概率论课程小论文
- 格式:doc
- 大小:54.00 KB
- 文档页数:5
微积分在概率论与数理统计中的应用摘要: 大二概率论课程结课了,在这门课上我学到了一些关于概率论和数理统计的许多知识。
这些知识既可以对我的专业方面有很大的指导作用、强化了我相关的数理逻辑能力。
课后,在兴趣的激励下,我从课本、习题以及相关网络资源中找到了更多关于概率论与数理统计的知识。
现通过这篇论文对我学习过程中的体会,并结合以往的数学知识(重点在微积分部分)关键词:概率论与数理统计 其他数学知识 微积分概率论与数理统计是研究随机现象统计规律的一门数学学科,已在包括控制、通信、生物、物理、力学、金融、社会科学、以及其他工程技术科学等诸多领域中获得了广泛的应用。
学习和掌握概率论与数理统计的基本理论和基本方法并将应用于科学研究的和工程实际中,是社会发展对高素质人才培养提出的必然要求。
----概率论与数理统计(前言) 一般认为, 概率论源于赌博问题, 创立于 1654年7 月29 日 。
考古证实骰子古而有之, 那么为何直到17 世纪概率论才诞生? 历史表明概率论的诞生和发展需要先进的数学技术和理性的思考。
众所周知, 概率论的大厦是建筑在微积分的地基之上的, 如在函数关系的对应下, 随机事件先是被简化为集合, 继之被简化为实数, 随着样本空间被简化为数集, 概率相应地由集函数约化为实函数. 以函数的观点衡量分布函数F(x),F(x)的性质是十分良好的: 单调有界、 可积、 几乎处处连续、 几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、 概率密度与分布函数的关系、 连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础 ) ) ) 极限论的地方也非常多, 诸如分布函数的性质、大数定律、 中心极限定理等. 总之, 微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、 反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用作用巨大。
哈尔滨工业大学计算机科学与技术学院结课论文课程名称:概率论与数理统计课程类型:必修项目名称:长尾分布、幂律分布的原理与应用概况目录目录 (2)摘要 (3)1 引言 (3)2 长尾分布与幂律分布 (4)2.1 长尾分布 (4)2.2 幂律分布 (4)2.3 两种分布的联系 (4)3 西蒙模型:幂律分布最基本的产生机制 (5)3.1 西蒙模型简介 (5)3.2 西蒙模型的主要缺陷 (6)4 长尾分布与幂律分布的典型应用 (7)4.1 人类行为时间统计特性研究 (7)4.2 小世界现象的动力学模型与验证 (8)4.3 金融资产收益率的研究 (9)5 小结 (9)6 参考文献 (9)7 致谢 (9)摘要长尾分布是涉及流行性问题的一种常见分布,与之密切相关的还有幂律分布。
这两种分布在物理学、生物学、经济学、计算机科学、统计学、社会学等诸多领域得到了广泛应用。
本文试图简要介绍长尾分布的概念,同时介绍与之密切相关的幂律分布,展示目前存在的理论模型及其优缺点,最后介绍这两种分布在各种领域的应用。
1 引言在概率论与数理统计的课程中,我们先后接触了多种分布;其中正态分布(高斯分布)、Х2分布、t分布和F分布在生产生活中有着较多的应用。
然而仔细观察这些分布,不难发现其研究的对象是同质的1;但很多时候,我们更需要的却是针对异质对象的一些特殊指标的分布。
此外,这些分布所涉及的基本事件,彼此也是独立的;但我们看到的世界并非如此。
太阳升起又落下,落下又升起,可是人们却已经经历了欢笑和痛苦,会做出不一样的选择;人们的选择改变着自己,但自己同时也是他人的环境的一部分;于是人们改变了自我的同时也改变了环境,不同的环境下自然不会有重复的条件,不可能有同样的分布。
最著名的反面案例也许是马太2效应:贫者愈贫,富者愈富,而不会随机地发生逆转,游戏不会回归到初始状态。
体现上述两点的最典型的过程,便是与流行度有关的过程。
以网站音乐的排行榜为例,把曲目按照下载量排序,可近似地得到一条递减曲线。
概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
概率论与数理统计课程论文课程名称:概率论与数理统计院系:计算机科学与信息工程学院学生姓名:张磊学号: 14031110129 专业班级:网络工程(一)班指导教师:张庆丰2016 年 6 月 13 日目录.摘要,,,,,,,,,,,,,,,,,,,,,,,,,3一、对概率论与数理统计的认识,,,,,41.1概率论的起源和发展,,,,,,,,,,,,,,,,,,4 1.2数理统计的起源和发展,,,,,,,,,,,,,41.3两者的结合,,,,,,,,,,,,,,,,,,,,,,4二、生活实例与其数学解析,,,,,,,,,,,,,42.1对于彩票行业的应用,,,,,,,,,,,,,,,52.2对于进货问题的应用,,,,,,,,,,,,,,,,62.3在防范金融风险中的应用,,,,,,,,,,,,,,62.4.小概率原理在工业生产中的应用,,,,,,,,7三、收获与致谢,,,,,,,,,,,,,,,,,,,,,,7四、参考文献,,,,,,,,,,,,,,,,,,,,,8概率论与数理统计的认识与应用摘要:概率论是对随机现象的统计规律进行演绎归纳的一门科学,是从数量上研究随机现象的客观规律的一门数学科学。
