背包算法问题
- 格式:doc
- 大小:92.00 KB
- 文档页数:4
01背包的穷举算法1.引言1.1 概述概述部分的内容可以从以下角度进行撰写:引言部分的目的是引导读者对文章内容的整体认识,让读者了解背包问题以及本文要介绍的01背包问题的穷举算法。
本文将首先介绍背包问题的概念,然后具体阐述01背包问题的定义以及解决该问题的穷举算法。
在现实生活中,背包问题是一类经典的组合优化问题。
它源于如何在背包容量有限的情况下,从给定的一组物品中选择出一些物品放入背包中,使得放入背包的物品总价值或总重量达到最大或最小。
这个问题可以应用在多个领域,如资源分配、货物装载等场景中。
而01背包问题是背包问题的一个特例,它的特点是每个物品只有取或不取两种选择。
具体来说,对于一组给定属性的物品,每个物品都有一个对应的重量和价值。
背包有一个固定的容量限制,任务是选择一些物品放入背包,使得这些物品的总重量不超过背包的容量,同时总价值最大化。
针对01背包问题,本文将介绍一种穷举算法,该算法通过列举所有可能的解,逐一判断是否满足问题的约束条件,从而找到满足最大总价值的解。
这种算法的优点在于能够找到问题的最优解,并且理论上适用于任意问题规模。
但同时,穷举算法也存在着计算复杂度高、耗时较长等缺点。
通过对01背包问题的穷举算法的介绍,读者将能够了解该算法的基本原理和应用场景,并且能够更深入地思考如何在实际问题中应用这种算法来求解最优解。
在接下来的内容中,我们将详细介绍背包问题的定义、01背包问题的具体情况以及穷举算法的细节。
1.2文章结构1.2 文章结构本文主要围绕着01背包问题展开讨论,旨在介绍和分析01背包问题的穷举算法。
具体来说,文章将从以下几个方面进行论述:1. 引言:介绍文章的背景和问题意义。
2. 背包问题介绍:对背包问题进行概括和解释,包括其应用领域和基本概念。
3. 01背包问题的定义:详细阐述01背包问题的定义、形式和要求。
4. 01背包问题的穷举算法:介绍和探讨01背包问题的穷举算法,包括算法思路、具体步骤和实现过程。
遗传算法求解背包问题程序实现一、背包问题描述背包问题是著名的NP 完备类困难问题,对这个问题的求解前人已经研究出了不少的经典的方法,对该问题确实能得到很好的结果。
近年来蓬勃发展起来的遗传算法已被广泛地应用于优化领域,其全局最优性、可并行性、高效性在函数优化中得到了广泛地应用遗传算法克服了传统优化方法的缺点,借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制. 本程序将遗传算法应用于背包问题。
二、实验程序1、编程语言:C++2、开发环境:Microsoft Visual Studio 20053、程序整体流程:步1初始化过程1. 1确定种群规模scale、杂交概率pc、变异概率pm、染色体长度chN及最大进化代数maxgen。
1. 2取x1′(0) = u (0 ,1) , x2′(0) = u (0 ,1) , …, xchN′(0) = u (0 ,1) ,其中函数u (0 ,1) 表示随机地产生数0 或1 ,则x (0) = ( x1 (0) , x2 (0) ,⋯, xN (0) ) .若不满足约束条件,则拒绝接受. 由(1. 2) 重新产生一个新的染色体; 如果产生的染色体可行,则接受它作为种群的一名成员,经过有限次抽样后, 得到scale个可行的染色体xj (0) , j =1 ,2 , ⋯, M ,设xj (0) 的染色体编码为vj (0) ,并记为v (0) = ( v1 (0) , ⋯, vchN (0) ) .1. 3计算各个染色体的适值1. 4 置k = 0步2选择操作2. 1采用转轮法选择下一代。
.步3杂交变异操作3. 1 事先定义杂交操作的概率pc ,为确定杂交操作的父代,从j = 1 到M 重复以下过程:从[0 ,1 ] 中产生随机数r ,若r < pc ,则选择cj′( k)作为一个父代.3. 2 产生两个[1 , N ] 上的随机整数i 、j ,变异的结果为染色体vj′( k)的第i 位基因的值变为其第j 位基因的值,同样将染色体的vj′( k)第j 位基因的值变为其第i 位基因的值.3. 3 检验该染色体的可行性,若可行则作为变异的结果;如不可行,重复3. 2 直至该染色体可行.3. 4 事先定义变异概率pm ,对经过杂交操作的中间个体进行变异操作: ,如果r < pm ,则选择vi″( k) 作为变异的父代.3. 5 产生一个[1 , N ] 上的随机整数i ,及随机地产生数0 或1 , 记为b , 变异的结果为染色体vi″( k) 的第i 位基因的值变为b.3. 6 检验该染色体的可行性,若可行则作为变异的结果:如不可行,重复3. 5 直至该染色体可行.3. 