热电阻校验检定记录
- 格式:xls
- 大小:40.00 KB
- 文档页数:1
陕西XXXX技术有限公司工业铂、铜热电阻检定/校准结果测量不确定度评定报告编制:审核:批准:2020年06月06日检定/校准结果测量不确定度评定报告一、概述1、预评估对象:Pt100铂电阻温度计,1#(昆明大方)2、检定方法:JJG 229-2010《 工业铂、铜热电阻》3、检定项目:示值误差4、检定环境:温度21℃;湿度52%RH5、检定用计量标准器:二等标准铂电阻温度计 二、测量结果不确定度的评定 1、检定方法及原理按JJG229-2010《工业铂、铜热电阻检定规程》要求,按比较法进行测量,将二等铂电阻温度计与被检铂热电阻同时插入100℃的恒温槽中待温度稳定后通过测量标准与被检的值,由标准算出实际温度然后通过公式计算得出被检的实际值100R '。
2、被测对象铂热电阻Pt100 A 级,测量点:100℃,允许偏差±0.35℃ 3、测量标准3.1 二等标准铂电阻温度计二等铂电阻温度计证书给出的参数见表1 表2:二等铂电阻温度计证书给出的参数3.2 电测设备2010型数字万用表,测量范围(0~1000)Ω,U =0.000012K Ω,k =2 4、数学模型 检定100℃点:*100100100100100)/()/(hh t s t ss h t h t t t dt dW W W dt dR R R ∆-∆=---=∆== 从数学模型中可以观察到,100℃检定点的输入量有h R ,*h R 、*tp R 和sW100。
100)/(=t dt dR 、100)/(=t stdt dW 的不确定度很小,可以忽略不计。
4.1 输入量h t ∆的标准不确定度)(h t u ∆的评定有4个主要不确定度来源:h R 测量重复性,插孔之间的温差,电测设备,测量电流引起的自热。
4.1.1 测量重复性)(1h t u ∆,检定100℃时的合并样本标准差p s 为Ω⨯==-=∑33121034.431i i p s s 实际测量以4次测量值平均值为测量结果,所以:Ω⨯==-311017.24)(p h s R u 。
====Word行业资料分享--可编辑版本--双击可删====
热电阻校验规程
1.拧开接线盒查看内部腐蚀情况。
2.拆下接线,注意三线制热电阻接线要记录线号和主副线之分。
3.拆下接线端子的固定螺丝,抽出电阻芯查看外观有无断线等情况。
4.将热电阻芯装回并固定好螺丝。
5.将万用表档位拨到电阻档的200欧姆档用红黑表笔对接查看阻值Ω1并记录下来。
6.将红黑表笔分别接到热电阻的两接线端,看万用表显示值Ω并记录下来。
7.根据如下公式算出温度:
【(Ω-Ω1)-100】/0.385=℃
8.也可根据温度算出电阻值公式如下:
℃×0.385+100=Ω
9.根据公式算出的温度与标准温度对比可得出热电阻的校验值。
10.如果结果偏大或偏小说明热电阻芯有断路或短路的情况,需维修后重新校验。
11.如果校验值符合热电阻合格。
源-于-网-络-收-集。
制定部门热工计量研究所生效日期2013.01.08版本号A/03.3检定操作3.3.1热电阻温度传感器的检定,一般进行冰点(0℃)和沸点(100℃)检定点检定,若冰点和沸点合格,电阻比不合格时,可在沸点以上追加检定点检定,追加检定合格即合格。
3.3.2冰点(0℃)检定3.3.2.1检定前准备工作冰点检定在冰瓶或半导体制冷的冰点器中进行。
用冰瓶作冰点检定时,应将干冰用碎冰机粉碎成雪花状装入冰瓶,加适量的蒸馏水搅拌至糊状(即冰水化合物),再将二等标准铂电阻插入中间,被检热电阻环绕标准铂电阻插入,其深度相同,且,插入深度不得小于冰瓶深度的2/3,也不得接触冰瓶底部。