概率论的理论基础基于数理统计与分析。
如今,概率论已经广泛应用于自然科学、社会科学、工程技术、工农业生产等诸多领域。
成为近代经济管理、科学研究、工业生产等方面的重要工具。
总之,概率论与数理统计已经和我们的生活息息相关,也成为我们大学课程里面不可或缺的一门基础课。
关键词:概率论、数理统计、随机现象、演绎归纳、一、概率论与数理统计的起源和发展1.1概率论起源与发展概率论的研究始于意大利文艺复兴时期,当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法,十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。
纵观其发展史,在实际生活中具有很强的应用好处。
正是有了前人的努力,才有了现代的概率论体系。
本文将从概率论的研究好处、定义,以及发展历程进行叙述。
概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。
每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。
例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。
大数定律和中心极限定律就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。
例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。
随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。
在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。
梅晓靖概率论小论文对概率论的认识对于概率论的学习已经过了大半个学期了,虽然现在对概率论的学习也仅仅是皮毛而已。
但是,通过这半个学期的学习以及自己通过上网学习,让我了解到了许关于概率论的知识,认识到概率在我们生活中随处可见。
概率论严格意义上来说就是研究随即现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。
在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100?时水必然会沸腾等。
随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。
每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
随机现象的实现和对它的观察称为随即试验。
随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1,2。
又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。
大数定律及中心极限定理就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。
例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。
随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。
关于概率论的起源据说是赌博问题有关。
16世纪,意大利的学者吉罗拉莫开始研究掷骰子等赌博中的一些简单问题。
17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。
浅析概率论在生活中的应用毕业论文(一)概率论作为一门研究随机事件概率规律的学科,不仅在理论研究中有着广泛的应用,也逐渐渗透到我们的日常生活中,无论是从商业、医疗、技术等方面,都得到了广泛应用。
本文就从以下几个方面简要探讨概率论在生活中的应用。
1. 保险行业保险行业一直是概率统计学的应用领域之一。
在保险业中,保险公司要根据统计数据和概率论的知识对客户进行风险分析并制定相应的保险方案。
比如,在车险中,保险公司会根据客户的性别、年龄、车型等信息计算出客户的出险概率,从而制定出相应的保险费用。
这种保险费用制定方式不仅使保险公司能够更加科学地进行风险评估,降低了客户的保险成本,也使得保险公司更加准确地控制保险赔付率,保证了公司的盈利能力。
2. 医学概率论在医学领域中应用广泛。
例如在病人诊断中,一系列试验和检查结果需要根据概率理论进行分析和判断。
医学研究还涉及到新药的测试。
在这种情况下,概率统计学的方法被用来评估患者使用新药的风险,以及新药的作用和副作用。