7 计算新个体的适应值,并把它们同时放回,和步2 选择操作中剩余的个体一起构成新一代种群v ( k + 1) = { v1 ( k + 1) , v2 ( k + 1) , ⋯, vM ( k + 1) } .步4 终止检验如果达到最大进化代数maxgen 则终止演化,否则置k : = k + 1 ,转步2.4、程序流程图程序流程图5、程序代码1)主程序代码:KnapsacksProblem.cpp文件#include "GAonKP.h"#include <iostream>using namespace std;void main(){FILE* fp;CGAonKP gakp;int scale; //种群规模double MaxWeight; //背包允许最大财宝质量double pc; //杂交概率double pm; //变异概率int maxgen; //最大进化代数char filename[256];cout<<"遗传算法解决背包问题程序使用说明:"<<endl;cout<<"1、该背包问题采用遗传算法"<<endl;cout<<"2、-1编码的方法,其中代表选中所对应的物品,代表不选中该物品"<<endl;cout<<"3、背包允许最带重量,种群规模(解空间大小),";cout<<"杂交概率,变异概率,最大进化代数需自己给";cout<<"定,程序会提示输入"<<endl;cout<<"4、程序提供一个输入示例"<<endl;cout<<"5、输入文件可加单行或多行注释"<<endl;cout<<"例如:#添加单行注释内容#"<<endl;cout<<"例如:#添加多行注释内容"<<endl;cout<<" 添加多行注释内容#"<<endl;cout<<"6、输入文件头位置需指定物品个数为int型数据。
遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。
物品i的重量是wi,其价值为vi。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。
(2)基因:染色体的每一个比特。
(3)种群:解的集合。
(4)适应度:衡量个体优劣的函数值。
2、控制参数(1)种群规模:解的个数。
(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。
(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。
3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。
三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。
种群:用二维数组表示,每一行表示一个染色体。
动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。
在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。
1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。
给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。
动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。
dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。
通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。
可以通过回溯的方法找到具体放入背包的物品。
2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。
动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。
dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。
对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。
通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。
同样可以通过回溯的方法找到具体的最短路径。
一、实例一:1.问题描述假设:背包最大重量为300,物品的数量为10,物品的价值:[95 75 23 73 50 22 6 57 89 98],物品的重量:[89 59 19 43 100 72 44 16 7 64]2.Matlab代码(1)参数初始化,导入本问题的物品的价值和重量数据,并设定背包最大重量。