然后用二等标准玻璃水银温度计监测实际温度。
按照传感器的引线形式(三线制或四线制)将测试线鳄鱼夹分别夹在对应引出线上,将测试电缆另一端按照线号标记分别接在转换开关上,最后通过转换开关连接至测试仪表输入端。
3.3.2.2检查确认测试系统线路正确性传感器按照以下图例方式完成接线后,拨动转换开关,由标准—被检1—被检2…—被检N,逐个观察测试仪表上的读数值,应分别显示为0℃附近的对应电阻值。
否则,应检查线路连接的正确与否并纠正。
图1:四线制接线图2:三线制接线图3:三线制接线3.3.2.3读取数据制定部门热工计量研究所生效日期2013.01.08版本号A/03.3.2.3读取数据A)观察冰瓶中的二等标准水银温度计读数是否在0℃±0.1℃范围。
B)转换开关拨至标准位置,观察测试仪上读数值变化,当最末位(0.1mΩ显示位置)数值变化缓慢(大约每分钟进一位),此时可认为温度测量系统趋于稳定状态,即具备测试数据条件。
C)开始读数:以上全部准备工作就绪,就可以按照下面顺序和方向进行测量和读数。
按照以上方向循环读数两个循环共四次读数,四线制按照图1接线,三线制时,第一个循环,按照图2接线,第二个循环,按照图3接线,如果测试数据正常,即完成读数并如实在热电阻检定原始记录表上记录结果。
宝丰能源催化有限公司热电阻校验方法(自编校验方法)目录1技术要求 (1)1.1 外观 (1)1.2 热电阻外观 (1)1.3感温元件 (1)1.4 外保护套管 ................................ 错误!未定义书签。
2、校验条件 (1)2.1 校验环境 (1)3、校验项目和校验方法 (1)3.1 校验项目 (1)3.2外观检查 (2)3.3绝缘电阻测量 ............................. 错误!未定义书签。
4 校验结果处理和校验周期 (2)本规程适用于-189.3342℃~660.323℃工作基准的热电阻的检定。
1技术要求1.1 外观:温度计及感温原件的支撑骨架应完整无裂痕,保护管内不应有任何碎片,各部件之间固定牢固。
热电阻外观应干净,无又无或其他附着物。
1.2 热电阻外观:使用在600℃以上的温度计其外保护套管的长度为510mm±10mm.使用在600℃以下的温度计其外保护管的长度为470mm±10mm,其外径均小于6mm~7.5mm。
管的外壁需进行抑制热辐射的处理。
感温元件应位于保护套管顶端60mm范围内。
1.3感温元件:热电阻感温元件应采用无应力结构,温度变化时感温原件的热阻丝应能自由的膨胀和收缩。
1.4外保护套管。
热电阻的外套管应密封,管内应充含有氧气的干燥空气,外保护套管不得有破损、划痕。
2、校验条件2.1校验环境温度:环境温度(20±5)℃,相对湿度15%~80%。
室内要有冷却水通道及接地电阻小于0.5Ω的屏蔽地线。
3、校验项目和校验方法3.1 校验项目:3.2外观检查:按本规程第1条中的要求用目力观察检查3.3绝缘电阻测量:环境温度在15℃~30℃之间,相对湿度不应超过80%时,有兆欧表热电阻金属外壳和引线之间的电阻,其值不应小于700MΩ.4校验结果处理和校验周期:4.1校验应有原始记录,校验结果原始记录必须按项填写,存入技术档案。
热电阻检定标准一、外观检查1.热电阻外观应无损伤,保护套管不应有裂纹和锈蚀现象。
2.热电阻的型号、规格和量程应符合要求,标志应清晰、齐全。
3.热电阻的接线端子应牢固,无松动现象。
二、绝缘电阻测试1.绝缘电阻测试应使用符合要求的绝缘电阻测试仪,测试温度为室温。
2.测试时,热电阻应放置在绝缘物上,避免与地面接触。