此外,在流行病学中,概率统计学方法被用来分析疾病的传播和预测未来的疫情。
3. 投资股票交易也是概率论的应用领域之一。
投资者需要了解股票价格变动的概率规律,并且基于概率统计学方法进行分析和预测未来股票价格的趋势。
这需要投资者利用历史数据和统计模型来模拟和预测股票价格。
这种预测方法具有一定的误差,但也给投资者提供了一定的参考信息。
4. 体育竞技体育竞技也是概率论的应用领域。
在足球比赛中,根据球队近期表现、场地、天气等因素,可以利用概率理论来预测哪个球队有更大的获胜概率。
此外,在比赛中,也需要根据概率理论来决定是否采用进攻或者防守策略等。
总结而言,概率论在我们的生活中扮演着重要的角色。
可以帮助我们做出明智的决策,减少我们所面临的风险,并提升我们的成功概率。
因此,概率论的知识对于每个人来说都是十分必要的。
概率论与数理统计课程设计关于正态分布的几点讨论经过一个学期的学习,我对概率论有了更为深刻地理解,高中阶段的概率只是简单的古典概型和几何概型,而这个学期,我们对概率论有了进一步的认识,接触了泊松分布、贝努力分布、超几何分布、正态分布等等。
纵观全书,我感觉到正态分布在概率论这门课程中有很高的地位,而且正态分布在我们的日常生活中也有着非常广泛的应用,进而我也对正态分布产生了浓厚的兴趣。
所以在课程设计中,我想讨论一下正态分布的有关问题。
一、正太分布的由来、发展及重要性正态分布是最重要的一种概率分布。
正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,但由于德国数学家高斯率先将其应用于天文学家研究,故正态分布又叫高斯分布。
在随机变量的各种分布中,正态分布占有特殊重要的地位,在高斯以后,人们又发现在实际问题中,许多随机变量都近似服从正态分布。
20世纪前半期,概率论研究的中心课题之一就是寻求独立随机变量和的极限分布式正态分布的条件。
因此,把这一方面的定理统称为中心极限定理。
较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可以认为这个随机变量近似于正态分布。
这就揭示了正太分布的重要性。
因为现实中许多随机变量都具有上述性质,例如测量误差、射击弹着点的横坐标、人的身高等都是由大量随机因素综合影响的结果,因而是近似服从正态分布的。
数理统计中有常用的三大分布占有极重要的地位,分别是2χ分布,t 分布和F 分布,这三大分布都与正态分布有着密切的关系,由此更能看出正态分布的重要性。
二、正态分布的含义正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N (μ,σ2)。
服从正态分布的随机变量的概率规律为:取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大分布越分散。
概率之在生活中的应用6(5)高语墨玉泉小学概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。
概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。
人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
1.概率的定义柯尔莫哥洛夫(kolmogorov)于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。
对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。
这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……2.概率的性质性质1.P(Φ)=0.性质2.(有限可加性)当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An).性质3.对于任意一个事件A:P(A)=1-P(非A).性质4.当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B).性质5.对于任意一个事件A,P(A)≤1.性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB).性质7.(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B).3.概率的应用概率在生活中随处可见,比如抛硬币、掷骰子、买彩票的时候都需要概率,比如说,一张彩票中奖的概率有多大?如果想中奖的话,最好中头奖,也就是所有号码都跟票面上一样。
在英国,有四十九个数字可供选择,但你只能选择其中六个,因此,所得的彩票数量应为49!/43!×6!也就是13983816种,而其中只有一个人能中奖。
浅析足球分组过程中的概率问题最近参与组织了一次足球赛事,其中的抽签环节引起了我的一些思考。
