第二章核酸的分子结构
- 格式:ppt
- 大小:5.43 MB
- 文档页数:61
⽣化第⼆章核酸的结构和功能第⼆章核酸的结构与功能本章重点核酸前⾔:1.真核⽣物DNA 存在于细胞核和线粒体内,携带遗传信息,并通过复制的⽅式将遗传信息进⾏传代;真核⽣物RNA 存在于细胞质、细胞核和线粒体内。
2.在某些病毒中,RNA 也可以作为遗传信息的载体。
⼀、核酸的化学组成以及⼀级结构(⼀)、核苷酸是构成核酸的基本组成单位1.DNA 的基本组成单位是脱氧核苷酸,⽽RNA 的基本组成单位是核糖核苷酸。
2.核苷酸中的碱基成分:含氮的杂环化合物。
①DNA 中的碱基:A\T\C\G 。
②RNA 中的碱基:S\U\C\G 。
★这五种碱基的酮基或氨基受所处环境的pH 是影响可以形成酮-烯醇互变异构体或氨基-亚2.核糖①β-D-核糖:C-2’原⼦上有⼀个羟基。
②β-D-脱氧核糖:C-2’原⼦上没有羟基☆脱氧核糖的化学稳定性⽐核糖好,这使DNA成为了遗传信息的载体。
3.核苷①核苷②脱氧核苷③核糖的C-1’原⼦和嘌呤的N-9原⼦或者嘧啶的N-1原⼦通过缩合反应形成了β-N-糖苷键。
在天然条件下,由于空间位阻效应,核糖和碱基处在反式构象上。
3.核苷酸的结构与命名①核苷或脱氧核苷C-5’原⼦上的羟基可以与磷酸反应,脱⽔后形成磷酸键,⽣成核苷酸或脱氧核苷酸。
②根据连接的磷酸基团的数⽬不同,核苷酸可分为核苷⼀磷酸(NMP)、核苷⼆磷酸(NDP)、核苷三磷酸(NTP)。
③⽣物体内游离存在的多是5’核苷酸★细胞内⼀些参与物质代谢的酶分⼦的辅酶结构中都含有腺苷酸,如辅酶Ⅰ(NAD+),它们是⽣物氧化体系的重要成分,在传递质⼦或电⼦的过程中具有重要的作⽤。
(⼆)、DNA是脱氧核糖核苷酸通过3’,5’-磷酸⼆酯键连接形成的⼤分⼦1.脱氧核糖核苷三磷酸C-3’原⼦的羟基能够与另⼀个脱氧核糖核苷三磷酸的α-磷酸基团缩合,形成了⼀个含有3’,5’-磷酸⼆酯键的脱氧核苷酸分⼦。
2.脱氧核苷酸分⼦保留着C-5’原⼦的磷酸基团和C-3’原⼦的羟基。
第二节核酸的分子结构核酸的一级结构是指其结构中核苷酸的排列次序。
在庞大的核酸分子中,各个核苷酸的唯一不同之处仅在于碱基的不同。
因此核苷酸的排列次序也称碱基排列次序。
核酸就是由许多核苷酸单位通过3’,5’-磷酸二酯键连接起来形成的不含侧链的长链状化合物。
核酸具有方向性的长链状化合物,多核苷酸链的两端,一端称为5’-端,另一端称为3’-端。
组成DNA的核苷酸虽然只有四种,但是各种核苷酸的数量、比例和排列次序不同,并且DNA分子中的核苷酸(碱基)数量都多达百万乃至千万,因此可以形成各种特异性的DNA片段,由这些排列方式所提供的信息,几乎是无限的,从而造就了自然界丰富多彩的物种和个体之间的千差万别。
二、DNA的二级结构——双螺旋结构模式DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型。
双螺旋模型的要点如下:1.DNA分子是由两条长度相同、方向相反的多聚脱氧核糖核苷酸链平行围绕同一“想象中”的中心轴形成的双股螺旋结构。
二链均为右手螺旋。
双螺旋表面存在着两条凹沟,与脱氧核糖-磷酸骨架平行。
较深的沟称为大沟(major groove),较浅的称为小沟(minor groove)。
这些沟状结构与蛋白质和DNA的识别及结合有关,通过这样的相互作用,实现对基因表达的调控。
2.两条多核苷酸链中,脱氧核糖和磷酸形成的骨架作为主链位于螺旋外侧,而碱基朝向内侧。