3.分别测试热电阻的接线端子与外壳之间的绝缘电阻以及接线端子之间的绝缘电阻,应符合产品说明书的要求。
三、线性度测试1.线性度测试应使用符合要求的温度源和温度计,测量误差应小于±0.5℃。
2.在规定温度范围内,选取至少五个温度点,记录热电阻的输出值和温度值。
3.根据测量数据绘制输出值与温度值的线性图,观察线性度是否符合要求。
四、重复性测试1.重复性测试应使用符合要求的温度源和温度计,测量误差应小于±0.5℃。
2.在规定温度范围内,对热电阻进行至少三个周期的重复性测试。
3.每个周期应包括加热和冷却过程,并记录热电阻的输出值和温度值。
4.根据测量数据计算重复性误差,判断重复性是否符合要求。
五、迟滞性测试1.迟滞性测试应使用符合要求的温度源和温度计,测量误差应小于±0.5℃。
2.在规定温度范围内,选取至少五个温度点,记录热电阻的输出值和温度值。
3.分别绘制加热和冷却过程中的输出值与温度值曲线,观察两条曲线的重合程度。
4.根据测量数据计算迟滞性误差,判断迟滞性是否符合要求。
六、分辨率测试 (内容在此格式化限制下可能不够显示) :一般来说,通过以下几点来进行 :1 . 选择小信号输入法。
这是一种基本的测量分辨率的方法。
使用该方法,热电阻的温度信号将被输入到电子放大器中,然后通过输出电压来计算其分辨率。
这种方法主要适用于测量精度较高的场合。
2 . 使用微分法。
该方法主要通过将输入信号进行微分处理,然后通过放大器进行放大,最后通过输出电压来计算其分辨率。
该方法主要适用于测量精度较低的场合。
绝缘电阻检测记录绝缘电阻测试的目的是为了确定电气设备或系统的绝缘阻抗是否达到规定的要求,以确保设备的正常运行和人身安全。
通过测量绝缘电阻,可以判断设备或系统是否存在绝缘缺陷、水湿、污秽和其它问题,及时采取措施进行维修或更换。
在进行绝缘电阻检测时,需要注意以下几点:1.测试前应确保电气设备或系统已经停电,并进行安全措施,以避免发生电击事故。
2.测试仪器应进行合适的校准,并确认其满足测试要求。
3.在进行测试时,应按照设备或系统的特点选择合适的测试电压。
一般情况下,直流电压大于1000V时,可以检测到较小的绝缘电阻值。
4.测试仪器的电源应保持稳定,并采取适当的措施避免测试线缆带来的误差。
绝缘电阻测量记录表:测量点,测量电压(V),测量电阻(MΩ),结论---------,------------,-------------,----------A点,1000,10,合格B点,1000,20,合格C点,1000,5,不合格D点,500,50,合格E点,500,2,不合格测试结果分析:从上述测试结果中可以看出,A点和B点的绝缘电阻都达到了规定的要求,属于合格范围内。
而C点和E点的绝缘电阻不符合要求,表示存在绝缘缺陷或其他问题,需要进行维修或更换。
D点的绝缘电阻合格,但值较低,也需要进行进一步检查以确定是否需要采取措施加固绝缘性能。
绝缘电阻的不合格可能有多种原因,比如电器设备老化、绝缘材料老化、受潮或是设备的绝缘层受到污染等。
因此,在检测时不仅要对绝缘电阻值进行评估,还要综合考虑其他可能因素,以确定合理的维修或替换方案。
在绝缘电阻检测过程中,应及时记录测试结果和发现的问题,以便进行后续的维修工作。
同时,根据测试结果,需要及时采取合理的措施进行设备或系统的维护和修复,以保证设备的安全运行和延长其使用寿命。
绝缘电阻检测对于电气设备或系统的安全运行起着至关重要的作用。
通过定期进行绝缘电阻检测,可以及早发现并处理问题,避免电气故障和事故的发生,提高设备可靠性和运行效率。
