切平面和法线
- 格式:ppt
- 大小:659.50 KB
- 文档页数:23
微分的几何意义和定义微分是数学中的一个重要概念,其几何意义和定义是理解微分的关键。
微分的几何意义是刻画曲线、曲面等几何图形的某一点的局部性质。
在微分中,重要的概念是切线、法线和切平面。
以曲线为例,设函数 y=f(x) 在点 P 处有切线,该切线与 x 轴的交点为 A,则有:$f(x+\Delta x)-f(x)=\Delta y\approx f'(x)\Delta x$其中,$y=f(x)$ 是曲线上的一点,$\Delta x$ 为极小增量,$\Delta y$ 是相应的函数值增量,$f'(x)$ 是函数$f(x)$ 在点 $x$ 处的导数。
上述式子表示函数在 $x$ 点处的微小变化对应于函数在 $x$ 点处的切线根据$x$ 增量 $\Delta x$ 产生的变化。
这个切线是定性地描述函数在 $x$ 点的局部性质的基础。
当 $\Delta x$ 趋近于 0 时,切线趋近于与曲线相切的状态。
2.微分的定义微分是函数的导数和自变量的微小变化量之积。
设 $y=f(x)$,在点 $x$ 处微分$dy$ 定义为:$dy=f'(x)dx$对于一元函数$f(x)$,微分的定义可以推广到多元函数 $z=f(x,y)$ 上。
在二元函数$z=f(x,y)$ 中,在点 $(x_0,y_0)$ 处,有:$dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy$其中,$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 分别表示 $z$ 对于 $x$ 和 $y$ 的偏导数,$dx$ 和 $dy$ 分别表示自变量 $x$ 和 $y$ 的极小增量。
微分 $dz$ 可以视为函数在 $(x_0,y_0)$ 点处的平面的局部性质,即该点的切平面。
总的来说,微分是函数在某一点的局部性质的刻画。
曲面的切平面与法线方程设中曲面Σ的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面Σ上点处可微,且,过点任意引一条位于曲面Σ上的曲线Γ。
设其方程为,且对应于点;不全为零。
由于曲线Γ在Σ上,则有及。
该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点处的切平面. 点称为切点. 向量称为曲面Σ在点处的一个法向量。
记为。
基本方法:1、设点在曲面F(x, y, z)=0上,而F(x, y, z)在点处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为.法线方程为.2、设点在曲面z = f (x, y)上,且z = f (x, y) 在点M0 (x0, y0) 处存在连续偏导数,则该曲面在点处的切平面方程为.过X0的法线方程为.注:方法2实际上是方法1中取的情形.3、若曲面∑由参数方程x = x(u, v) , y = y(u, v) , z = z(u, v)给出,∑上的点与uv平面上的点(u0 , v0)对应,而x(u , v) , y(u , v) , z(u , v)在(u0 , v0)处可微.曲面∑在点X0处的切平面方程及法线方程分别为和三、答疑解惑问题:曲面∑的参数方程为x = x(u , v) , y = y(u , v) , z = z(u , v),∑上的点与u , v平面上的点(u0 , v0)对应,怎样确定∑在点X0处的法向量?注释:设x(u , v) , y(u , v) , z(u , v) 在(u0 , v0)处可微,考虑在∑上过点X0的两条曲线.Γ1:x = x(u , v0) , y = y(u , v0) , z = z(u , v0);Γ2:x = x(u0, v) , y = y(u0 , v) , z = z(u0 , v).它们在点X0处的切向量分别为当时,得∑在点X0处的法向量为则∑在点X0处的法向量为.四、典型例题例1 求椭球面x2+2y2+3z2 = 6在(1, 1, 1)处的切平面方程与法线方程.解设F(x, y, z) = x2+2y2+3z2-6,由于在全平面上处处连续,在(1, 1, 1)处,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为,即x + 2y + 3z = 6.