wei=[9575 23 73 50 22 6 57 89 98];val=[89 59 19 43 100 72 44 16 7 64];w=300; %总重量约束值(2)随机产生数量为30的种群。
生成30*10的0-1矩阵。
So =round(rand(30,10));So=hardlim(So); %So为随机产生的矩阵,值为0或1[ZQ,Y] = size(So);(3)迭代次数为50代,交叉概率为90%,变异概率为5%.ds = 50; pc = 0.9; pm = 0.05;(4)设置适应度函数,利用惩罚函数降低不合格解的适应度,惩罚因子设为1.5.pu=1.5;syd =So*val'-pu*So*val'./(So*wei').*((So*wei'-w)>0).*(So*wei'-w);figure(1);hold on;(5)用轮盘赌进行选择操作,用选择出的个体构成的种群替代旧的种群better1=1; ip = 1; updatef=-10; %betterl为当前算出的总价值,ip为代数whileip<= dsfori=1:ZQfi(i)=syd(i)-min(syd)+1;endfori=1:ZQsp(i)=fi(i)/sum(fi);endfori=2:ZQsp(i)=sp(i-1)+sp(i);endfori=1:ZQp=rand(1); sindex=1;while p >sp(sindex)sindex=sindex+1;endnewSo(i,:)=So(sindex,:);endfori=1:ZQSo(i,:)=newSo(i,:);end(6)设置的交叉概率pc为90%,产生要配对的父代的序号,经过50次顺序调换,将原有顺序打乱,使相邻两个个体作为交叉的父代fori=1:ZQweiindex(i)=i;endfori=1:ZQpoint=unidrnd(ZQ-i+1);temp=weiindex(i);weiindex(i)=weiindex(i+point-1);weiindex(i+point-1)=temp;endfori=1:2:ZQp=rand(1);if(p<pc)point=unidrnd(Y-1)+1;for j=point:(Y-1)ch=So(weiindex(i),j);So(weiindex(i),j)=So(weiindex(i+1),j);So(weiindex(i+1),j)=ch;endendend(7)设置变异的概率为5%,产生50*10的0-1矩阵,对1的位置进行变异M=rand(ZQ,Y)<=pm;So=So-2.*(So.*M)+M;(8)产生精英染色体,you1是适应度最大的染色体,you2为适应度最小的染色体,最优解为不超过背包容量的适应度最大的syd2数组,better3即为每代的最优值,并用粉色星号画出来。
多背包问题近似解法及其近似⽐多背包问题:给定n个物品,其中物品i的价格是vi,重量是wi,有m个背包,背包j最⼤能装物品重量为Bj,求这些背包能够装下物品的最⾼价格,其中每个物品要么完全放⼊背包要么不放⼊。
(1),给出⼀个求解该问题的近似算法。
(2),设所有Bj都相等,分析你给出的算法的近似⽐。
这个问题到底有没有⾮近似的⽅法?这个是不是NP问题呢?虽然有些疑惑,但还是找出⼀个近似算法吧!(1),这⾥⽤贪⼼算法,依次从剩余的物品中⽤贪⼼算法使得第i个背包中的物品价值达到最⼤,i从1到m。
(2),这⾥我们可以证明这个近似算法具有常近似⽐。
设最优解的总价值为C*,我们要证明C*/C为常数, C为这个近似解的最⼤价值。
如果有背包没有物品的话,C*=C。
这⾥我们假设每个背包⾥都有物品。
假设物品可以部分放⼊背包,那么我们可以⽤⼀个贪⼼算法解决上⾯的优化问题,得到的解的最⼤价值为C', 每个背包j的容量为Wj'=B,价值为Vj',那么C'>=C*。
⽅案(1)中,假设每个背包j的容量为Wj,所含物品价值为Vj,那么Vj/Wj >= Vj'/Wj'。
在⽅案(1)基础上,我们⽤单位价值为Vj/Wj的物品把背包j填满,最后物品的总价值为C'', 每个背包j的所含物品的重量为Wj''=B, Vj'', 那么Vj''/Wj'' = Vj/Wj >= Vj'/Wj',所以C'' >= C'。
⼜有C'' <= kC,其中,k = B/min{wi}。
所以C* <= C' <= C'' <= kC, => C*/C <=k(常数)。
得证。
这⾥有⼀个更优的解法,近似⽐为2.。
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
部分背包问题的贪⼼算法正确性证明⼀,部分背包问题介绍⾸先介绍下0-1背包问题。