足球比赛一般分为联赛和杯赛两种形式,其中联赛规则下,一支球队要与其他所有球队一一进行比赛,所以一个联赛中的两支球队A队和B队相遇是必然事件。
而杯赛中,不管是分组淘汰制还是单轮淘汰制都需要抽签决定对手,也就是说在一个杯赛中A队与B队相遇是随机事件,这就涉及到了概率问题。
下面我就对杯赛中两队相遇在不同淘汰规则下的概率简单谈一谈。
一、单轮淘汰制(假定32支球队参加)1.比赛规则:每轮球队两两进行比赛,单场淘汰,胜者进入到下一轮比赛,每轮比赛对手皆由抽签产生。
2.概率计算:首轮相遇的概率为1/31;第二轮相遇概率为(1/15)*两队晋级第二轮概率;第三轮概率为(1/7)*两队晋级到第三轮的概率;第四轮概率为(1/3)*两队晋级到第四轮概率;第五轮也就是决赛相遇概率为两队同时进决赛概率。
3.计算结果(假定所有比赛中双方获胜概率都为50%):第一轮相遇1/31,第二轮1/62,第三轮1/124,第四轮1/248,第五轮1/496。
由于被淘汰而不会相遇的概率是:15/16。
二、小组淘汰制(假定32支球队参加)1. 比赛规则:先进行小组抽签,每小组四支球队,小组前两名出线进行单轮淘汰。
2. 概率计算:小组赛相遇概率为1/31,第一轮淘汰赛相遇概率为(1/15)*两队分别小组第一、第二出线概率,第二轮淘汰赛相遇概率为(1/7)*两队晋级第二轮淘汰赛概率,半决赛相遇的概率为两队进半决赛的概率*1/3,决赛两队必相遇,所以相遇概率为进决赛概率。
3. 计算结果(假定所有比赛中双方获胜概率都为50%):小组赛1/31,第一轮淘汰赛1/248,第二轮淘汰赛1/496,半决赛1/992,决赛1/1984,由于被淘汰不会相遇的概率为1905/1984。
三、总结分析以上两种赛制是目前所有赛制的基础,不过目前各大杯赛如:世界杯、欧冠、各大洲的杯赛等等都会加入各种抽签规则。
概率论与数理统计与生活的紧密联系在大二上学期,我们接触到了《概率论与数理统计》这门课程。
可以说这门课程给人的第一感觉就是与生活息息相关,统计的思想可谓来源于生活,服务与生活。
而作为来自黑龙江的新课改考生,高中时我们就对概率初级有了一定的了解,因而在学科开始时感到熟悉又轻松,不觉地有些懈怠。
随着课程的推进,知识量的增多,深度的加深,蓦地发现其实“概率论”这东西并不是简单地算算概率、求求方差而已的数学计算,而是一门大学问——来源生活、高于生活的学问。
概率论与数理统计的发展对于其历史,高中时代便听说其来源不仅来自生活,而且很有意思,竟是与赌博有很深的渊源。
因此说概率论来源于生活这是一点都不假的。
据资料记载,概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m 局就算赢,全部赌本就归谁。
但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。
问:赌本应该如何分法才合理?三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
而后,瑞士数学家伯努利作为是概率论成为数学的一个分支的奠基人之一,建立了概率论中第一个极限定理——伯努利大数定律,阐明了事件发生的频率稳定于它的概率。
随后,棣莫弗和拉普拉斯又导出了第二个基本极限定理的原始形势,将概率论发展向一个新的高潮。
19世纪末,俄国数学家切比雪夫、马尔科夫、李雅普诺夫等人用分析法建立了大数定律及中心极限定理的一般形式,科学的解释了为什么在生活中遇到的许多随机变量都近似的服从于正态分布。
20世纪初,由于大量的实际问题需要,爱因斯坦、维纳和列为等对布朗在显微镜下观察到的划分微粒的无规则运动进行开创性的理论分析,提出了布朗运动数学模型;爱尔兰等人则在电话流中研究了泊松过程,成为排队论的首创者;至今,对于随机过程的研究以及与其他新兴学科的交叉而形成的边缘学科的研究仍在继续。
论文-概率论论文标题:概率论在实际应用中的研究摘要:概率论是数学中的重要分支,广泛应用于科学、工程、金融等领域。
本论文旨在探讨概率论在实际应用中的研究,包括统计推断、风险评估、模式识别等方面。
通过详细分析概率论在各个领域的应用案例,揭示其在实际问题中的作用和价值,并提出未来研究的方向和挑战。
引言:概率论是描述随机事件发生概率的数学分支,它在现实生活中的应用越来越广泛。
通过概率论的方法,我们能够对随机事件进行建模和分析,从而为决策提供有力支持。
本论文将重点介绍概率论在统计推断、风险评估和模式识别等方面的应用,并探讨其在实际问题中的作用。
主体:1.统计推断:概率论是统计学中最重要的工具之一。
通过概率论的方法,我们可以对现有数据进行分析,从而推断出总体的未知特征。
例如,通过对抽样数据进行统计推断,我们可以估计总体的均值、方差等参数,并对总体的区间估计进行评估。
此外,概率论还可以用于假设检验,判断不同样本之间是否存在显著差异。
2.风险评估:概率论在风险评估领域的应用十分重要。
通过对风险事件进行概率建模和分析,我们可以评估风险事件发生的可能性和影响程度。
这种风险评估的方法被广泛应用于金融、保险、项目管理等领域。
例如,在金融领域,我们可以使用概率论来评估投资组合的风险和收益,并进行资产配置的决策。