热电偶标定实验数据记录热电偶是一种相对古老的温度测量技术,它通常由热电阻、热电导线和铅及其他材料制成。
它们有一定的温度范围,可以有效地测量液体、气体和固体的温度。
热电偶在实验室和工厂中被广泛使用,如果要测量温度或对温度进行校准,它是一个非常有用的工具。
由于热电偶在实际工作中起到了关键作用,所以在使用热电偶进行温度测量之前,必须进行标定。
有两种标定方法:现场标定和实验室标定。
现场标定是指用恒温温度计标定热电偶,根据热电偶和恒温温度计之间的温度差来计算热电偶的偏差,以确保其准确性。
实验室标定是指将热电偶置于范围宽的室内标定装置中,并进行多点温度测量,从而得出热电偶的偏差值,并用于温度表的校准。
在热电偶标定过程中,必须记录下测量过程中的温度数据,这些数据是对热电偶准确性进行分析和校准的基础。
首先,在标定前,应测量每个热电偶的工作电压和温度,并记录下它们。
接下来,在实验室标定中,应记录和记录每一次温度测量的结果,包括恒温温度计和热电偶的温度。
此外,在热电偶存在性能变化时,应记录温度数据。
此外,在热电偶标定过程中,室内温度和湿度也会影响测量结果,应记录这些信息,包括温度和湿度、实验室的气氛,以及室内的条件。
最后,标定结束后,应将标定结果记录到表中,并签署相关人员的签名。
记录的信息应包括标定日期、标定人员、温度传感器类型、对热电偶的校准偏差和其他标定参数。
综上所述,热电偶标定实验中,要求记录下热电偶、恒温温度计和室内温度湿度等温度数据,用于热电偶准确性的分析和校准。
本次实验的结果将被记录,并作为有关部门的重要依据。
好的热电偶标定实验记录可以有效确保热电偶准确性,从而确保它们在实际应用中具有可靠性和精度。
热电阻检定方法热电阻是一种能够将温度变化转化为电阻变化的传感器。
它广泛应用于工业控制、环境监测、医疗设备等领域。
为了确保热电阻的测量精度和可靠性,需要进行热电阻的检定。
热电阻检定是通过对热电阻的电阻-温度特性进行测量和比较,来验证热电阻的准确性和稳定性的过程。
它可以帮助我们了解热电阻的实际工作状态,并及时发现和解决可能存在的问题。
热电阻检定的方法有多种,下面将介绍其中两种常用的方法。
1. 差动电位法:差动电位法是一种精确测量热电阻电阻-温度特性的方法。
它利用了热电阻的电阻随温度变化的特性,通过测量热电阻的电压输出来计算出其温度。
具体操作步骤如下:(1)将待检热电阻与标准热电阻串联连接,并将其加热至一定温度。
(2)使用电压表测量待检热电阻和标准热电阻的电压输出。
(3)根据热电阻的电压输出和标准热电阻的已知温度-电阻特性曲线,计算出待检热电阻的温度。
(4)重复上述步骤,以不同温度下的测量结果来确定热电阻的温度-电阻特性曲线。
2. 恒流法:恒流法是另一种常用的热电阻检定方法。
它通过在待检热电阻上加入恒定电流,测量其电压降来计算出其电阻。
具体操作步骤如下:(1)将待检热电阻与标准热电阻并联连接,并在并联电路上加入恒定电流源。
(2)使用电压表测量待检热电阻和标准热电阻的电压降。
(3)根据热电阻的电压降和标准热电阻的已知电流-电阻特性曲线,计算出待检热电阻的电阻。
(4)重复上述步骤,以不同电流下的测量结果来确定热电阻的电流-电阻特性曲线。
热电阻检定的关键是选取合适的标准热电阻,并保证检定设备的精确度和稳定性。
同时,检定过程中还需要注意以下几点:1. 温度控制:在进行热电阻检定时,需要确保待检热电阻和标准热电阻的温度保持稳定,并且与检定设备的温度保持一致。
2. 零位校准:在进行电压测量时,需要进行零位校准,以消除测量误差。
3. 数据处理:对于测量得到的电压或电流数据,需要进行合理的处理和分析,以得到准确的热电阻温度或电阻值。