所求法线方程为,即.例2求曲面平行于z = 2x+2y的切平面方程.解设切点为. 曲面,因此.则曲面在处的法向量为.曲面在点X0处的切平面方程为又切平面与已知平面z = 2x+2y平行,因此解得切点坐标为,所求切平面方程为,即.例3求曲面在点处的切平面方程和法线方程.解点对应曲面上的点其中.则曲面在点处的法向量为.所求曲面在点X0处的切平面方程为即.所求的法线方程为即.例4求过直线,且与曲面相切之切平面方程.解过直线的平面方程可设为,即,其法向量为.记,则设所求的切平面的切点为,则曲面上处的法向量为.且有由(1)、(3)解得,代入(2)得.解得t1 = 1, t2 = 3,故λ1 = 3 , λ2=7.则所求切平面方程为,或.即6x + y + 2z = 5 或10x + 5y + 6z = 5.例5试证曲面上任一点处的切平面都过原点,其中f(x)为可微函数.证明,.故曲面上点处的法向量为.则过曲面上点的切平面方程为,整理后得. 注意到,从上述方程得切平面方程为.可知其必定过原点.。
曲面的切平面与法线方程设上中曲面Σ的方程为F (X , y , Z) = 0 ,函数F (X , y , Z)在曲面Σ上点'一J∣.∙.'一'.∣处可微,W t) =且1加卽龛丿,过点血任意引一条位于曲面Σ上的曲线Γ°设其∖=Λ(∕)y=y⅛)方程为A邛,且对应于点不全为零。
由于曲线Γ在Σ上,则有⅛ g(x吨)+卩(血吨)+叭(⅜F(⅛)及朮LF 。
该方程表示了曲面上任意一条过点「厂的曲线在该点的切线都与向量WO) 垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点:处的切平面.点.称为切点.向量二心 2 -l称为曲面Σ在点-处的一个法向量。
记为G。
基本方法:1、设点l l- ■' ■" 1■■在曲面F(x, y, z)=0上,而F(x, y, Z)在点一∣处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为F:g )(r-r,>+ 兀厲XJ-Λ)÷Eg(H-^) = D法线方程为⅞ _ y~y ti_X(Jf O)=X^) =2、设点''■' ' l∙' ' ■'在曲面Z = f (x, y)上,且Z = f (x, y)在点M o (χo, y o)处存在连续偏导数,则该曲面在点Al∙, "-" - -■处的切平面方程为-f E j Ja-心)-力(心小Xy-几)2-齢MDX = x(u, V) , y = y(u, V) , Z = z(u, V)给出,∑上的点禺臨片九与UV平面上的点(U o , V0)对应,而X(U , V) , y(u , V) , Z(U , V)在( u o , v o)处可微.曲面∑在点X o处的切平面方程及法线方程分别为三、答疑解惑问题:曲面∑的参数方程为X = X(U , V) , y = y(u , V) , Z = Z(U , V),∑±的点:'I- ■ -,'ι■ •与u , V平面上的点(U o , VO)对应,怎样确定∑在点X o处的法向量?注释:设X(U , V) , y(U , V) , Z(U , V)在(U o , VO)处可微,考虑在∑上过点X o的两条曲线.Γ i: X = X(U , V o) , y = y(U , V o) , Z = Z(U , V o);Γ 2 : X = X(U o , V) , y = y(U o , V) , Z = Z(UO, V).它们在点X o处的切向量分别为ξ=C⅛冲"⅛(⅜, ⅛(¾,⅛))E■(兀(知岭h H(M e Mh 久(%%))过X o的法线方程为注:方法2实际上是方法1 中取..'l--λ.'<-的情形3、若曲面∑由参数方程当< 'I -时,得∑在点Xo 处的法向量为则∑在点Xo 处的法向量为<‰v)r ^f V),页陽叭四、典型例题 例1求椭球面x 2+2y 2+3z 2 = 6在(1, 1, 1 )处的切平面方程与法线方程解设F (x, y, Z ) = x 2+2y 2+3z 2 - 6,由于「八 FJ- •二在全平面上处处连续, 在(1,1,1 )处'一儿一「'■ 一",椭球面在点(1,1,1)处的法向量为(2, 4, 6).