10=105.②指出下列幂的底数和指数:(-a)2的底数为-a,指数为2;a2的底数为a,指数为2;(x-y)3的底数为x-y,指数为3;(y-x)n的底数为y-x,指数为n .2. 同底数幂的乘法法则是同底数幂相乘,底数不变,指数相加,即:a m·a n=a m+n(m,n都是正整数).3. 同底数幂的乘法法则推导的依据是乘方的意义.三、合作探究,达成目标探究点一探究同底数幂的乘法法则的推导活动一:阅读教材第95页,思考并完成下列问题:(1) 思考:乘方的意义是什么?(即a m表示什么?) (相同因数积的形式,即m个a相乘.)(2)根据乘方的意义填空,看看计算结果有什么规律:23×22=[(2)×(2) ×(2)]×[(2)×(2) ]=2(5);a 3·a 2=[(a)×(a)×(a)]×[(a)×(a)]=a (5);5m ×5n =(5×5×…×5)×(5×5×…×5)=5(m +n).展示点评:两个同底数幂相乘,根据乘方的意义怎么去理解?完成下列填空: a m ·a n=(a ×a ×…×a)(a ×a ×…×a)(乘方的意义)=(a ×a ×…×a) (乘法的结合律)=a (m +n) (m ,n 都是正整数)(乘方的意义). 归纳:同底数幂相乘,底数不变,指数相加.小组讨论:乘方也是一种运算形式,它与乘法有何联系? 对于同底数幂的乘法的理解,关键是什么?【反思小结】乘方是乘法的特殊形式,是几个相同因数积的形式;对于同底数幂的乘法的理解,关键就在于对乘方意义的理解.针对训练:1.幂(-x)5的底数是-x ,-x 5的底数是x ;x 5的底数是x.2.计算(-x)5=-x 5;(-x)6=x 6;(x -y)2=(y -x )2;(x -y)3=-(y -x )3.3.下列四个算式:①a 6·a 6=2a 6;②m 3+m 2=m 5;③x 2·x ·x 8=x 10;④y 2+y 2=y 4,其中计算正确的有( A )A .0个B .1个C .2个D .3个4.下列各式,计算过程正确的是( D )A .x 3+x 3=x3+3=x 6 B .x 3·x 3=2x 3=x 6 C .x ·x 3·x 5=x 0+3+5=x 8 D .x 2·(-x 3)=-x 2+3=-x 5探究点二 同底数幂的乘法法则的应用活动二:(1)x 2·x 5;(2)a ·a 6; (3)(-2)×(-2)4×(-2)3 ;(4)x m ·x3m +1.展示点评:学生自主解答,师生共同点评.变式:1.-2×23×25=-29.2.a 2·a 5+2a 7=3a 7.小组讨论:在应用该法则进行运算时,应当注意哪两个方面的问题?反思小结:在应用同底数幂的乘法法则进行运算时,一是要先判断是不是同底数幂,不是同底数幂的形式,要转化成同底数幂;二是底数不变,指数相加(紧扣法则).四、总结梳理,内化目标1.在探索同底数幂的乘法运算法则时,进一步体会幂的意义,从而更好的理解该法则.2.能够熟练地应用该法则进行运算.五、达标检测,反思目标1.下列各式,运算正确的是( D )A.a2·a5=a20 B.a2+a5=a7C.a2·a2=2a2 D.a2·a5=a72.下列能用同底数幂进行计算的是( C )A.(x+y)2(x-y)3 B.(-x+y)3(x+y)2C.(x+y)2(x+y)3 D.-(x-y)2(-x-y)3.一种电子计算机每秒可进行1014次运算,它工作103秒可进行__1017__次运算.4.计算:(1)102×104×105;解:原式=102+4+5=1011.(2)10n-1·102-n·103;解:原式=10(n-1)+(2-n)+3=104.(3)x m·x2m+1.解:原式=x m+2m+1=x3m+1.5.已知a m=2,a n=3,试用a表示.求:(1)a m+n;(2)a m+n+2.解:(1)a m+n=a m·a n=2×3=6.(2)a m+n+2=a m·a n·a2=2×3·a2=6a2.14.1 整式的乘法(第2课时)教学目标1.探索并理解幂的乘方法则.2.运用幂的乘方法则进行计算.教学重点幂的乘方运算.教学难点幂的乘方法则总结及应用.一、创设情景,明确目标1.根据乘方的意义填空:a·a·a=________;a2·a2·a2=________;a m·a m·a m=________(m为正整数).2.激趣导入你能说出444与533两个数中,哪个比较大?学习本节后你就可以回答这个问题了.二、自主学习,指向目标自学教材第96至97页,思考下列问题:(1)(a m)n的意义是n个a m相乘.(2)幂的乘方的运算法则是:(a m)n=a mn(m,n都是正整数).用文字语言可描述为:幂的乘方,底数不变,指数相乘.(3)同底数幂的乘法与幂的乘方运算形式的区别是前者是底数相同的幂相乘,即乘法运算;后者是幂的乘方,即是乘方运算;同底数幂的乘法与幂的乘方运算法则的区别是运算的结果都是底数不变,前者是指数相加;后者是指数相乘.三、合作探究,达成目标探究点一幂的乘方法则的推导活动一:根据乘方的意义及同底数幂的乘法法则填空,看看计算的结果有什么规律:(1)(32)3=32×32×32=3(6);(2)(a2)3=a2×a2×a2=__a6__;(3)(a m)3=__a m×a m×a m__=__a3m__(m是正整数).展示点评:对于任意底数a与任意正整数m、n,(a m)n=__a mn__.由此可得到幂的乘方法则:(a m)n=__a mn__(m,n都是正整数),即:幂的乘方,底数__不变__,指数__相乘__.小组讨论:同底数幂相乘与幂的乘方的区别?反思小结:幂的乘方法则一定要与同底数幂相乘的乘法法则区分开:两个法则都是底数不变,但同底数幂相乘时,指数相加;而幂的乘方时,指数相乘,这是本质区别.针对训练:1.63表示__3__个__6__相乘;(62)3表示__3__个__62__相乘.2.判断正误,正确的打“√”,错误的打“×”.(1)a5+a5=2a10(×)(2)(x2)3=x5(×)(3)(-3)2·(-3)4=(-3)6=-36(×)(4)[(m-n)3]4-[(m-n)2]6=0(√)3.下列运算正确的是( C )A.(a3)3=a6B.a4·a4=a16C.(a3)4=a12D.a3+a4=a74.小明的解答有错误吗?