Eviews回归分析输出结果指标解释
- 格式:doc
- 大小:26.00 KB
- 文档页数:1
建模方法之回归分析简介数学模型一元线性回归分析模型:),,0(~,2σεεN bx a Y ++= 多元线性回归分析模型:ε+++++=p p x b x b x b a Y Λ2211设随机变量Y 与X 有相关关系,就是说当X 取一确定值时,随机变量Y 有一个确定的分布.这个分布大多数情况下不能具体知道,但在实践中只需要的观测值.而数学期望(假设存在)在一定程度上能反映出其观测值的大小,所以人们感兴趣的是当X 取确定值x 时, Y 的数学期望)(x μ是多少.称)(x μ为Y 对X 的回归函数.在实际问题中,回归函数是未知的,需要我们根据实测样本以及以往的经验来确定回归函数的类型及求出函数中的未知参数的估计,得到经验公式.例1 20℃时在铜线含碳量%x 对于电阻Y (为一正态变量,单位:微欧)变化的研究中,得到如下一测试结果表明,随着铜线含碳量的增加,其电阻有增大的趋势.为了确定回归函数)(x μ的类型, 我们将这9组数据作为坐标在平面直角坐标系中描出它们相应的点,这种图称为散点图。
变量X -Y 的散点图因此估计)(x μ大致具有线性函数bx a +的形式,即可认为X 与Y 具有如下关系:),,0(~,2σεεN bx a Y ++= (1)其中b a ,及2σ是常数.这就是X 、Y 之间的(一元正态线性)回归模型.对n 根铜线进行独立观测,能得到n 个含碳量n x x x ,,,21Λ及对应的n Y Y Y ,,,21Λ,把i Y 看成随即变量,则它们可以表示成⎭⎬⎫=++=.,,,),,0(~,,,2,1,212相互独立n i i i i N n i bx a Y εεεσεεΛΛ (2)记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 11121M M ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y M 21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n εεεεM 21, 则(2)式也可表示为ε+⎪⎪⎭⎫⎝⎛=b a X Y .在一元线性回归中主要解决下列问题: (I ) 对未知参数b a ,及2σ进行估计; (II ) 对线性模型的假设进行检验; (III ) 对Y 进行预测和控制.参数的估计:对未知参数b a ,的估计,一个直观的想法便是希望选取这样的a 与b ,使得他们在n x x x ,,,21Λ各处计算的理论值i bx a +与实测值i y 的偏离达到最小.为此人们常用最小二乘法:求b a ,使∑=−−=ni i ibx a yQ 12)(为最小.在几何上,即是在平面上选取一条直线,使直线在横坐标为n x x x ,,,21Λ处的纵坐标与相应的实测点的纵坐标之差的平方和为最小.利用求极值的方法求b a ,,令⎪⎪⎩⎪⎪⎨⎧=−−−=∂∂=−−−=∂∂∑∑==.0)(2,0)(211ni i i i ni i i x bx a y b Q bx a y a Q整理得⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====ni i i n i i n i i ni i n i i y x x b x a y x b na 112111解此方程组得到的不是b a ,的真值,而是b a ,的估计值,ˆ,ˆb a它们为 ,)())((ˆ1212121∑∑∑∑====−−−=−−=ni ini i ini ini ii x xy y x xx n xyx n yx b(3),ˆˆx b y a−= (4) 其中.,111∑∑====ni i ni i y y x n x 具体计算得Y 对X 的线性回归方程为.59.1297.13ˆx y+= 等价公式:Y X X X ba TT 1)(ˆˆ−=⎥⎦⎤⎢⎣⎡. (5)方差分析:总平方和:,)(12∑=−=ni iT Y YQ 自由度为1−n回归平方和:∑=−=ni iR Y Y Q 12)ˆ(,)(ˆ122∑=−=ni i x x b 自由度为1=p 残差平方和:,)ˆ(12∑=−=ni iiE Y YQ 自由度为1−−p n 关系式:.E R T Q Q Q += 性质:2)1(σ=−−p n Q E E 。