假设⼀共有N件物品,第 i 件物品的价值为 V i,重量为W i,⼀个⼩偷有⼀个最多只能装下重量为W的背包,他希望带⾛的物品越有价值越好,请问:他应该选择哪些物品?0-1背包问题的特点是:对于某件(更适合的说法是:某类)物品,要么被带⾛(选择了它),要么不被带⾛(没有选择它),不存在只带⾛⼀部分的情况。
⽽部分背包问题则是:可以带⾛⼀部分。
即,部分背包问题可带⾛的物品是可以⽆限细分的。
(连续与离散的区别)可以把0-1背包问题中的物品想象的⼀个⾦⼦,你要么把它带⾛,要么不带⾛它;⽽部分背包问题中的物品则是⼀堆⾦粉末,可以取任意部分的⾦粉末⼆,部分背包问题的贪⼼算法部分背包问题可以⽤贪⼼算法求解,且能够得到最优解。
贪⼼策略是什么呢?将物品按单位重量所具有的价值排序。
总是优先选择单位重量下价值最⼤的物品。
单位重量所具有的价值:V i / W i举个例⼦:假设背包可容纳50Kg的重量,物品信息如下:物品 i 重量(Kg) 价值单位重量的价值1 10 60 62 20 100 53 30 120 4按照我们的贪⼼策略,单位重量的价值排序:物品1 > 物品2 > 物品3因此,我们尽可能地多拿物品1,直到将物品1拿完之后,才去拿物品2.....最终贪⼼选择的结果是这样的:物品1全部拿完,物品2也全部拿完,物品3拿⾛10Kg(只拿⾛了物品3的⼀部分)这种选择获得的价值是最⼤的。
在(三)会给出证明。
⽽对于0-1背包问题,如果也按“优先选择单位重量下价值最⼤的物品”这个贪⼼策略,那么,在拿了物品1和物品2之后,就不能在拿物品3了。
因为,在拿了物品1和物品2之后,背包中已经装了10+20=30Kg的物品了,已经装不下物品3了(50-30 < 30)(0-1背包:⼀件物品要么拿,要么不拿,否能只拿⼀部分),此时得到的总价值是 160。
运筹学背包问题例题
运筹学中的背包问题是一个经典的组合优化问题,通常分为0-1背包问题和分数背包问题。
这个问题可以用来描述一个背包有限的容量,以及一系列物品,每个物品都有自己的重量和价值。
问题的目标是找到一个组合,使得放入背包的物品总重量不超过背包容量,同时使得这些物品的总价值最大化。
举一个例子来说明背包问题:假设有一个背包容量为10kg,现有以下物品:
物品A,重量3kg,价值150元。
物品B,重量4kg,价值300元。
物品C,重量5kg,价值200元。
针对这个例子,我们可以用动态规划或者贪心算法来解决背包问题。
在0-1背包问题中,每个物品只能选择放或者不放,不能进行分割。
而在分数背包问题中,物品可以进行分割放入背包。
解决背包问题的关键是建立递推关系和状态转移方程,以确定
如何选择物品放入背包以达到最优解。
动态规划是解决背包问题的
常用方法,通过填写一个二维的状态转移表格来逐步求解最优解。
贪心算法则是通过每一步选择当前最优的策略,不断迭代直至达到
最优解。
除了动态规划和贪心算法,还有其他方法可以解决背包问题,
比如分支限界法、回溯法等。
每种方法都有其适用的场景和局限性。
总的来说,背包问题是运筹学中的一个经典问题,有着广泛的
应用。
通过合适的算法和方法,我们可以有效地解决背包问题,找
到最优的放置方案,这对于资源分配、生产调度等实际问题有着重
要的意义。
背包问题九讲目录第一讲 01背包问题第二讲完全背包问题第三讲多重背包问题第四讲混合三种背包问题第五讲二维费用的背包问题第六讲分组的背包问题第七讲有依赖的背包问题第八讲泛化物品第九讲背包问题问法的变化附:USACO中的背包问题前言本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。
现在你看到的是这个写作计划最先发布的一部分。
背包问题是一个经典的动态规划模型。
它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。
读本文最重要的是思考。
因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。
更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。
你现在看到的是本文的1.0正式版。
我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。
但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以“背包问题九讲”为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。
目录第一讲 01背包问题这是最基本的背包问题,每个物品最多只能放一次。
第二讲完全背包问题第二个基本的背包问题模型,每种物品可以放无限多次。
第三讲多重背包问题每种物品有一个固定的次数上限。