如果错误,请说出正确的结果.(1)(x3)3=x6;(2)a6·a4=a24.解:错误.(1)(x3)3=x9.(2)a6·a4=a10.探究点二幂的乘方的应用活动二:计算:(1)(103)5;(2)(a4)4;(3)(a m)2;(4)-(x4)3.思考:以上计算形式是幂的哪种运算?其运算法则如何?运算中有负号的应先确定什么?展示点评:都是幂的乘方运算,注意和同底数幂的乘法法则区分开;有符号的,先确定结果的符号,再运用法则进行运算.解答过程见教材P96例2解答过程.小组讨论:如何灵活运用幂的运算进行计算?反思小结:对于幂的运算,应当先观察形式,应用适当的法则进行运算.针对训练:5.若(x2)n=x8,则n=__4__.6.若x m·x2m=2,求x9m的值.解:原式=(x3m)3=23=8.四、总结梳理,内化目标1. 理解幂的乘方法则,并能灵活应用幂的乘方法则进行运算.2.注意幂的乘方法则与同底数幂相乘的区别:前者是底数不变,指数相乘;后者是底数不变,指数相加.五、达标检测,反思目标1.(a2)3=__a6__;(x6)5=__x30__.2.(a m)4=__a4m__;(x3m)2n=__x6mn__.3.若a2m=4,则a3m=__±8__.4.若x为正整数,且3x·9x·27x=96,则x=2.5.计算:(1)(y m)2·(-y3);解:原式=y2m·(-y3)=-y2m+3.(2)(y2)3·y2+(y2)2y4.解:原式=y6·y2+y4y4=2y8.6.(1)已知x a=2,x b=3,求x a+b的值.(2)已知x a=2,x b=3,求x2a+3b的值.解:(1)x a+b=x a·x b=2×3=6.(2)x2a+3b=x2a·x3b=(x a)2·(x b)3=22·33=4×27=108.14.1 整式的乘法(第3课时)教学目标1.探索并理解积的乘方法则.2.运用积的乘方法则进行计算.教学重点积的乘方运算法则及其应用.教学难点幂的运算法则的灵活运用.一、创设情景,明确目标若已知一个正方体的棱长为1.1×103 cm,你能计算出它的体积是多少吗?这个结果是幂的乘方形式吗?积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥妙.二、自主学习,指向目标自学教材第97至98页,思考下列问题:1.(ab)n的意义是n个ab相乘.2. 积的乘方运算法则是:(ab)n=a n b n(n为正整数).用文字形式可描述为:把积的每一个因式分别乘方,再把所得的幂相乘.3.和幂有关的运算法则有:同底数幂相乘、幂的乘方、积的乘方,应当如何区分?(一是注意运算形式:是乘法,还是乘方;二是从法则的运算结果进行区分.)三、合作探究,达成目标探究点一积的乘方运算法则的推导活动一:1.根据乘方的意义:(ab)3表示______个______相乘;(ab)m表示______个______相乘.2.填出下列运算每一步的依据:(ab)2=(ab)·(ab)→依据:____________=(a·a)·(b·b)→____________=a2b2→____________3.计算:(ab)3=________=________=________(ab)n=________=________=________展示点评:(ab)n=________(n为正整数)即:积的乘方,等于把________分别乘方,再把________相乘.小组讨论:如何区分同底数幂相乘、幂的乘方、积的乘方这三个运算法则?反思小结:一是注意运算形式:同底数幂相乘是乘法运算,幂的乘方是乘方运算;二是注意法则,即(幂的)乘法指数就是加, (幂的)乘方指数就是乘;积的乘方就是先将各个因式先乘方再相乘.针对训练:1.(1)同底数幂相乘,底数不变,指数__相加__;幂的乘方,底数不变,指数__相乘__;积的乘方,等于各个因式__乘方__的积.(2)m,n为正整数时,a m·a n=__a m+n__;(a m)n=__a mn__;(ab)n=__a n b n__.2.如果(x3y n)2=x6y8,则n等于( D )A.3 B.2 C.6 D.43.若等式(-2a2·a m)3=-8a12恒成立,则m=__2__.探究点二积的乘方法则的应用活动二:计算:(1)(2a)3;(2)(-5b)3;(3)(xy2)2;(4)(-2x3)4.展示点评:计算时,应严格按照法则,不漏项,特别是符号.小组讨论:幂的运算中若混合应用多个幂的运算法则,应当按照什么运算顺序进行运算?(解答过程见教材P97例3)反思小结:在幂的运算中若混合应用多个幂的运算法则时,应当先算积的乘方,再算幂的乘方,最后按四则混合运算顺序依次运算.针对训练:4.填空(1)(2a 2b)3=__8a 6b 3__;(2)(-2×104)3=__-8×1012__.5.计算:(-0.25)2017×(-4)2018.解:原式=(-0.25)2017×(-4)2017×(-4)=[(-0.25)×(-4)]2017×(-4)=1×(-4)=-4. 6. 一个正方体的棱长为2×102mm.(1)它的表面积是多少?(2)它的体积是多少?解:(1)6×(2×102)2=6×4×104=24×104=2.4×105(mm 2),则它的表面积是2.4×105 mm 2.(2)(2×102)3=8×106(mm 3),则它的体积是8×106 mm 3.四、总结梳理,内化目标1. 理解积的乘方法则,并能灵活进行运算.2.正确区分同底数幂相乘、幂的乘方与积的乘方三个运算法则,并能综合应用进行运算.五、达标检测,反思目标1.下列运算正确的是( D )A .a 2+a 3=a 5B .a 2×a 3=a 6C .(a 2b 3)3=a 5b 6D .(a 2)3=a 62.计算:-(3a 2b 3)4的结果是( D )A .81a 8b 12B .12a 6b 7C .-12a 6b 7D .-81a 8b 123.计算:(1)(-a 2b 3)3·(-a 2b)4;解:原式=-a 6b 9·a 8b 4=-a 14b 13.(2)(2×102)2×(3×103)2.解:原式=4×104×9×106=3.6×1011.4.已知2a +b -4+(4a -b -2)2=0,求代数式14(-3ab 2)2的值. 