E V I E W S回归结果的理解集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-回归结果的理解参数解释:1、回归系数(coefficient)注意回归系数的正负要符合理论和实际。
截距项的回归系数无论是否通过T检验都没有实际的经济意义。
2、回归系数的标准误差(Std.Error)标准误差越大,回归系数的估计值越不可靠,这可以通过T值的计算公式可知3、T检验值(t-Statistic)T值检验回归系数是否等于某一特定值,在回归方程中这一特定值为0,因此T值=回归系数/回归系数的标准误差,因此T值的正负应该与回归系数的正负一致,回归系数的标准误差越大,T值越小,回归系数的估计值越不可靠,越接近于0。
另外,回归系数的绝对值越大,T值的绝对值越大。
4、P值(Prob)P值为理论T值超越样本T值的概率,应该联系显着性水平α相比,α表示原假设成立的前提下,理论T值超过样本T值的概率,当P 值<α值,说明这种结果实际出现的概率的概率比在原假设成立的前提下这种结果出现的可能性还小但它偏偏出现了,因此拒绝接受原假设。
5、可决系数(R-squared)都知道可决系数表示解释变量对被解释变量的解释贡献,其实质就是看(y尖-y均)与(y=y均)的一致程度。
y尖为y的估计值,y均为y的总体均值。
6、调整后的可决系数(AdjustedR-squared)即经自由度修正后的可决系数,从计算公式可知调整后的可决系数小于可决系数,并且可决系数可能为负,此时说明模型极不可靠。
regression)残差的经自由度修正后的标准差,OLS的实质其实就是使得均方差最小化,而均方差与此的区别就是没有经过自由度修正。
8、残差平方和(SumSquaredResid)见上79、对数似然估计函数值(Loglikelihood)首先,理解极大似然估计法。
极大似然估计法虽然没有OLS运用广泛,但它是一个具有更强理论性质的点估计方法。
[经验分享] 使用eviews做线性回归分析Glossary:ls(least squares)最小二乘法R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaured()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criterion赤池信息量(AIC)(越小说明模型越精确)Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statistic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p 值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
2)回归系数显著性检验(t检验):检验每一个自变量的合理性|t|大于临界值表示可拒绝系数为0的假设,即系数合理。
eviews做回归分析报告回归分析是一种常用的统计分析方法,通过建立一个数学模型来描述自变量和因变量之间的关系。
EViews是一种专业的统计软件,可以使用它来进行回归分析并生成相应的分析报告。
下面是使用EViews进行回归分析报告的详细步骤:1. 导入数据:使用EViews打开数据文件,确保数据文件包含自变量和因变量的数据。
2. 创建回归方程:选择菜单栏中的“Quick/Estimate Equation”或者在工具栏中点击“Estimate Equation”按钮来创建一个回归方程。
在弹出的对话框中选择自变量和因变量,可以选择更多的选项来调整回归模型的设定。
3. 进行回归分析:点击对话框中的“OK”按钮,EViews将会进行回归分析并显示回归模型的估计结果。
在结果窗口中,你可以查看模型的拟合统计量、系数估计值、标准误差等信息。
4. 诊断检验:在结果窗口中,EViews会给出一些诊断检验的结果,如残差的正态性检验、异方差性检验等。
