第三章--导电高分子材料
- 格式:ppt
- 大小:702.50 KB
- 文档页数:65
导电高分子材料的研究进展及其应用摘要:本文讲述了导电高分子材料的起源、分类以及特点。
综述了导电高分子材料的研究进展及其在各个领域的应用。
关键词导电高分子研究进展应用一、引言1958 年Natta 等人合成了聚乙炔,但是当时并没有引起其他科学家的足够重视。
自从1977年美国科学家黑格(A.J.Heeger)和麦克迪尔米德(A.G.MacDiarmid)和日本科学家白川英树(H.Shirakawa)发现掺杂聚乙炔(Polyacetylene,PA)具有金属导电特性以来[1],有机高分子不能作为电解质的概念被彻底改变。
现在研究的有聚乙炔(Polyacetylene, PAC)、聚吡咯(Polypyrroles,PPY)、聚噻吩(Polythiophenes, PTH)、聚苯胺(Polyaniline,PAN)、聚对苯(Polyparaphenylene, PPP)、聚并苯(Polyacenes,PAS)等,具有许多特殊的电、光、磁和电化学性能。
也因此诞生了一门新型的交叉学科-导电高分子。
这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。
所谓导电高分子是由具有共轭∏键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。
它完全不同于由金属或碳粉末与高分子共混而制成的导电塑料。
导电高分子具有特殊的结构和优异的物理化学性能使它在能源、光电子器件、信息、传感器、分子导线和分子器件, 以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。
因此, 导电高分子自发现之日起就成为材料科学的研究热点。
经过近30多年的发展,导电高分子已取得了重要的研究进展。
二、导电高分子材料的分类按照材料结构和制备方法的不同可将导电高分子材料分为两大类:一类是结构型(或本征型) 导电高分子材料,另一类是复合型导电高分子材料。
导电高分子材料所谓导电高分子是具有共轭Π键的高分子经化学或电化学掺杂使其由绝缘体转变为导体的一类高分子材料。
它完全不同于金属或碳粉末与高分子共混而制成的导电塑料,通常导电高分子的结构特征是具有高分子链结构和与链非键合的一价阴离子或阳离子共同组成。
即在导电高分子结构中,除了具有高分子链外,还含有由“掺杂”而引入的一价对阴离子或对阳离子。
导电聚合物最引人注目的一个特点是其电导率可以在绝缘体-半导体-金属态较宽的范围里变化。
这是目前其他材料所无法比拟的。
分类,按照材料的结构与组成,可将导电高分子分成两大类。
一类是结构型导电高分子,另一类是复合型导电高分子。
结构型导电高分子的导电机理为物质的导电过程是载流子在电场作用下定向移动的过程。
高分子聚合物导电必须具备两个条件:一要能产生足够数量的载流子,二是大分子链内和链间要能够形成导电通道。
在离子型导电高分子材料中,聚醚,聚酯等的大分子呈螺旋体空间结构,与其配位络合的阳离子在大分子链段运动作用下,就能够在螺旋孔道内通过空位迁移;或被大分子溶剂化了的阴阳离子同时在大分子链的空隙间跃迁扩散。
对于电子型导电高分子材料,作为主体的高分子聚合物大多为共轭体系,长链中的Π键较为活泼,特别是与掺杂剂形成电荷转移络合物后,容易从轨道上逃逸出来形成自由电子。
大分子链内与链间Π电子轨道重叠交盖所形成的导电能带为载流子的转移和跃迁提供了通道。
在外加能量和大分子链振动的推动下,便可传导电流。
复合型导电高分子复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑,金属粉,箔等,通过分散复合,层级复合,表面复合等方法构成的复合材料,其中以分散复合最为常用。