解:∵⎩⎪⎨⎪⎧2a +b -4=04a -b -2=0 ∴⎩⎪⎨⎪⎧a =1b =2 ∴原式=14(-3×1×4)2 =14×144 =36.5.已知a x =4,b x =5,求(ab)2x的值.解:(ab)2x =a 2x ·b 2x =(a x )2·(b x )2=16×25=400.14.1 整式的乘法(第4课时)教学目标1.探索并掌握单项式乘单项式的法则.2.灵活运用单项式乘单项式的法则进行运算.教学重点单项式与单项式相乘的运算法则及其应用.教学难点灵活地进行单项式与单项式相乘的运算.一、创设情景,明确目标我们知道:长方形的面积=____________(1)如图:长为a,宽为b的长方形的面积为____________.(2)如果有6个这样的长方形拼在一起(如图),面积又是多少呢?你能用两种方法表示吗?_______________________________________________________________________________ _____________________________________你会用我们所学的知识说明从等式左边推导到等式右边的过程吗?二、自主学习,指向目标1.(1)a m·a n=________(m,n都是正整数);(2)(a m)n=________(m,n都是正整数);(3)(ab)n=________(n是正整数);(4)a2-2a2=________;a2·2a2=________; (-2a2)3=________.2.在进行单项式乘单项式的运算时,运用了乘法的________律和________律,以及________的运算性质来计算.3.单项式与单项式相乘,把它们的________、________分别相乘,对于只在一个单项式里含有的字母,则__________________________.三、合作探究,达成目标探究点一单项式乘单项式运算法则活动一:1.填出下列运算每一步的依据:(3×105)×(5×102) 依据=(3×5)·(105×102)→____________=15×107→____________=1.5×108 →____________2.运用上述规律及运算性质计算:12ac 5·2bc 2=________=________. 展示点评:归纳:单项式与单项式相乘,把它们的________、________分别相乘,对于只在一个单项式里含有的字母,则____________________.小组讨论:单项式与单项式相乘,在计算时应注意什么问题?反思小结:当系数是带分数的一定要化成假分数,还应注意运算顺序.应用法则时,一要注意首先确定积的系数和符号;二要注意勿漏仅在一个单项式里含有的因式. 针对训练:1.(-5ax)(3x 2y)2的计算结果是( A )A .-45ax 5y 2B .-15ax 5y 2C .-30ax 5y 2D .45ax 5y 2探究点二 单项式乘单项式运算法则的运用活动二:计算:(1)(-5a 2b)(-3a);(2)(2x)3(-5xy 2).(解答过程见教材P98例4)展示点评:在这两道运算中,系数分别含有负号,要注意什么问题?小组讨论:归纳单项式乘单项式的一般步骤.(先确定积的符号,再运算)反思小结:运用单项式乘单项式的法则时,可按如下三个步骤进行:一是先把各因式的系数相乘,作为积的系数;二是把各因式的同底数幂相乘,底数不变,指数相加;三是只在一个因式里出现的字母,连同它的指数作为积的一个因式.针对训练:见《学生用书》相应部分1.填空:(1)a 2-2a 2=__-a 2__;(2)a 2·2a 3=__2a 5__;(3)4y ·(-2xy 2)=__-8xy 3__.2.已知单项式-3x4m -n y 2与2x 3y m +n 的和为一个单项式,则这两个单项式的积是_ -6x 6y 4__.四、总结梳理,内化目标1.单项式乘单项式的法则,并能灵活运用单项式乘单项式的法则进行运算;2.运用单项式乘单项式的法则时,注意其运算步骤以及系数和符号的问题.3.单项式与单项式的和与积,有什么区别?五、达标检测,反思目标1.下列运算正确的是( D )A .(-2xy)(-3xy)3=-54x 4y 4B .5a 3·(3a 3)2=15a 12C .(-0.1x)(-10x 2)3=-x 2D .(2×10n )(12×10n )=102n2.化简(-3x 2)·2x 3的结果是( A )A .-6x 5B .-3x 5C .2x 5D .-6x 63.用科学记数法表示:(1.2×103)×(2.5×1011)×(4×109)的结果是1.2×1024__. 4. 如果单项式-3x4a -b y 2与x 3ya +b是同类项,那么这两个单项式的积是( D )A .3x 6y 4B .-3x 3y 2C .3x 3y 2D .-3x 6y 45.计算:(1)25x 2y 3⎝ ⎛⎭⎪⎫-516xyz 2; 解:原式=-25×516x 3y 4z 2=-18x 3y 4z 2.(2)(-4x 2y)·(-x 2y 2)·321y . 解:原式=-4×(-1)×12·x 4y 6=2x 4y 6.14.1 整式的乘法(第5课时)教学目标1.单(多)项式与多项式相乘的运算法则的探索与运用. 2.会进行整式的混合运算. 教学重点单项式与多项式相乘的法则. 教学难点灵活运用法则进行单项式乘多项式,多项式乘多项式的运算. 一、创设情景,明确目标三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a 、b 、c.你能用不同的方法计算它们在这个月内销售这种商品的总收入吗? 展示点评:你可以用几种方法求出三家连锁店销售商品的总收入? 它们有何关系?这将为我们学习单(多)项式乘多项式打开知识的大门. 二、自主学习,指向目标自学教材第99-101页,思考并回答下列问题:1.单项式乘多项式的依据是乘法的分配律,其法则是:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.多项式乘多项式,可以先把其中的一个多项式看作一个整体,再进行运算,因此它的运算依据是单项式乘多项式的运算法则.