3.模式识别:概率论在模式识别中的应用也十分重要。
模式识别是指通过对数据的建模和分类,识别出数据中的特定模式。
概率论为模式识别提供了一种强大的工具。
例如,在图像识别中,我们可以使用概率论的方法来建立分类模型,并通过概率计算判断图像属于某一类别的可能性。
结论:本论文对概率论在实际应用中的研究进行了综述。
通过在统计推断、风险评估和模式识别等方面的应用案例分析,我们可以看到概率论在各个领域中的作用和价值。
然而,概率论在实际应用中仍面临一些挑战,如大样本问题、高维问题等。
未来,我们需要继续研究概率论在实际问题中的应用,并探索解决这些挑战的方法。
“斗地主”游戏中的“炸弹”概率问题学院:土木工程学院班级:***姓名:***学号:***“斗地主”游戏中的“炸弹”概率问题1153340102 马敏超导语:“斗地主”是一款普及度很广的纸牌游戏,它规则简单易学,趣味性强。
两个王叫“王炸”、“火箭”,四张同号的牌组成“炸弹”。
游戏中,是否有炸弹常常决定游戏的胜负。
因此,本文着重对抓到炸弹的概率进行讨论研究。
关键字:斗地主 概率 炸弹 游戏 数学应用 正文:一、理论计算设“抓到王炸(两个王)”为事件A ;“抓到普通炸弹(四个同号牌)”为事件B 。
1、抓到王炸的情况:首先不翻开底牌时,你手里的牌有1754C 种情况,其中抓到两个王的情况有1552C 种情况,则抓到两个王的概率应该是:2、抓到普通炸弹情况:分母依然是1754C 。
再从54张牌里选指定的4个一样的,比如说我抓到4个2,先来看看抓到4个2的情况,不考虑也抓到其他炸弹,这样有1350C 种情况。
那么抓到指定的2个牌(比如抓到4个2和4个A )是炸弹的情况(同样有可能抓到3个或是更多个炸弹)的组合数应该是946C ,同理抓到指定的3个牌是炸弹有542C 种情况,抓到指定的4个牌是炸弹有138C 种情况。
根据容斥原理,计算抓到普通炸弹概率为;3、既有王炸又有普通炸的情况:如果想求非王炸的概率,就要把既含王炸又有普通炸的情况减去,同理,先看看有王炸又有1个指定牌的普通炸的情况,组合数为1148C ,有王炸又有2个指定牌的普通炸的情况数为744C ,有王炸又有3个指定牌的普通炸的情况组合数为340C ,不用管有4个炸又有王炸的情况,因为那种情况是不可能的,那样手里就18张牌了。
同理,由容斥原理知,既有王炸又有普通炸的概率:()%5038.9A 17541552==C C P ()%6016.979704715335876938452749613117541384135423139462131350113==-+-=C C C C C C C C C P B()%6166.079704715335876602907514261AB 17543403137442131148113==+-C C C C C C C P4、仅抓到普通炸弹的情况:仅抓到炸弹的概率为:5、仅抓到王炸的情况:仅抓到王炸的概率为:6、抓到炸弹(普通炸弹或王炸)的情况:抓到炸弹(普通炸弹或王炸)的概率为:()()()()%4889.18%6616.0%6016.9%5038.9AB B A B A =-+=-+=P P P P 7、抓不到任何炸弹的情况:抓不到任何炸弹的概率为:二、实例计算斗地主寻觅炸弹概率的时候往往遇到与底牌相结合的情况,从而判断叫地主时候能拿到炸弹的概率,下面看一个真正的例子:三人斗地主,没拿3张底牌之前,抓到3个7、3个K ,三个8,如果这种情况下叫地主能拿到3副炸、2副炸、1副炸的概率是多少呢? 那就得结合到底牌情况数了,如果抓到3个7、3个K 、3个8,这种情况数为:()337334842C C C ;因为没叫地主前抓到17张牌,其中已确定3个7、3个K ,3个8,那么就有9张牌是属于7、8、K 中的牌,在54-12=42张牌中选择剩下17-9=8张牌的组合数就是842C ,因为7、8、K 各3张的花色不同,有()334C 种情况。
摘要概率论是研究随机性或不确定性等现象的学科,而独立性的研究是具中重要内容2—,由于实际需耍,对概率论中独立性的研究也较为重耍,并且独立性对解决一些实际问题具有理论意义。
论文关于独立性的研究做了如下分析:首先,本文研究了随机事件独立性的概念、两个和多个事件的独立性、事件独立性与互不相容,互斥的关系以及在生活中的应用,并通过实例进行了分析。
另外,研究了随机变量独立性的概念,性质以及判定方法,也都给出了实例加以论证。