两链朝内的碱基间以氢键相连,使两链不至松散。
碱基间的氢键形成有一定的规律:即腺嘌呤与胸腺嘧啶以二个氢键配对相连;鸟嘌呤与胞嘧啶以三个氢键相连(即A=T,G≡C)。
这种碱基配对规律被称为“碱基互补规律”。
这些配对的碱基一般处在同一个平面上,称碱基平面,它与双螺旋的长轴垂直。
正因为两链间的碱基是互补的,所以两链的核苷酸排列次序也是互补的,即两链互为互补链。
当知道一条链的一级结构,另一条互补链也就被确定。
第二章核酸的分子结构核酸是一类重要的生物大分子,包括DNA(脱氧核糖核酸)和RNA(核糖核酸)。
它们是细胞内负责遗传信息存储和传递的关键分子。
核酸的分子结构是由不同的分子组成,形成了独特的双螺旋结构,这种结构使得核酸能够实现遗传信息的稳定传递以及多种生物功能的实现。
DNA是由鸟嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G)四种碱基组成的核酸分子。
碱基通过N-糖苷键链接到核糖磷酸分子上,形成了核苷酸,进而形成了DNA的整个分子结构。
DNA的双螺旋结构采用了著名的Watson-Crick结构模型,即两根互相以螺旋形状缠绕的链。
这种结构由两条链通过碱基间的氢键相互连接,形成了DNA的双螺旋结构。
其中,鸟嘌呤通过三个氢键连接到胸腺嘧啶,胞嘧啶通过两个氢键连接到鸟嘌呤。
这种碱基之间的选择性配对使得DNA能够实现信息的复制和传递。
在DNA的分子结构中,糖苷和磷酸通过磷酸二酯键链接在一起,形成了DNA的骨架。
两条糖磷酸链反向排列,形成了DNA的双螺旋结构。
糖苷分子是由五个碳原子组成的环状结构,每个碳原子上有一个氧原子和一个氢原子,还有一个碱基。
两条DNA链互相以反向排列的方式连接,即一个链上的3'-OH基团连接到另一个链上的5'-磷酸基团。
这种反向排列使得DNA具有了方向性,即5'端和3'端。
与DNA不同,RNA由磷酸核糖分子和碱基组成。
在RNA分子中,脱氧核糖被核糖取代,并且鸟嘌呤(A)和胸腺嘧啶(T)不再是碱基对,取而代之的是鸟嘌呤(A)和尿嘧啶(U)。
RNA的磷酸二酯键连接在一起,形成了RNA的线性结构。
虽然RNA也可以形成双螺旋结构,但大部分的RNA通常是单链结构。
RNA还具有许多不同的结构和功能,例如mRNA(信使RNA)、rRNA(核糖体RNA)和tRNA(转运RNA),它们参与了蛋白质的合成过程。
总之,核酸的分子结构是由不同的分子组成,形成了特殊的双螺旋结构。
第二章核酸的结构和功能核酸是以核苷酸为基本组成单位的线性多聚生物信息分子。
分为DNA和RNA两大类。
其化学组成见下表:DNA RNA碱基①嘌呤碱 A、G A、G②嘧啶碱 C、T C、U戊糖β-D-2 脱氧核糖β-D-核糖磷酸磷酸磷酸碱基与戊糖通过糖苷键相连,形成核苷。
核苷的磷酸酯为核苷酸。
根据核苷酸分子的戊糖种类不同,核苷酸分为核糖核苷酸与脱氧核糖核苷酸,前者是RNA的基本组成单位,后者为DNA的基本组成单位,核酸分子中核苷酸以3’,5’-磷酸二酯键相连,形成多核苷酸链,是核酸的基本结构。
多核苷酸链中碱基的排列顺序为核酸的一级结构。
多核苷酸链的两端分别称为3’-末端与5’-末端。
DNA的二级结构即双螺旋结构的特点:⑴两条链走向相反,反向平行,为右手螺旋结构;⑵脱氧核糖和磷酸在双螺旋外侧,碱基在内侧;⑶两链通过氢键相连,必须A与T、G与C配对形成氢键,称为碱基互补规律。
⑷大(深)沟,小(浅)沟。
⑸螺旋一周包含10个bp,碱基平面间的距离为0.34nm,螺旋为3.4nm,螺旋直径2nm;⑹疏水作用。