其法则是:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.在进行单项式乘多项式和多项式乘多项式运算的过程中,应当注意什么问题? (一是要注意符号;二是要注意不要漏乘,重复乘) 三、合作探究,达成目标 探究点一 单项式乘多项式 活动一:填空(1)m(a +b +c)=________,其依据是_________________________________________. (2)归纳:单项式与多项式相乘,就是根据________________________,就是用单项式去乘多项式的____________,再把所得的积________________. 例1 计算: (1)(-4x 2)(3x +1);(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·12ab. 小组讨论:在进行单项式乘多项式的运算时,关键是什么?同时要注意什么问题? 展示点评:关键是把单项式乘多项式转化成单项式乘单项式,再运用幂的运算法则进行运算;运算时要注意符号的变化. 解答过程见教材P100例5反思小结:①单项式与多项式相乘实质上是转化为单项式乘单项式,在相乘时不能漏乘;②注意确定积的符号.针对训练:见《学生用书》相应部分 探究点二 多项式乘多项式 活动二:看图填空:(1)①如上图,大长方形的长是________,宽是________,则面积等于____________. ②图中四个小长方形的面积分别是____________________________, 由①②可得(a +b)(m +n)=____________.(2)(a+b)(m+n)=a·________+b·________=________.①上述运算依据是:______________________;____________________.②上述运算的思路:把多项式相乘的问题转化为____________________________________________________________________.(3)归纳:多项式与多项式相乘,就是先用一个多项式中的________去乘另一个多项式的________,再把所得的________相加.例2计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).展示点评:关键是将多项式乘多项式转化为单项式乘单项式的形式.解答过程见教材P101例6小组讨论:多项式乘多项式应注意的问题?反思小结:①相乘时按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数等于原多项式的项数之积;③能合并同类项的,一定要合并同类项.针对训练:1.填空:(1)(x-1)(x-2)=__x2-3x+2__;(2)(m+2)(m-2)=__m2-4__;(3)(2x+3y)(3x-2y)=__6x2-6y2+5xy__.2.先化简,再求值:(x-2y)(x+3y)-(2x-y)(x-4y),其中x=-1,y=2.解:原式=-x2+10xy-10y2.当x=-1,y=2时,原式=-(-1)2+10×(-1)×2-10×22=-61.四、总结梳理,内化目标1.单(多)项式乘多项式的法则.2.在应用单(多)项式乘以多项式的法则进行运算时应注意正确的确定积的符号.3.数形结合、转化等数学思想.五、达标检测,反思目标1.若(x+a)(x+b)=x2-kx+ab,则k的值为( B )A.a+b B.-a-b C.a-b D.b-a2.计算:(1)(3x-1)(4x+5);解:原式=12x2+15x-4x-5=12x 2+11x -5.(2)(-4x -y)(-5x +2y). 解:原式=20x 2+5xy -8xy -2y 2=20x 2-3xy -2y 2.3.解方程:x(2x -5)-x(x +2)=x 2-6. 解:2x 2-5x -x 2-2x =x 2-6 -7x =-6 x =67. 4.已知ab 2=6,求ab(a 2b 5-ab 3-b)的值. 解:原式=a 3b 6-a 2b 4-ab 2=(ab 2)3-(ab 2)2-ab 2=216-36-6 =174.14.1 整式的乘法(第6课时)教学目标1.根据除法的意义得出同底数幂的除法运算法则. 2.准确熟练地运用同底数幂的除法运算法则进行计算. 教学重点运用同底数幂的除法运算法则进行计算. 教学难点根据乘、除互逆的运算关系得出同底数幂的除法运算法则. 一、创设情景,明确目标1.回忆同底数幂的乘法运算法则.2.问题:一种数码照片的文件大小是28K ,一个存储量为26M(1M =210K)的移动存储器能存储多少张这样的数码照片?(1)统一单位: . (2)列式计算: .我们得到的算式应该理解成是________________________,这种运算应该如何进行呢?(猜想这种运算如何进行)二、自主学习,指向目标自学教材第102页至103页,思考下列问题:1.除法的意义是已知两个因数的积与其中一个因数,求另一个因数的运算,从除法的意义的角度去看待同底数幂相除就是已知两同底数幂相乘的结果与其中一个幂,求另一个幂的运算.2.同底数幂相除也可把作为被除数的幂看作分子,把作为除数的幂看作分母,转化为分数以约分的方法去求解.3.同底数幂相除的运算法则:底数不变,指数相减.4. 零次幂就是当相除的两个幂相同(即底数相同,指数也相同)时,由此可知其运算的结果为1.因为0作为除数无意义,所以底数不能为0.三、合作探究,达成目标探究点一同底数幂的除法活动一:1.填空:(1)( )·28=216;(2)( )·53=55;(3)( )·105=107;(4)( )·a3=a6.2.除法与乘法互为逆运算,要求空内所填数,其实是一种除法运算,所以这四个小题等价于:(1)216÷28=( );(2)55÷53=( );(3)107÷105=( );(4)a6÷a3=( ).3.对于除法运算,有没有什么特殊要求呢?_________________________________________________________________展示点评:一般地,我们有a m÷a n=a m-n(a≠0,m,n都是正整数,m>n).