关键词:随机事件;随机变量;独立性AbstractProbability theory is the subject of studying randomness or uncertainty phenome non such as discipline, and the study of independence is one of its important contents. Due to the actual need, it is very important to study the theory of probability, besides, the study of independence has theoretical significance to solve some practical problems.This thesis has done the following analysis on the research of independence:First of all, this paper has studies the concept of the independence of random event, the independence of two or more events , the independence of event, the relationship of incompatibility and the mutual exclusion as well as the application in the life, and these are analyzed through examples.Besides, this paper has studied the concept, the properties and methods of independent random variabilities, and also demonstrating them by examples・Key words: Random events; A random variability; Independence引吞 (2)1随机事件的独立性 (3)1.1事件独立性的概念 (3)1. 1.1两个随机事件的独立性 (3)1.1.2多个事件的独立性 (4)1.1.3事件独立与互不相容的区别与联系 (6)1.2随机事件的独立性的应用 (8)1.2.1用于判别两个事件是否独立 (8)1.2.2用于分析系统的可靠性 (8)2随机变量的独立性 (10)2.1随机变量独立性的概念 (10)2.2随机变量独立性的性质 (11)2.2.1随机变量独立性没有传递性 (11)2.2.2 /(兀)与g(y)独立而X与丫不独立 (12)2.3随机变量相互独立的判定 (13)总结 (19)参考文献 (20)致谢 (21)概率论的研究对生产生活都有着密不可分的联系,在概率论的研究屮,研究随机现象的独立性,尤其显得重耍。
概率论课程的一些认识进过这么久对概率论的学习,在基础知识的积累之上,在高等数学工具的应用之下,我对这门课程有了更为深入的认识。
一、概率论定义的变迁与意义概率论是研究随机现象数量规律的数学分支。
和数理统计一起,是研究随机现象及其规律的一门数学学科。
传统概率(拉普拉斯概率)的定义是由法国数学家拉普拉斯(Laplace)提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验。
传统概率在实践中被广泛应用于确定事件的概率值,其理论根据是:如果没有足够的论据来证明一个事件的概率大于另一个事件的概率,那么可以认为这两个事件的概率值相等。
如果仔细观察这个定义会发现拉普拉斯用概率解释了概率,定义中用了"相同的可能性"一词,其实指的就是"相同的概率"。
这个定义也并没有说出,到底什么是概率,以及如何用数字来确定概率。
因此,如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。
20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。
在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。
他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用.由上述定义的有关说明可以发现,概率论的研究方法大致可分为两个方面。
概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论的,因此概率论的研究方法本质上是演绎式的;而统计学的方法是归纳式的,从所研究对象的全体当中随机抽取一部分进行试验以获得数据,依据数据对整体作出判断,从而“归纳”得到结论。
随着数学的不断发展,概率的定义也越来越实际化,越来越与生活密切相关。
概率的认识过程摘要:概率论渗透到现代生活的方方面面。
正如19世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分,最重要的问题实际上只是概率问题。
你可以说几乎我们所掌握的所有知识都是不确定的,只有一小部分我们能确定地了解。
甚至数学科学本身,归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上。
因此,整个人类知识系统是与这一理论相联系的……”引言:1.婴儿出生时的男女比例一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比应当是1:1,可事实并非如此.1.1 艾滋病的传染概率有多大艾滋病病毒是一种十分脆弱的病毒,它对热和干燥十分敏感。