氢键及碱基平面间的疏水性堆积力维持其稳定性。
DNA的基本功能是作为遗传信息的载体,并作为基因复制转录的模板。
mRNA分子中有密码,是蛋白质合成的直接模板。
真核生物的mRNA一级结构特点:5’-末端“帽”,3’-末端“尾”。
tRNA在蛋白质合成中作为转运氨基酸的载体,其一级结构特点:含有较多的稀有碱基;3’-CCA-OH,二级结构为三叶草形结构。
rRNA与蛋白质结合构成核蛋白体,作为蛋白质合成的“装配机”。
细胞的不同部位还存在着许多其他种类小分子RNA,统称为非mRNA小RNA(snmRNAs),对细胞中snmRNA 种类、结构和功能的研究称为RNA组学。
具有催化作用的某些小RNA称为核酶。
碱基、核苷、核苷酸及核酸在260nm处有最大吸收峰。
加热可使DNA双链间氢键断裂,变为单链称为DNA变性。
DNA变性时,OD260增高。
核酸的结构与功能【目的和要求】1. 熟悉核酸的种类、分布和主要的生物学功能。
2.掌握核酸的化学组成、核苷酸的连接方式。
3.归纳区分两类核酸在化学组分上的异同点。
4.说出DNA二级结构的模型及其主要特点。
5.简述RNA分子组成和结构的特点。
6.简述三种RNA结构特点和主要功能。
7.了解核酸重要的理化特性及其在医学上的应用。
8.能说出生物体内重要的单核苷酸及其生化功能。
【本章重难点】1.核酸的种类、分布和生物学功能。
2.核酸的化学组成。
3.DNA和RNA的分子结构与功能。
4.核酸的变性、复性及杂交。
5.生物体内重要的单核苷酸。
学习内容第一节核酸的化学组成第二节 DNA的分子结构第三节 RNA的分子结构第四节核酸的理化性质第一节核酸的化学组成一、核酸(nucleic acid)的分类、分布与生物学功能分类分布生物学功能核糖核酸(RNA)细胞质参与蛋白质的生物合成5 % 蛋白质合成的直接模板tRNA 15 % 活化与转运AArRNA 80 % 充当装配机,提供场所脱氧核糖核酸(DNA ) 核内、染色质遗传的物质基础** 基因 —— DNA 分子中的功能片段(决定遗传特性的碱基序列)。
二、核酸的分子组成1.核酸的元素组成:C.H.O.N.和P ;代表元素P ,平均含量9~10%。
2.核酸的基本组成单位:核苷酸(nucleotide )1)核苷酸的组成戊糖、碱基:核苷、核苷酸:核苷酸链:3/,5/-磷酸二酯键;3/-羟基端,5/-磷酸基端水解 水解 磷酸 戊糖(戊糖、脱氧戊糖)核酸 核苷酸核苷 嘧啶(C.T.U )碱基嘌呤(A.G)2)核苷酸的结构与命名3)核苷酸的功用3.两类核酸在分子组成上的异同点第二节 DNA 的分子结构一、DNA 的一级结构组成DNA 分子的基本单位是四种脱氧核苷酸:dAMP 、dCMP 、dGMP 和dTMP1.DNA 的碱基组成规律:Chargaff 规则:①同一生物不同组织的DNA 样品,其碱基成分含量相同。
第二节核酸的分子结构一个核苷酸分子戊糖的3′-羟基和另一个核苷酸分子戊糖的5′-磷酸可脱水缩合形成3′,5′-磷酸二酯键。
许多核苷酸借助于磷酸二酯键相连形成的化合物称为多聚核苷酸。
多聚核苷酸呈线状展开,称为多聚核苷酸链,它是核酸的基本结构形式。
多聚核苷酸链有两个末端,戊糖5′位带有游离磷酸基的称为5′末端,戊糖3′位带有游离羟基的一端称为3′末端(图3-2-1)。
图3-2-1 多聚核苷酸链一、DNA的分子结构(一)DNA的碱基组成特点在50年代初,经Chargaff等人的分析研究表明,DNA的碱基组成有下列一些特点:1.各种生物的DNA分子中腺嘌呤与胸腺嘧啶的摩尔数相等,即A=T;鸟嘌呤与胞嘧啶的摩尔数相等,即G=C。