语言叙述:同底数幂相除,__________________________________________.例1计算:(1)x8÷x2;(2)(ab)5÷(ab)2.小组讨论:当底数是几个因式的积或一个多项式时,需要怎么看待?(解答过程见教材第103页例7)反思小结:1.底数a可以是单独的一个数或字母,也可以是一个多项式.2.底数互为相反数时要通过符号变换转化为同底数幂. 3.指数为1时,不能把a 的指数看成0. 针对训练:1.下列计算错误的是( D ) A .3m÷3n=3m -nB .25÷23=4C .26+26=27D .210÷2=2102.已知a 4÷a 2·a y=a 12,则y 等于( C ) A .7 B .4 C .10 D .6 探究点二 零指数幂活动二:根据除法的意义填空,再利用a m÷a n=a m -n的方法计算,你能得出什么结论?(1)72÷72=________=________; (2)103÷103=________=________; (3)a n÷a n =________=________(a ≠0)展示点评:任何非零数的零次幂都等于________,即a 0=________(a ≠0). 例2 ①计算:(-2014)0=(________). ② 若(-5)3m +9=1,则m 的值是________;(x -1)0=1成立的条件是________.小组讨论:底数不为0的零次幂的结果,与底数有联系吗?(没有联系,结果都是1) 【反思小结】对于零次幂,要注意底数不能为0. 3.计算: 12-(-32)2+(32)0.解:原式=12-94+1=-34.4.已知(x -1)x +2=1,求整数x 的值.解:(1)当x +2=0,且x -1≠0时,x =-2. (2)当x -1=1时,x =2.(3)当x -1=-1,且x +2为偶数时,x =0. 四、总结梳理,内化目标 1.同底数幂的乘法互逆同底数幂的除法2.理解同底数幂的除法的运算法则,能应用同底数幂的除法法则进行运算.3.任何不为0的数的零次幂都等于1,强调条件和结论的特殊性:(1)底数为0无意义;(2)结论是1不是0. 五、达标检测,反思目标1.计算:a 6÷a 2=__a 4__,x 9÷x 5÷x 5=__x -1__. 2.下列计算正确的是( D )A .(-y)7÷(-y)4=y 3B .(x +y)5÷(x +y)=x 4+y 4C .(a -1)6÷(a -1)2=(a -1)3D .-x 5÷(-x 3)=x 23.下列各式计算结果不正确的是( D ) A .ab(ab)2=a 3b 3 B .a 3b 2÷2ab =12a 2bC .(2ab 2)3=8a 3b 6D .a 3÷a 3·a 3=a 24.若3x=5,3y=4,则32x -y等于( A )A.254 B .6 C .21 D .20 5.计算: (1)(xy)4÷(xy)2; 解:原式=(xy)2=x 2y 2. (2)(-ab 2)5÷(-ab 2)2. 解:原式=(-ab 2)3=-a 3b 6. ●布置作业,巩固目标教学难点 1.上交作业:一、教材第105页第6题(1)-(4). 二、计算:(1)(2x +3y)4÷(2x +3y)2; (2)(-43)7÷(-43)4÷(-43)3;(3)a 9·a 5÷(a 4)3;(4)(-a)7÷(-a)4×(-a)3.解:(1)原式=(2x +3y)2. (2)原式=1. (3)原式=a 2. (4)原式=a 6 .14.1 整式的乘法(第7课时)教学目标1.探索单项式除以单项式、多项式除以单项式的运算法则. 2.掌握单项式除以单项式、多项式除以单项式的运算法则及其应用. 教学重点单项式除以单项式的运算法则及其应用. 教学难点探索单项式除以单项式的运算法则. 一、创设情景,明确目标问题:木星的质量约是1.9×1024t,地球的质量约是5.08×1021t.你知道木星的质量约为地球质量的多少倍吗?列式计算:_______________________________________________.如何计算上式?它属于什么类别的运算?类似的计算你还能算吗?8a3÷2a=________;5x3y÷3xy=________;12a3b2x3÷3ab2=________.你能大致地说一说这种运算的计算方法吗?二、自主学习,指向目标自学教材第103页至104页,思考下列问题:1. 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.从上述运算中,可以归纳出单项式除以单项式的运算法则:把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.3.多项式除以单项式的运算法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加.三、合作探究,达成目标探究点一单项式除以单项式活动一:1.计算,观察:(1)2a·4a2=______8a3÷2a=______(2)3xy·2x2=______6x3y÷3xy=______(3)3ab2·4a2x3=________12a3b2x3÷3ab2=________观察以上单项式除以单项式的运算过程可以发现可分为____________、____________、____________三部分分别运算.归纳:单项式相除,把________与________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的________作为商的一个因式.2.例1(1)28x4y2÷7x3y;(2)-5a5b3c÷15a4b.思考:若系数含有负号,应先确定什么?对于只在被除式里含有的字母应当注意什么问题? 展示点评:如果系数里含有负号,应当先确定商里的符号;对于只在被除式里含有的字母,不要漏掉,连同它的指数作为商的一个因式. 小组讨论:单项式除以单项式应注意什么问题? 反思小结:单项式除以单项式时应注意:①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数包含它前面的系数;②被除式单独有的字母及其指数,作为商的一个因式,不要漏掉; ③系数相除,除以一个数,等于乘这个数的倒数. 