则所求切平面方程为2(z-l) + 4(y-1) ÷6(z-l) ■ 0即 X + 2y + 3z = 6.Λ- 1 _ y- I _1所求法线方程为---X-1 y-L Z-1 即 I-J ^ -.* i Z=—卡 y例2求曲面- 平行于Z = 2x+2y 的切平面方程则曲面在一1'^l 处的法向量为 'l ,' 曲面在点X 0处的切平面方程为解设切点为 兀馆%殆.曲面"J 」 j2,因此舐瀚(Λ-心)十 2⅛O- M)- (Z -2o)-0又切平面与已知平面 Z = 2x+2y 平行,因此解得切点坐标为- ■■■■'■',所求切平面方程为2(^-3)+2(y-l)-(z-3)-0例 3 求曲面■ ^ 11■: 1.∙ ^ ■ ■ - ■ :.「「’「 -^- - ^ 在点1 >. ^.:处的切平面方程和法线方程.解 点^∙l ∙,'^∙厂…对应曲面上的点11 1■■ 1 '其中Λ⅛ =^Sin⅞¾ COE ⅛J I y o sm⅛r ¾ = L 7COS ⅞⅞^^COS ⅛=^5m¼.os⅛u<A. j-i SC0SξK⅛ cos⅛ 5⅛≤9∣4 QCOS⅞⅛si∩¾则曲面在点"-处的法向量为 V’ 4,亠」5 所求曲面在点X o 处的切平面方程为‰⅛I JS αcos⅝⅞ GOS ⅞Sm ς⅛ sin ⅛ ^Sill 2 ≠¾ sin ⅛-<jsifl ⅛ sin ⅛ -*2sιn sm ⅞2 」2≡t? Sm 处 c□≡φ¾护 tin 贏 COS ⅛(X ^ΛSIH ‰ cos¾) + asm J ⅞¾ sm¾ sm ξ≡⅛ s πι ¾) + O lSln 砂 CaS3^ DiJS 妬)■ 0,即 Q .一 -i ∣ J ■: , ; J I ς, • ■ I ■] _ _ ∙fΛ- asuι⅞⅛ cos6⅛ _ y- ^Sin⅛⅛ sin 6⅛所求的法线方程为「一一 .,J -IJ - -J . L - -I - .'■ J -■-■.Λ- sm⅛ J -ΛCCS ⅞¾SIn ⅞J ¾COS ⅛SHl ⅞¾ sin ⅛cos⅛¾解过直线的平面方程可设为即]:":l "1'''其法向量为-■ 一且有J3Λ -2y-Z ~ 5例4求过直线',且与曲面L相切之切平面方程Q i Fm 2 ⅞⅛ cosg⅛3χ-2y- ∑ - 5^ Λ(Λ + y+ z) - QFgFQ =加- 2y 2 + 2z -设所求的切平面的切点为■ ■,则曲面上;=2处的法向量为(%γ用②.8,则(3 + Λχ÷(Λ-2)j b ÷(Z-l¼-5 = 03 + ∕⅛ 2-2 Λ-l由⑴、(3)解得代入(2)得e -⅛÷3-o则所求切平面方程为3x - 2I y-Z- 5 + 3(j ÷ιy +z) ■ O或…'--,.■-- I -即 6x + y + 2 Z = 5 或 10x + 5y + 6 Z = 5.例5试证曲面IT 丿上任一点处的切平面都过原点,其中 f(x)为可微函数(1)2÷⅛ 2t -1 15解得 t ι = 1, t 2 = 3 ,故λ 2=7.1 1■- ,''∙ 处的法向量为故曲面上点则过曲面上点--'-.' - ,.∙-的切平面方程为f-⅛∕∙卜fy-⅞∕"ι"^o ∕f -注意到<r <> ,从上述方程得切平面方程为■/ X ( ∖^∣( \f 西-—f 地也 y-^-Ok⅞∕ Jf O ∖λ(]√^J∖⅞∕可知其必定过原点.(X-X o )4 ∕{⅛-Λ)整理后得。
曲面的切平面与法线方程设*「中曲面工的方程为F(x ,z) = 0,函数F ( x , y , Z)在曲面工上点益-氐丹,环)Wo)= 处可微,且酬(血)前(血)萌(血)# o,过点」任意引一条位于曲面工上的曲线r。
设其方程为X ■戎\* y = XOmW),且f ■冷对应于点-'■ 不全为零。
由于曲线『在工上,则有< -「及□化(孟)确,)+匚僦)HG+胃(兀玄如。
该方程表示了曲面上任意一条过点的曲线在该点的切线都与向量垂直,并且这些切线都位于同一平面上, 这个平面就称为曲面工在点■'处的切平面.点1 .称为切点.向量」丁 J _1称为曲面工在点].处的一个法向量。