第四讲混合三种背包问题将前面三种简单的问题叠加成较复杂的问题。
第五讲二维费用的背包问题一个简单的常见扩展。
第六讲分组的背包问题一种题目类型,也是一个有用的模型。
后两节的基础。
第七讲有依赖的背包问题另一种给物品的选取加上限制的方法。
第八讲泛化物品我自己关于背包问题的思考成果,有一点抽象。
基于蚁群算法的背包问题优化研究一、背包问题的介绍背包问题作为一个经典的组合优化问题,一直以来吸引着众多学者的关注。
其主要目标是在一定的容量限制下,如何选取具有最大价值的物品组合。
背包问题有多个变种,如 01 背包、完全背包等。
然而,不同变种的背包问题都存在一个共同的特点:对于每个物品,都要考虑是否将其放入背包,这种二选一的决策行为给背包问题带来了很大的挑战。
在实际生活中,背包问题也有着广泛的应用。
如从酒店房间中选择最合适的房间、决策投资方案、打包和运输物品等。
因此,研究背包问题的优化算法具有重要的理论和应用价值。
二、蚁群算法的介绍蚁群算法是一种模拟蚂蚁觅食过程的优化算法,其主要基于群集智能、信息素等模型。
与传统的优化算法不同,蚁群算法能够在多维空间中实现全局搜索,快速找到最优解。
此外,相比于遗传算法,蚁群算法不需要进行进化计算,简化了算法的复杂度。
因此,蚁群算法成为了近年来背包问题优化算法研究中的一种重要算法。
三、基于蚁群算法的背包问题优化算法在蚁群算法应用于背包问题的优化过程中,需要考虑背包问题的特殊性。
具体而言,对于每个可选取的物品,都存在一个重量和一个价值。
整个问题可以定义为最大化价值,同时满足背包的最大重量限制。
在优化过程中,需要对蚂蚁的行为进行建模。
为了方便模型的表达,在算法中通常使用概率分布来代表蚂蚁在选择物品时的决策行为。
同时,还需要考虑信息素的更新策略,以便蚂蚁能够更好地搜索到最优解。
具体而言,在蚁群算法中,蚂蚁会根据信息素大小和物品的价值、重量来决定是否将其放置于背包中。
为了避免局部最优解,还需要在算法中引入随机因素,以扰动蚂蚁的搜索方向。
同时,在蚁群算法的优化过程中,还需要优化信息素更新策略,以实现蚂蚁群体的动态平衡,及时发现和应对任何可能存在的局部最优解。
四、蚁群算法优化背包问题的实践应用在实际应用中,蚁群算法可以有效地提高背包问题的解决效率。
例如,通过应用蚁群算法,可以在旅行商问题的求解中使路径更优,实现节约成本和时间的目的。
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
背包问题贪心法和动态规划方案法求解嘿,大家好!今天咱们来聊聊那个让人又爱又恨的背包问题。
这个问题可是算法领域的经典难题,不过别怕,今天我会用贪心法和动态规划两种方法帮你轻松搞定它!来个简单直接的背景介绍。
背包问题,简单来说,就是给定一组物品,每个物品都有一定的价值和重量,你需要在不超过背包承载重量的前提下,挑选出价值最大的物品组合。
听起来是不是有点像生活中的购物决策?哈哈,没错,这就是背包问题的魅力所在。
好,下面咱们直接进入主题。
一、贪心法贪心法,顾名思义,就是每一步都选择当前看起来最优的方案。
对于背包问题,贪心法的核心思想就是:每次都选取价值密度最大的物品。
1.计算每个物品的价值密度,即价值除以重量。
2.然后,按照价值密度从大到小排序。
3.从排序后的列表中依次选取物品,直到背包装满或者没有物品可选。
二、动态规划法动态规划,这是一种更加严谨、也更复杂的方法。
它的核心思想是:通过把大问题分解成小问题,逐步求解,最终得到最优解。
1.定义一个二维数组dp[i][j],表示在前i个物品中选择,背包容量为j时的最大价值。
2.我们考虑第i个物品是否放入背包。
如果放入,则前i-1个物品在容量为j-w[i]时的最大价值加上w[i]的价值,即dp[i][j]=dp[i-1][j-w[i]]+w[i]。
如果不放入,则前i-1个物品在容量为j时的最大价值,即dp[i][j]=dp[i-1][j]。
3.通过比较这两种情况,取最大值作为dp[i][j]的值。
整个过程中,我们需要遍历所有物品和所有可能的背包容量,最终得到dp[n][W]就是我们要找的最大价值。
现在,让我们用一段代码来具体实现一下动态规划法:defknapsack(W,weights,values):n=len(values)dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=50weights=[10,20,30]values=[60,100,120]print(knapsack(W,weights,values))怎么样?是不是觉得动态规划法虽然复杂,但逻辑清晰,更容易找到最优解?通过上面的分析,我们可以看到,贪心法简单高效,但有时候并不能得到最优解;而动态规划法虽然计算复杂度较高,但可以得到最优解。
背包问题贪心方法 实验日志