针对训练:1.x 2y 3÷(xy)2的结果是( C )A .xyB .xC .yD .xy 22.4a 3b m ÷36a n b 2=19b 2,则m ,n 的值为( A )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =3 探究点二 多项式除以单项式 活动二:1.计算后观察:(1)m ·(a +b)=________(am +bm)÷m =________; (2)a ·(a +b)=________(a 2+ab)÷a =________;(3)2xy ·(2x +y)=________(4x 2y +2xy 2)÷2xy =________.归纳:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 例2 计算:(1)(12a 3-6a 2+3a)÷3a ; (2)[(x +y)2-y(2x +y)-8x]÷2x.展示点评:多项式除以单项式的运算顺序是什么?与有理数的运算顺序有何联系?展示点评:(1) 见教材P103例8(3)题.(2)原式=(x 2+2xy +y 2-2xy -y 2-8x)÷2x =(x 2-8x)÷2x =12x -4.小组讨论:多项式除以单项式应注意什么问题? 反思小结:多项式除以单项式时应注意:①多项式除以单项式时先把这个多项式的每一项除以这个单项式,再把所得的商相加; ②多项式除以单项式时,商的项数与多项式的项数相同,注意不要漏项.针对训练:3.计算[(x 2)4+x 3·x -(xy)2]÷x 2正确的结果是( A ) A .x 6+x 2-y 2B .x 7+x 3-xy 2C .x 8+x 4-x 2y 2D .x 10+x 6-x 4y 24.(7x 3-6x 2+3x)÷3x =__37x 2-2x +1. 5.已知-5x 与一个整式的积是25x 2+15x 3y -20x 4,则这个整式是-5x -3x 2y +4x 3. 四、总结梳理,内化目标1.理解并掌握单项式除以单项式、多项式除以单项式的运算法则并能灵活进行相关运算. 2.多项式除以单项式实质就是转化为单项式除以单项式进行运算. 五、达标检测,反思目标1.⎝ ⎛⎭⎪⎫-34a 2bc ÷(-3ab)等于( B ) A.94a 2c B.14ac C.94ab D.14a 2c 2.(8x 6y 2+12x 4y -4x 2)÷(-4x 2)的结果是( C ) A .-2x 3y 2-3x 2y B .-2x 3y 2-3x 2y +1 C .-2x 4y 2-3x 2y +1 D .2x 3y 3+3x 2y -13.当a =34 时,代数式(28a 3-28a 2+7a)÷7a 的值是( B )A.254B.14 C .-94 D .-4 4.下列计算,结算正确的是( D )A .(a -b)3÷(b -a)3=b -a B .(a +b)5÷(a +b)3=a 2+b 2C .(b -a)5÷(a -b)3=(a -b)2D .(x -y)n +1÷(x -y)n -1=(x -y)25.下列运算:①(-3x)4÷(-3x)3=-3x ;②6a 6÷2a 2=3a 3;③a 8b 6÷(a 3b 3)2=a 2b ; ④8xn +2y 4÷(-2xy 2)2=2x n;其中错误的有( B )A .1个B .2个C .3个D .4个 6.计算:(1)-15(a 2bc)4÷(5ab 2)2;解:原式=-15a 8b 4c 4÷25a 2b 4=-35a 6c 4.(2)15x 8y 2z 4÷(-3x 4yz 3)÷(-4x 2y). 解:原式=54x 2z.精品文档用心整理资料来源于网络仅供免费交流使用。
人教版八年级上册14.1整式的乘法15.1:整式的乘法教学设计一、教学目标1.知道什么是整式的乘法,会进行整式的乘法计算。
2.运用整式的乘法解决实际问题。
3.培养学生的数学思维能力和解决实际问题的能力。
二、教学内容整式的乘法。
三、教学重难点1.整式的乘法的定义,如何进行计算。
2.运用整式的乘法解决实际问题。
四、教学方法1.案例讲解法:通过讲解一些实际问题,引导学生探索使用整式的乘法来解决问题的方法。
2.组内合作法:将学生分成小组,让他们在小组内合作探讨,再共同完成课堂任务。
五、教学过程5.1 导入新课1.引入整式的乘法的概念,让学生从实际问题中感受整式的乘法的必要性。
例如:小明每天早上从家里步行5分钟到车站,然后再乘坐公交车去上学。
如果小明每天都要进行这样的行程,那么7天一周,他一周在路上所花费的时间是多少?2.帮助学生理解整式的乘法的概念,例如:2(a+b)表示2个a加2个b,(a+b)^2表示(a+b)乘以(a+b)。
3.通过乘积的运算法则,讲解整式的乘法的计算方法。
例如:(ax+by)(cx+dy)=(ac)x2+(bc+ad)xy+bdy2。
5.2 整合知识1.让学生自己设计一个问题,并用整式的乘法来解决这个问题。
2.然后让学生将自己的问题和解决方法在小组间分享,评价和改进。
5.3 拓展应用1.让学生从实际问题中感受到应用整式的乘法所带来的便捷性和实用性。
2.让学生在实际生活中应用整式的乘法来解决一些实际问题。
六、教学评价1.教师通过观察学生课堂表现、听取他们的小组讨论以及评价自己设计问题的解决方法和应用整式的乘法解决实际问题等,进行综合性评价。
2.学生进行自评和互评,从不同的角度进行评价和提升。
七、教学反思整式的乘法是初中数学概念中较难理解的部分之一,需要进行系统、全面的教学。
要让学生从实际问题中感受到掌握整式的乘法的必要性和应用价值,让学生体验到数学的实用性,并培养学生的思维能力和解决问题的能力。