你可以根据这些检验结果来进一步判断回归模型的合理性。
5. 绘制图表:EViews提供了丰富的绘图功能,你可以在结果窗口中选择需要的图表类型,如散点图、回归方程图等。
6. 生成报告:最后,你可以将回归分析的结果和图表导出为报告文件。
在EViews中,你可以选择“File/Export/Report…”选项来将分析结果导出为报告文件。
你可以选择不同的格式,如Word、Excel等。
以上是使用EViews进行回归分析报告的基本步骤。
当然,在具体的应用中,你可能需要根据具体的研究问题进行更加详细和复杂的分析。
EViews提供了丰富的功能和命令,可以帮助你进行更深入的回归分析。
Eviews做回归分析报告引言回归分析是一种广泛应用于统计学和经济学中的数据分析方法。
它用于研究变量之间的关系,并预测一个变量如何受其他变量的影响。
Eviews是一种专业的统计软件,具有强大的回归分析功能。
本文将介绍如何使用Eviews进行回归分析,并提供详细的步骤说明。
步骤步骤一:准备数据首先,我们需要准备用于回归分析的数据。
数据应该以适当的格式存储,例如Excel表格或CSV文件。
确保数据文件中的变量以列的形式排列,并且每个观测值占据一行。
步骤二:导入数据打开Eviews软件,并使用菜单栏中的“File”选项导入数据文件。
选择正确的文件格式,并确保正确地指定数据的位置和格式。
导入后,您将在Eviews中看到您的数据。
步骤三:选择回归变量在Eviews中,选择要用作解释变量和被解释变量的列。
您可以通过单击变量名称在变量列表中选择变量。
如果您想选择多个变量,可以按住Ctrl键并单击每个变量。
步骤四:运行回归分析选择菜单栏中的“Quick”选项,然后选择“Estimate Equation”。
在打开的窗口中,选择“OLS”选项作为回归方法,并确保选择了正确的解释变量和被解释变量。
点击“OK”按钮以运行回归分析。
步骤五:分析结果回归分析完成后,您将在Eviews中看到一个结果窗口,其中包含了回归方程的统计信息和系数估计。
检查回归方程的显著性水平和系数的符号,以评估变量之间的关系。
此外,您还可以查看回归方程的拟合优度和残差分布,以评估模型的质量。
结论本文介绍了使用Eviews进行回归分析的步骤。
首先,我们需要准备数据并导入到Eviews中。
然后,选择回归变量并运行回归分析。
最后,我们分析了回归结果,并根据统计信息和系数估计评估了变量之间的关系。
Eviews是一种功能强大的统计软件,可以用于各种回归分析任务。
使用eviews做线性回归分析随着统计学的发展,线性回归分析越来越被广泛应用于数据分析。
Eviews是一种经济数据分析软件,具有强大的数据分析功能和易于使用的界面,可广泛用于数据分析和预测。
本文将介绍使用Eviews进行线性回归分析的基础步骤,以及如何解读结果和提高模型的准确性。
一、数据准备在进行线性回归分析之前,我们需要准备一组数据。
数据可以从各种来源获得,例如国家统计局、经济学文献、互联网数据库等。
在Eviews中,可以使用Excel、SPSS和STATA等软件导入数据。
在导入数据时,必须确保数据格式正确,包括数据类型、数值范围等。
二、建立模型在Eviews中,建立模型的步骤如下:1.打开导入的数据文件,进入“工作文件”界面。
2.选择“Quick”菜单下的“Estimate Equation”选项,然后在弹出的“Model Specifica tion”对话框中填写相关信息。
此对话框包括四个标签页:变量、样本、选项和高级。
3.在“变量”标签页中,选择研究对象和解释变量,并将它们拖动到相应的框中。
例如,如果我们想研究通货膨胀对GDP的影响,那么GDP应当作为解释变量,通货膨胀率应作为解释变量。
4.在“样本”标签页中,设置分析的时间范围,如开始年份、结束年份、选定的样本或整个样本。
5.在“选项”标签页中,选择所需的估计方法,如OLS、GLS、FGLS等,并指定所需的统计量、弱工具检验、边际效应和预测分析等。
6.在“高级”标签页中,选择是否需要对模型进行修正,如修正异方差、自相关或其他检验结果不好的部分。