因此,嘌呤碱的总数等于嘧啶碱的总数,即A+G=C+T。
2.DNA的碱基组成具有种属特异性,即不同生物种属的DNA具有各自特异的碱基组成,如人、牛和大肠杆菌的DNA碱基组成比例是不一样的。
3.DNA的碱基组成没有组织器官特异性,即同一生物体的各种不同器官或组织DNA 的碱基组成相似。
比如牛的肝、胰、脾、肾和胸腺等器官的DNA的碱基组成十分相近而无明显差别。
4.生物体内的碱基组成一般不受年龄、生长状况、营养状况和环境等条件的影响。
这就是说,每种生物的DNA具有各自特异的碱基组成,与生物的遗传特性有关。
DNA碱基组成的这些规律称Chargaff规则,这些规则为研究DNA双螺旋结构提供了重要依据。
(二)一级结构DNA是由许多脱氧核糖核苷酸通过磷酸二酯键连接起来的多聚核苷酸。
DNA分子中脱氧核糖核苷酸的排列顺序,称为DNA的一级结构。
它是形成二级结构和三级结构的基础。
(三)二级结构DNA的二级结构是一个双螺旋结构,其结构模型于1953年由美国的Watson和英国的Crick两位科学家共同提出,从本质上揭示了生物遗传性状得以世代相传的分子奥秘。
其基本内容如下:1.主干链反向平行:DNA分子是一个由两条平行的脱氧多核苷酸链围绕同一个中心轴盘曲形成的右手螺旋结构,两条链行走方向相反,一条链为5′→3′走向,另一条链为3′→5′走向。
⽣物化学第⼆章笔记第⼆章核酸的结构与功能核酸(uncleic acid)是以核苷酸为基本组成单位的⽣物信息⼤分⼦,携带和传递遗传信息。
脱氧核糖核苷酸(deoxyribonucleic acid,DNA)90%以上分布于细胞核,其余分布于核外,如线粒体,叶绿体和质粒等。
携带遗传信息,决定细胞和个体的遗传型(genotype)。
核糖核酸(ribonucleic acid,RNA)分布于细胞质、细胞核和线粒体内。
参与细胞内DNA遗传信息的表达。
某些病毒RNA也可作为遗传信息的载体。
第⼀节核酸的化学组成及结构核酸组成⼀、核苷酸是构成氨基酸的基本组成单位分⼦组成:碱基(嘌呤碱、嘧啶碱)、戊糖(核糖、脱氧核糖)、磷酸。
碱基(base)是含氮的杂环化合物。
嘌呤N-9或嘧啶N-1与脱氧核糖C-1’通过β-N-糖苷键相连形成脱氧核苷或核苷。
核苷或脱氧核苷与磷酸通过酯键结合构成核苷酸或脱氧核苷酸。
核苷酸还存在衍⽣物,如环化核苷酸(cAMP、cGMP)是细胞信号转导中的第⼆信使。
⼆、DNA是脱氧核苷酸通过3’,5’-磷酸⼆酯键连接形成的⼤分⼦⼀个脱氧核苷酸3’的羟基与另⼀个核苷酸5’的α-磷酸基团缩合形成磷酸⼆酯键。
多个脱氧核苷酸通过磷酸⼆酯键构成了具有⽅向性的线性分⼦,称为多聚脱氧核苷酸,即DNA链。
DNA链的⽅向是5’→3’。
交替的磷酸基团和戊糖构成了DNA的⾻架。
三、RNA也是具有3’,5’-磷酸⼆酯键的线性⼤分⼦RNA也是多个核苷酸分⼦通过酯化反应形成的线性⼤分⼦,并且具有⽅向性;RNA的戊糖是核糖;RNA 的嘧啶是胞嘧啶和尿嘧啶。
四、核酸的⼀级结构是核苷酸的排列顺序由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。
核酸分⼦的⼤⼩常⽤碱基数⽬来表⽰。
⼩的核酸⽚段(<50bp)常被称为寡核苷酸。
⾃然界中的DNA 和RNA的长度可以⾼达⼏⼗万个碱基。
DNA和RNA之间的差别第⼆节DNA的空间结构与功能DNA的空间结构:构成DNA的所有原⼦在三维空间具有确定的相对位置关系。