14.1整式的乘法第1课时同底数幂的乘法教学目标1.探索并理解同底数幂的乘法法则,并能运用其熟练地进行运算;2.运用同底数幂的乘法法则解决一些简单实际问题,体会数式通性的思想方法.教学重点同底数幂的乘法法则.教学难点正确理解与推导同底数幂的乘法法则.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标七年级的时候我们学习过整式的加减,a2+2a2同学们肯定会计算,因为它们是同类项,相同字母的指数相同,当指数不一样的时候还能计算吗?如a2+a3?如果我们把加法转化为乘法,a2·a3它能计算吗?它等于多少呢?要想解开这个疑惑的话就认真学习第十五章的第一节同底数幂的乘法,相信学完以后都能解开谜底了.二、自主学习,指向目标自学教材第95页至96 页,思考下列问题:1.回顾乘法与幂的相关知识:①a n的意义是n个a相乘,我们把这种运算叫做乘方,乘方的结果叫幂,a叫做底数,n是指数; 24=(2) ×(2)× (2)×(2);10×10×10×10×10=105②指出下列幂的底数和指数:(-a)2底数为-a,指数为2;a2底数为a,指数为2;(x-y)3底数为x-y,指数为3;_(y-x)n底数为y-x,指数为n;2. 同底数幂的乘法法则是同底数幂相乘,底数不变,指数相加,即:a m·a n=a(m+n)(m,n都是正整数).3. 同底数幂乘法法则推导的依据是乘方的意义.三、合作探究,达成目标探究点一探究同底数幂的乘法法则的推导活动一:阅读教材第95页,思考并完成下列问题:(1) 思考:乘方的意义是什么?(即a m表示什么?) (相同因数积的形式,即m 个a 相乘.)(2)根据乘方的意义填空,看看计算结果有什么规律: 23×22=[(2)×(2) ×(2)]×[(2)×(2) ]=2(5) a 3·a 2=[(a)×(a)×(a)]×[(a)×(a)]=a (5) 5m ×5n =(5×5×…×5),\s\do4((m)个))×(5×5×…×5),\s\do4((n)个5))=5(m +n) 展示点评:两个同底数幂相乘,根据乘方的意义怎么去理解?完成下列填空: 运算过程 依据 a m ·a n=(a×a×…×a ),\s\do4((m)个))(a×a×…×a ),\s\do4((n)个5)) (乘方的意义) =(a×a×…×a _,\s\do4((m +n)个)) (乘法的结合律) =a (m +n) (m ,n 都是正整数)(乘方的意义)归纳:同底数幂相乘,底数不变,指数相加. 小组讨论:乘方也是一种运算形式,它与乘法有何联系? 对于同底数幂的乘法的理解,关键是什么?【反思小结】乘方是乘法的特殊形式,是几个相同因数积的形式;对于同底数幂乘法的理解,关键就在于对乘方意义的理解.针对训练:1.幂(-x)5的底数是-x ,-x 5的底数是x;_x 5的底数是x2.计算(-x)5=-x 5;_(-x)6=x 6;_(x -y)2=+(y -x )2;_(x -y)3=-(y -x )33.下列四个算式:①a 6·a 6=2a 6;②m 3+m 2=m 5;③x 2·x ·x 8=x 10;④y 2+y 2=y 4,其中计算正确的有( A )A .0个B .1个C .2个D .3个 4.下列各式中,计算过程正确的是( D )A .x 3+x 3=x 3+3=x 6B .x 3·x 3=2x 3=x 6C .x ·x 3·x 5=x 0+3+5=x 8D .x 2·(-x 3)=-x 2+3=-x 5探究点二 同底数幂乘法法则的应用活动二:(1)x 2·x 5(2)a·a 6(3)(-2)×(-2)4×(-2)3(4)x m·x 3m +1展示点评:学生自主解答,师生共同点评.变式:1.-2×23×25=-29.2.a 2·a 5+2a 7=4a 7;a 2·a 5+a 7=2a 7.小组讨论:在应用该法则进行运算时,应当注意哪两个方面的问题?反思小结:在应用同底数幂的乘法法则进行运算时,一是要先判断是不是同底数幂,不是同底数幂的形式,要转化成同底数幂;二是底是不变,指数相加(紧扣法则).针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.知识结构图乘方的意义――→推导类比、归纳、转化同底数幂乘法法则⎩⎪⎨⎪⎧计算实际运用 2.在探索同底数幂的乘法运算法则时,进一步体会幂的意义,从而更好的理解该法则.3.能够熟练地应用该法则进行运算. 五、达标检测,反思目标1.下列各式中运算正确的是( D )A .a 2·a 5=a 20B .a 2+a 5=a 7C.a2·a2=2a2 D.a2·a5=a72.下列能用同底数幂进行计算的是( C )A.(x+y)2(x-y)3 B.(-x+y)3(x+y)2C.(x+y)2(x+y)3 D.-(x-y)2(-x-y)3.一种电子计算机每秒可进行1014次运算,它工作103秒可进行__1017__次运算.4.计算:(1)102×104×105解:原式=102+4+5=1011(2)10n-1·102-n·103解:原式=10(n-1)+(2-n)+3=104(3)x m·x2m+1解:原式=x m+2m+1=x3m+15.已知a m=2,a n=3,试用a表示.求:(1)a m+n;(2)a m+n+2.解:(1)a m+n=a m·a n=2×3=6.(2)a m+n+2=a m·a n·a2=2×3·a2=6a2●布置作业,巩固目标教学难点1.上交作业:课本第104页1(1)(2);2(1).2.课后作业:见《学生用书》.第2课时幂的乘方教学目标1.探索并理解幂的乘方法则.2.运用幂的乘方法则进行计算.教学重点幂的乘方运算.教学难点幂的乘方法则总结及应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.根据乘方的意义填空:a·a·a=________;a2·a2·a2=________;a m·a m·a m=________(m为正整数).2.激趣导入你能说出444与533两个数中,哪个比较大吗?学习本节后你就可以回答这个问题了!二、自主学习,指向目标自学教材第95至96页,思考下列问题(1)(a m)n的意义是n个a m相乘.(2)幂的乘方运算法则是:(a m)n=a mn(m,n都是正整数)用文字语言可描述为:幂的乘方,底数不变,指数相乘.(3)同底数幂的乘法与幂的乘方运算形式的区别是前者是底数相同的幂相乘,即乘法运算;后者是幂的乘方,即是乘方运算;同底数幂的乘法与幂的乘方运算法则的区别是运算的结果都是底数不变,前者是指数相加;后者是底数相乘.三、合作探究,达成目标探究点一幂的乘方法则的推导活动一:根据乘方的意义及同底数幂的乘法法则填空,看看计算的结果有什么规律:(1)(32)3=32×32×32=3(6);(2)(a2)3=a2×a2×a2=__a6__;(3)(a m)3=__a m×a m×a m__=__a3m__(m是正整数).