实验题目:
1)求以下情况背包问题的最优解:n=7,M=15,(71,,p p )=(10,5,15,7,6,18,
3)和(71,,w w )=(2,3,5,7,1,4,1)。
实验目的:
1. 掌握贪心方法算法思想;
2. 熟练使用贪心算法之背包问题解决相应的问题。
实验思想:
贪心方法是一种改进了的分级处理方法。
它首先根据题意,选取一种量度标准。
然后按这种量度标准对这n 个输入排序,并按排序一次输入一个量。
如果这个输入和当前已构成在这种量度意义下的部分最优解加在一起不能产生一个可行解,则不把此解输入加到这部分解中。
这种能够得到某种度量意义下的最优解的分级处理方法称为贪心方法。
1.背包问题
(1)背包问题的描述:已知有n 种物品和一个可容纳M 重量的背包,每种物
品i 的重量为i w 。
假定将物品i 的一部分i x 放入背包就会得到i i x p 的效益,这里,10≤≤i x , 0>i p 。
显然,由于背包容量是M ,因此,要求所有选中要装入背包的物品总重量不得超过M.。
如果这n 件物品的总重量不超过M ,则把所有物品装入背包自然获得最大效益。
现需解决的问题是,这些物品重量的和大于M ,该如何装包。
由以上叙述,可将这个问题形式表述如下:
极 大 化
∑≤≤n i i x p 1i
约束条件 M x w n i i ≤∑≤≤1i
n i w p x i i i ≤≤>>≤≤1,0,0,10
(2)用贪心策略求解背包问题
首先需选出最优的量度标准。
不妨先取目标函数作为量度标准,即每装
入一件物品就使背包获得最大可能的效益值增量。
在这种量度标准下的贪心
方法就是按效益值的非增次序将物品一件件放到背包中去。
如果正在考虑中
的物品放不进去,则可只取其一部分来装满背包。
但这最后一次的方法可能
不符合使背包每次获得最大效益增量的量度标准,这可以换一种能获得最大
增量的物品,将它(或它的一部分)放入背包,从而使最后一次装包也符合
量度标准的要求。
算法如下所示。
算法2.1 背包问题的贪心算法
procedure GREEDY-KNAPSACK(P,W,M,X,n)
//P(1:n)和W(1:n)分别含有按P(i)/W(i)≥P(i+1)/ W (i+1)排序的n件物品的效益值和重量。
M是背包的容量大笑,而X(1:
n)是解向量。
//
real P(1:n),W(1:n),X(1:n),M,cu;
integer i,n;
X←0 //将解向量初始化为零
cu←M //cu是背包剩余容量
for i←1 to n do
if W(i)>cu then exit endif
X(i) ←1
cu←cu-W(i)
repeat
if i≤n then X(i) ←cu/W(i)
endif
end GREEDY-KNAPSACK
实验代码:
#include<iostream>
using namespace std;
void beibao(double *w,double *v,double *x,double n,double *C)
{
int i,j,temp;
for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++)
if(v[i]/w[i]<v[j]/w[j])
{
temp=v[i];
v[j]=temp;
temp=w[i];
w[i]=w[j];
w[j]=temp;
}
for(i=0;i<n;i++)
x[i]=0;
for(i=0;*C!=0;i++)
{
i f(w[i]<*C)
{
x[i]=w[i];
*C=*C-w[i];
}
e lse
{
x[i]=*C;
*C=*C-*C;
}
}
}
void main()
{
int i;
double *w,*v,n,C;
double *x;
cout<<"请输入物品数"<<endl;
cin>>n;
w=new double(n);//动态分配内存
v=new double(n);
x=new double(n);
cout<<"请输入背包的容量"<<endl;
cin>>C;
cout<<"请分别输入"<<n<<"个物品的重量:"<<endl; for(i=0;i<n;i++)
cin>>w[i];
cout<<"请分别输入"<<n<<"个物品的价值:"<<endl; for(i=0;i<n;i++)
cin>>v[i];
beibao(w,v,x,n,&C);
cout<<"装入的物品为:"<<endl;
for(i=0;i<n;i++)
{
c out<<"其装的重量为:"<<x[i]<<" 其价值为:"<<v[i];
}
cout<<endl;
}
}
实验结果:
心得体会:
通过本次使用让我了解了什么是贪心法,什么事背包问题以及如何运用背包问题解决问题。