在干燥的环境中,艾滋病毒10分钟死亡,在60摄氏度的环境中30分钟灭活。
如果一支刚接触病人身体带有血液的注射器,马上刺入正常人体内,其感染的概率小于0.3%。
蚊虫叮咬不会传染艾滋病就是因为这个原因。
1.1.1幸运七星及足彩中奖概率体彩“幸运七星”则属于数字型玩法,即从0000000~9999999共1000万个号码中任选一个七位数号码组成,每个号码均从0~9共10个数字中开出,“幸运七星”头奖的理论中奖概率为1/10000000。
目前最受彩民欢迎的足彩实际上也是一种数字组合型玩法,不过计算方法相对比较简单,13场比赛均选“3、1、0”可组合出3的13次方1594323注单式号码,一等奖的中奖概率为1/1594323,换句话说,每销售320万元的足彩,平均就可能诞生一个一等奖。
而如果将足彩竞猜的场次增加到14场,足彩的头奖中奖概率则降低为1/4782969,难度增加了3倍。
一、什么是小概率事件? (3)二、基本的概率计算方法 (3)三、有意义和无意义的小概率事件 (4)四、小概率事件和不可能事件的分辨 (5)五、我们是不是该相信小概率事件? (6)六、参考文献 (6)一、什么是小概率事件?小概率事件,字面意义就是发生的可能性极小的事件。
比如,北京地区出现日全食;山西洪洞发生里氏5级地震,新疆吐鲁番地区下了一场暴雨,小行星撞地球等等。
概率论论文--概率论在生活中的应用概率论在生活中的应用【摘要】概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。
加强数学的应用性,让我们用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验,这是当前课程改革的大势所趋。
加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
【关键词】 概率论 经济 生活 保险 彩票1. 在求解最大经济利润问题中的应用如何获得最大利润是商界永远追求的目标,随机变量函数期望的应用为此问题的解决提供了新的思路。
例 1 某公司经销某种原料,根据历史资料:这种原料的市场需求量x (单位:吨) 服从()300500, 上的均匀分布,每售出1 吨该原料,公司可获利1.5千元;若积压1 吨,则公司损失0.5 千元,问公司应该组织多少货源,可使期望的利润最大?分析:此问题的解决先是建立利润与需求量的函数,然后求利润的期望,从而得到利润关于货源的函数,最后利用求极值的方法得到答案.解 设公司组织该货源a 吨,则显然应该有300a 500≤≤,又记y 为在a 吨货源的条件下的利润,则利润为需求量的函数,即()y g x = ,由题设条件知:当x a ≥时,则此a 吨货源全部售出,共获利1.5a ;当x a <时,则售出x 吨(获利1.5x ) 且还有a x -吨积压(获利()0.5a x --) ,所以共获利1.5x ()0.5a x --,由此得(){1.52 0.5a X a X a X a x Y g ≥-<== 从而得()()()()5003001200x y g x p x dx g x dx E +∞-∞==⎰⎰ ()5003001120.5 1.5200200a a x a dx a dx -+=⎰⎰ ()221900300200a -+-= 上述计算表明()y E 是a 的二次函数,用通常求极值的方法可以求得,450a =吨时,能够使得期望的利润达到最大。
《概率论与数理统计》小论文概率与理性的发展
哈尔滨工业大学
2014年12月
《概率论与数理统计》课程小论文
概率与理性的发展
摘要概率论是一门研究事件发生的数学规律的学科。
他起源于生活中的实际问题的思考,较传统的几何学等起步较晚,在伯努利、泊松等数学家的努力下,形成了现如今较为完备的理论体系。
他与数理统计一起,在工程设计、自然科学、社会科学、军事等领域起着重要作用。
而概率论提出后有很多人感感兴趣对其进行研究的原因之一是很多事件的主观上对概率的判
断与实际的理论概率有着很大的差异,于是有关概率的悖论有很多,也有很多与直觉相悖的概率问题,这也是概率的魅力之一。
本文将从概率的发展、概率与感性的差异等方面出发对概率与感性和理性进行探讨。
关键词概率悖论直觉理性
一、概率的发展
概率论的初步发展起源于十七世纪中叶的法国。
在那里出现了对赌博问题的研究,也正是对赌博问题的研究,推动了概率论的发展。
最初的问题是从分赌金开始的。
[1]
最初的问题大致是这样的:甲乙双方是竞技力量相当的对手,每人各拿出32枚金币,以争胜负。
在竞争中,取胜一次,得一分。
最先获得3分的人取得全部赎金64枚金币。
可是,因某种缘故,竞争3次,赌博被迫终止。
而此时,甲得2分,乙得1分,问赌金如何分配?很多问题的开端都是利益的纠纷,这也是一个例子,双方都会为自己的利益考虑而提出对这笔赌金的分法,而从直觉上看,很多理由似乎也是很有道理的。
但是真相只有一个,到底理论上最公平的分法是怎样的?这个问题的当事人爱好赌博的德梅雷
向其好友著名的数学家帕斯卡请教,这个问题也受到了帕斯卡的关注。