记为厂:基本方法:1、设点?-1'■•"在曲面F(x, y, z)=0上,而F(x, y, z)在点‘丨处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点丄1处的切平面方程为忙(局)(“忌)4 兀(EXF -刃)+ £(兀-x,)-o法线方程为尺%,厂£3■厂£(兀)2、设点f-' 1' -1'■-在曲面z = f (x, y)上,且z = f (x, y)在点M(x。
,y。
)处存在连续偏导数,则该曲面在点上处的切平面方程为过X的法线方程为-工外片)-工知片)】注:方法2实际上是方法1中取■'■ ■1■ ' '■'- ■■' I的情形.3、若曲面刀由参数方程x = x(u, v) , y = y(u, v) , z = z(u, v)给出,刀上的点''''■'-与uv平面上的点(LP, v。
)对应,而x(u , v) , y( u , v) , z( u , v)在(u。
, v o)处可微.曲面刀在点X)处的切平面方程及法线方程分别为三、答疑解惑问题:曲面刀的参数方程为x = x(u , v) , y = y( u , v) , z = z( u , v),刀上的点':_i 1与u , v平面上的点(u o, v o)对应,怎样确定刀在点X)处的法向量?注释: :设x( u ,v),y(u , v),z(u ,v)在(s, v o)处可微,考虑在刀上过点X o的两条曲线『1: x = x(u ,v o),y = y(u ,v o),z = z( u , v o);『2:x = x(u o,v),y = y(u o ,v),z = z( u o , v).它们在点X。
法线方程和切平面方程的关系法线方程和切平面方程是解析几何中常用的两个方程,它们之间存在一定的关系。
本文将从理论和实际应用两个方面来讨论这种关系。
一、理论方面1. 法线方程的定义在三维空间中,一条直线的法线方程可以用一个点和一个与该直线垂直的向量来表示。
设直线上一点为P,直线的方向向量为n,则法线方程可以表示为:(P-P0)·n=0,其中P0为直线上的一个已知点。
2. 切平面方程的定义在三维空间中,一个曲面的切平面可以用一个点和一个与该曲面切线垂直的向量来表示。
设曲面上一点为P,曲面上的切向量为n,则切平面方程可以表示为:(P-P0)·n=0,其中P0为曲面上的一个已知点。
根据定义可知,法线方程和切平面方程的形式是相同的,都是(P-P0)·n=0。
这意味着法线方程中的n可以被视为切平面方程中的n,也就是说,直线的法向量可以被视为曲面的切向量。
二、实际应用方面1. 几何图形的法线方程和切平面方程在解析几何中,我们经常需要求解几何图形上某一点的法线方程或切平面方程,以便进行相关的计算或分析。
例如,对于一个球体,我们可以通过求解球心到某一点的向量,然后将该向量作为法向量,得到该点的法线方程。
同理,我们也可以求解球心到某一点的向量,并将该向量作为切向量,得到该点的切平面方程。
2. 曲线的法线方程和切平面方程对于曲线而言,法线方程和切平面方程也是非常重要的。
在计算机图形学中,我们常常需要绘制曲线的平滑效果,这就需要求解曲线上每一点的法线方程和切平面方程。
通过求解得到的法向量,我们可以在每一点处确定曲线的法线方向,从而使得曲线绘制出来更加真实和平滑。
法线方程和切平面方程在解析几何中有着重要的应用。
它们之间的关系在理论和实际应用中都得到了充分的验证。
熟练掌握法线方程和切平面方程的求解方法,对于理解和应用解析几何中的相关概念和问题具有重要意义。
希望通过本文的介绍,读者能够更好地理解和应用这两个方程,提高解析几何的学习和应用能力。
高中数学-曲面及曲面的切平面与法线方程
一、曲面及曲面的切平面与法线方程历年考点分析
2016年上半年高中,在选择题的第3题考查了二次曲面的方程;
2017年上半年高中,在选择题的第3题考查了柱面方程,简答题第9题考查了椭球面切平面方程;
2017年下半年高中,在解答题考查了旋转曲面方程的求解;
2018年上半年高中,在选择题的第6题、简答题的第10题考查了抛物柱面与平面的交线、二次曲面的切平面和法向量.
从这几套历年真题可以分析出,教师资格证数学曲面的考点主要是两大考点,曲面的方程及曲面的切平面与法线方程.
考生在高中数学教师资格证考试的备考中应注意复习曲面及曲面的切平面与法线方程部分知识点.
二、曲面及曲面的切平面与法线方程历年真题及详细解析。