展示点评:对于任意底数a与任意正整数m、n,(a m)n=a m a m……a m,\s\do4(n个am))=__a mn__.由此可得到幂的乘方法则:(a m)n=__a mn__(m,n都是正整数),即:幂的乘方,底数__不变__,指数__相乘__.小组讨论:同底数幂相乘与幂的乘方的区别?反思小结:幂的乘方法则一定要与同底数幂相乘的乘法法则区分开:两个法则都是底数不变,但同底数幂相乘时,指数相加;而幂的乘方时,指数相乘,这是本质区别.针对训练:1.63表示__3__个__6__相乘;(62)3表示__3__个__62__相乘.2.判断正误,正确的打“√”,错误的打“×”.(1)a5+a5=2a10(×)(2)(x2)3=x5(×)(3)(-3)2·(-3)4=(-3)6=-36(×)(4)[(m-n)3]4-[(m-n)2]6=0(√)3.下列运算正确的是( C )A.(a3)3=a6B.a4·a4=a16C.(a3)4=a12D.a3+a4=a74.小明的解答有错误吗?如果错误,请说出正确的结果.(1)(x3)3=x6;(2)a6·a4=a24.解:(1)(x3)3=x9;(2)a6·a4=a10.探究点二幂的乘方的应用活动二:计算:(1)(103)5(2)(a4)4(3)(a m)2(4)-(x4)3思考:以上计算形式是幂的哪种运算?其运算法则如何?运算中有负号的应先确定什么?展示点评:都是幂的乘方运算,注意和同底数幂的乘法法则区分开;运算用有符号的,先确定结果的符号,再运用法则进行运算.解答过程见课本P96例2解答过程.小组讨论:如何灵活运用幂的运算进行计算?反思小结:对于幂的运算,应当先观察形式,应用适当的法则进行运算.针对训练:5.若(x 2)n =x 8,则n =__4__.6.若x m ·x 2m =2,求x 9m的值.解:原式=(x 3m )3=23=8. 四、总结梳理,内化目标 1.知识结构图: 乘方的意义――→推导类比、归纳、转化幂的乘方法则⎩⎪⎨⎪⎧计算实际运用2. 理解幂的乘方法则,并能灵活应用幂的乘方法则进行运算.3.注意幂的乘方法则与同底数幂相乘的区别:前者是底数不变,指数相乘;后者是底数不变,指数相加.五、达标检测,反思目标1.(a 2)3=__a 6__;(x 6)5=__x 30__.2.(a m )4=__a 4m __;(x 3m )2n =__x 6mn__.3.若a 2m =4,则a 3m=__±8__.4.若x 为正整数,且3x ·9x ·27x =96,则x =2. 5.计算:(1)(y m )2·(-y 3)解:原式=y 2m ·(-y 3)=-y 2m +3(2)(y 2)3·y 2+(y 2)2y 4解:原式=y 6·y 2+y 4y 4=2y 86.(1)已知x a=2,x b=3,求xa +b的值.解:x a +b =x a ·x b=2×3=6 (2)已知x a=2,x b=3,求x2a +3b的值.解:x 2a +3b =x 2a ·x 3b=(x a )2·(x b )3=22·33=4×27=108●布置作业,巩固目标教学难点 1.上交作业: 一、计算:(1)-b·(-b 3)5; (2)2(x 3)5-(x 5)3; (3)a·(a 2)4·(-a 2). 解:原式=-b (-b 15)=b16解:原式=2x 15-x 15=x 15 解:原式=a·a 8·(-a 2)=-a11二、已知a m=2,b m=5,求(a 3)m+(b 2)m的值.解:原式=a 3m +b 2m=(a m )3+(b m )2=23+52=8+25=332.课后作业:见《学生用书》.第3课时积的乘方教学目标1.探索并理解积的乘方法则.2.运用积的乘方法则进行计算.教学重点积的乘方运算法则及其应用.教学难点幂的运算法则的灵活运用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标若已知一个正方体的棱长为1.1×103 cm,你能计算出它的体积是多少吗?这个结果是幂的乘方形式吗?积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥妙.二、自主学习,指向目标自学教材第97至98页,思考下列问题:1.(ab)n的意义是n个ab相乘.2. 积的乘方运算法则是:(ab)n=a n b n(n为正整数)用文字形式可描述为:等于把积的每一个因式分别乘方,再把所得的幂相乘.3.和幂有关的运算法则有:同底数幂相乘;幂的乘方;积的乘方,应当如何区分?(一是注意运算形式:是乘法,还是乘方;二是从法则的运算结果进行区分.)三、合作探究,达成目标探究点一积的乘方运算法则推导活动一:阅读课本P143页的内容,展示点评:1.根据乘方的意义:(ab)3表示______个______相乘;(ab)m表示______个______相乘.2.填出下列运算每一步的依据:(ab)2=(ab)·(ab)→依据:____________=(a·a)·(b·b)→____________=a2b2→____________3.计算:(ab)3=________=________=________(ab)n=________=________=________展示点评:(ab)n=________(n为正整数)即:积的乘方,等于把________分别乘方,再把________相乘.小组讨论:如何区分同底数幂相乘,幂的乘方,积的乘方这三个运算法则?反思小结:一是注意运算形式:同底数幂相乘是乘法运算,幂的乘方是乘方运算;二是注意法则,即(幂的)乘法指数就是加, (幂的)乘方指数就是乘;积的乘方就是先将各个因式先乘方再相乘.针对训练:1.(1)同底数幂相乘,底数不变,指数__相加__;幂的乘方,底数不变,指数__相乘__;积的乘方,等于各个因式__乘方__的积.(2)m,n为正整数时,a m·a n=__a m+n__;(a m)n=__a mn__;(ab)n=__a n b n__2.如果(x3y n)2=x6y8,则n等于( D )A.3 B.2 C.6 D.43,4见《学生用书》相应部分。