帕斯卡与其好友费尔马进行了三个月的书信往来讨论这个问题,最终得到了满意的答案:假设两赌徒中甲赢了两局,乙一局未赢,那么接下来可能出现的情况是:若甲再赢一局,得3分,将获全部赌金;若乙赢一局,出现2:1的局
《概率论书数理统计》小论文
面,这是上面讨论过的。
因此,不管甲在下一局是输是赢,有3/4的赌金应属于甲,至于剩下的1/4赌金,甲乙两赌徒获得赌金的机会相等,应平分。
故甲应得赌金的7/8,乙应得赌金的1/8。
假设甲赢一局,乙一局未赢,则可能出现如下情况:若甲再赢一局,形成2:0局面,这也是上面讨论过的情况;若乙胜了这一局,形成1:1的局面。
因此在任何情况下,甲有获取赌金的1/2,乙有权获得赌金的1/8.至于剩下的3/8赌金,他们得到的机会相等,应该平分。
费尔马和帕斯卡在通信中,虽然没有明确揭示出概率的定义,但是,在研究赌徒取胜的机会时,涉及有利情形数与所有可能情形数的比,这实际上是概率定义的雏形。
此后,经过伯努利的大数定律,棣莫佛对正太分布的概念的提出,蒲丰对集合概型概念的提出,拉普拉斯将分析数学与概率相结合,高斯、泊松、切比雪夫等人对概率的进一步完善形成了如今概率论比较完备的理论体系。
[2]
概率论在很多领域都有着应用,如最常见的我们每天都会看到的天气预报,就是在大气动力学、热力学、气候学和预报员时间经验的基础上,应用概率论和数理统计方法,再利用电子计算机,根据历史资料制作概率天气预报。
它所提供的不是某种天气现象的“有”或“无”,某种气象要素值“大”或“小”,而是天气现象出现的可能性有多大。
二、概率与感性直觉
上文对概率的发展进行了简要的叙述。
概率本身起源于生活,服务于生活。
而就概率本身的理论而言,我觉得最大的魅力还在于概率与我们感性直觉之间的微妙差异。
下面就一些概率直觉的偏差进行讨论。
在课堂上也接触到过很多事件的概率与主观判断的概率相差很多的例子:我们先计算“在50名同班同学中至少有两个人生日相同的概率”。
主观感受上这应该十一个概率很小的事件,因为我们总会用我们实际的经验去对事情进行判断。
我们在实际生活中很少有遇到和自己同一天生日的人,于是我们就理所当然的认为在整个群体中两人生日相同格式一个概率很小的
《概率论与数理统计》课程小论文
事件。
而理论计算的话,这应该是用1减去“50个同学的生日全都不同的概率”所得的数值,也就是.这个数字的计算结果在97%左右。
另一个比较有名的问题就是所谓的“蒙蒂霍尔问题”。
问题是这样的:游戏者前面有三扇门,假定分别用字母A、B和C代表。
其中只有一扇门后面隐藏着一辆作为奖品的豪华型轿车,其余两扇门后面各藏着代表没有奖品的一只山羊。
主持人知道各扇门后面藏着什么。
游戏者当然不知道哪一扇门后面是轿车,他要凭猜测对门扇才能够得到轿车。
假设游戏者选择了门A。
然后,主持人打开其余的两扇门中的门B,让游戏者看到里面是山羊。
主持人这时给游戏者一次反悔的机会,他说:“你刚才选择的是门A,现在,你要不要改变主意,改选门C?”如果你就是那名游戏者,是改选C呢还是坚持选A?直觉上我们认为是是否改变选择似乎对中间更改率没有什么影响,而很多人在这种情况下回坚持不改变选择,这里实际上变成了一个心理问题,也就是一旦改变选择使自己错过了大奖,会有更大的懊悔感,这是人们的普遍心理。
所谓后悔也都是一个对过去的假设,实际上对现在是没有什么影响的,但是很多人在心理上很难承受这样的落差。
而从概率角度讲,改变选择中奖概率是2/3。
或者我们换一种思考方式,假设主持人让游戏者只开一次门,这一次可以开其中的一扇门或者同时开其中的两扇门,见到轿车即中奖,再蠢的游戏者,也会选择同时开其中的两扇门,因为只开一扇门中奖的概率是1/3,而同时开两扇门中奖的概率是2/3。
回到原来的游戏上来,开A门中奖的概率是1/3,而同时开B门和C门中奖的概率是2/3,现在确定B门不中奖,那同时开B门和C门的2/3的中奖概率就全集中在C门上了。
有关概率的类似问题还有很多,也有很多有关概率的悖论。
这是概率的魅力,也是逻辑学的魅力。
概率是数学的一个分支,是靠逻辑建立的一个体系,有关概率的悖论如囚徒悖论等,很多在博弈学上也是很有名的。
当只是真正用到生活中时是有交叉的,例如博弈论,也就是所谓的投机,就是考验我们概率、心理等多方面知识的科学。
而这也是科学的魅力所在。
《概率论书数理统计》小论文
三、总结
概率是应用性非常强的一门学科,他可以帮助我们更明智的判断事情的发展,让我们不仅仅同我我们主观直觉去判断一个事情的发展从而利于我们进行决策。
当然作为一个富以偶情感的人来说,我们很多时候需要改变自己的一些主观臆测,但是在某些情况下也不能一味的计算里一个忽略了我们正常应有的道德和情感。
有研究称概率直觉是与生俱来的,既然上天赋予我们这种能力,我们需要正确对待,理性和感性想结合,称为一个精神上午完整的人。
参考文献
[1] 王勇. 概率论与数理统计. 2007.7[M]. 哈尔滨工业大学. 高等教育出版社
[2] 徐传胜. 概率论简史[J]. 数学通报.2004年第10期
[3] 吴字邀. 蒙提霍尔问题推广与应用. 数学月刊.2009年第5期。