7.完成设置后,单击“OK”按钮,Eviews即可自动推导出相应的模型,并显示在“结果”窗口中,在这里可以查看与验证自己的模型结果是否正确等。
三、结果解读1.变量系数:表示自变量的影响程度。
如果系数大于零,则表示该变量与因变量正相关;如果系数小于零,则表示该变量与因变量负相关;如果系数等于零,则表示该变量与因变量之间没有关系。
eviews做回归分析报告回归分析是一种常见的统计分析方法,可用于研究变量之间的关系以及预测未来的趋势。
EViews作为一款专业的经济计量软件,提供了强大的回归分析功能,能够帮助研究人员进行回归模型的构建和分析。
首先,我们需要明确回归模型的基本概念。
回归模型用于描述一个或多个自变量与因变量之间的关系。
在EViews中,我们可以通过以下步骤进行回归分析。
1. 数据准备在进行回归分析之前,首先需要准备好需要分析的数据。
在EViews中,数据可以以多种格式导入,如Excel、CSV等。
确保数据的准确性和完整性很重要,因为数据质量会直接影响回归分析的结果。
2. 构建回归模型在EViews中,可以通过菜单栏上的“Proc”选项选择“Estimate”来构建回归模型。
在打开的窗口中,我们可以选择自变量和因变量,并设定模型的形式。
例如,如果我们想建立一个线性回归模型,可以选择“OLS”作为估计方法,并指定自变量和因变量的名称。
3. 模型诊断构建回归模型后,需要进行模型诊断以评估模型的拟合优度和假设检验等指标。
EViews提供了多种模型诊断方法,如残差分析、多重共线性检验和异方差性检验等。
通过这些方法,我们可以评估回归模型的合理性,并对模型进行进一步改进。
4. 结果解释在进行回归分析后,EViews会生成一个回归结果报告,其中包含了模型的参数估计、显著性检验和拟合优度等指标。
对于参数估计,我们可以通过解释估计系数的符号和大小来说明自变量与因变量之间的关系。
同时,我们也需要关注显著性检验的结果,以确定模型的统计显著性。
5. 结果导出和呈现最后,我们可以将回归结果导出为表格或图表的形式,以便更好地呈现和解释结果。
在EViews中,我们可以使用菜单栏上的“View”选项选择“Coefficients”或“Residuals”来查看具体的回归系数或残差。
回归分析是一种常用的统计方法,可以帮助研究人员深入理解变量之间的关系,并进行未来的趋势预测。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
2)回归系数显著性检验(t检验):检验每一个自变量的合理性|t|大于临界值表示可拒绝系数为0的假设,即系数合理。
t分布的自由度为n-p-1,n为样本数,p为系数位置3)DW检验:检验残差序列的自相关性,检验基本假设2(随机误差相互独立)残差:模型计算值与资料实测值之差为残差0<=dw<=dl 残差序列正相关,du<dw<4-du 无自相关,4-dl<dw<=4负相关,若不在以上3个区间则检验失败,无法判断demo中的dw=0.141430 ,dl=1.73369,du=1.7786,所以存在正相关模型评价目的:不同模型中择优1)样本决定系数R-squared及修正的R-squaredR-squared=SSR/SST 表示总离差平方和中由回归方程可以解释部分的比例,比例越大说明回归方程可以解释的部分越多。
Adjust R-seqaured=1-(n-1)/(n-k)(1-R2)2)对数似然值(Log Likelihood,简记为L)残差越小,L越大3)AIC准则AIC= -2L/n+2k/n, 其中L为log likelihood,n为样本总量,k为参数个数。
AIC可认为是反向修正的L,AIC越小说明模型越精确。
4)SC准则SC= -2L/n + k*ln(n)/n用法同AIC非常接近预测forecastroot mean sequared error(RMSE)均方根误差Mean Absolute Error(MAE)平均绝对误差这两个变量取决于因变量的绝对值,MAPE(Mean Abs. Percent Error)平均绝对百分误差,一般的认为MAPE<10则认为预测精度较高Theil Inequality Coefficient(希尔不等系数)值为0-1,越小表示拟合值和真实值差异越小。