与结构型导电高分子不同,在复合型导电高分子中,高分子材料本身并不具备导电性,只充当了粘合剂的角色,导电性是通过混合在其中的导电性物质如炭黑,金属粉等获得的。
由于它们制备方便,有较强的实用性,因此在结构型导电高分子尚有许多技术问题没有解决的今天,人们对他们有着极大的兴趣。
导电性高分子材料:用途广泛的高分子材料导电性高分子材料一般分为复合型和结构型两大类。
复合型导电高分子材料,它是由导电性物质与高分子材料复合而成。
这是一类已被广泛应用的功能性高分子材料。
复合型导电高分子材料分类有很多种,根据电阻值的不同可分为:半导电体、除静电体、导电体、高导电体;根据导电填料的不同可分为:抗静电剂系、碳系(炭黑、石墨等)、金属系(各种金属粉末、纤维、片等);根据树脂的形态不同可分为:导电塑料、导电橡胶、导电涂料、导电胶粘剂、导电薄膜等;还可根据其功能不同分为:防静电材料、除静电材料、电极材料、发热体材料、电磁波屏蔽材料。
结构型导电高分子材料是有机聚合掺杂后的聚乙炔,具有类似金属的电导率。
纯粹的结构型导电高分子聚合物至今只有聚氮化硫类,其他许多导电聚合物几平均需采纳氧化还原、离子化或电化学等手段进行掺杂之后才能有较高的导电性。
其代表性产物有聚乙炔、聚对苯撑、聚吡咯、聚噻吩、聚吡啶、聚苯硫醚等。
还有一种叫做热分解导电高分子,这是把聚酰亚胺、聚丙烯腈等在高温下热处理,使之生成与石墨结构相近的物质,从而获得导电性。
这些热分解导电高分子的特征是无须掺杂处理,故具有优异的稳定性。
结构型导电高分子材料主要用途是导电材料、蓄电池电极材料、光功能元件、半导体材料。
渔用无毒导电高分子防污涂料项目简介:该产品是具有导电性能的新一代无毒防污涂料,它是建立在导电高分子应用研究取得突破进展的基础上,与传统树脂复合而制成的高科技产品。
首先要制备高性能的可溶的导电高分子材料,然后再通过相应的工艺技术与传统的树脂颜填料复合。
将该种涂料涂敷于渔具(主要是聚乙烯XX线和尼龙XX线)上,具有良好的附着性能、可使渔具具有优良的抗拉、抗拆、抗冲击能力,并极富弹性。
该产品可有效地防止藻类、蛸类等海洋生物在XX上附着而堵塞XX孔,使营养和氧分能够畅通无阻地进入XX箱内,提高养殖产量和质量。
高性能导电涂料项目简介:该项目主要进行了以超细银为导电介质的导电涂料研制,采纳超细银表面原位聚合技术,使超细银介质以超细状态分散于高分子介质中,大大提高导电涂料的防沉降性和导电介质的分散均匀性,从而提高导电性,并具有卓越的电磁屏蔽效果,对300MHz-1.8GHz的电磁波屏蔽效果达80dB;解决了超细粉体及高分子基体与溶剂的相互作用关系,解决了导电涂料引起被涂基材应力开裂的关键技术,采纳低毒复合溶剂,解决了溶剂对环境和人体的污染,解决了环保型超细导电涂料产业化和应用中的重点和关键技术:导电涂料与被涂基材的相互作用关系;超细化导电涂料的大规模机器人自动化喷涂技术;超细化导电涂料涂层均一性操纵;解决导电涂料涂装中粒子沉降而堵塞管路技术。
聚吡咯导电高分子材料概述通过聚吡咯导电高分子的结构介绍了其导电原理。
介绍了4种常用的聚吡咯制备方法的原理、设备、特点,并通过对该7种不同的制备方法从可操作性、产出率等方面进行分析,了解各种方法的优、缺点。
进而介绍各种制备方法在工业上的应用情况。
标签:聚吡咯;导电高分子;制备方法导电高分子又被称为导电聚合物,是近年新兴的一种吸波材料,合成导电高分子的有机单体一般都具有共轭双键,并且在合成的过程中利用化学或者电化学掺杂而生成的,导电高分子的电导率从绝缘体变化到导体或半导体范围的一种聚合物。
由于存在共轭双键,使得导电聚合物具有一维半导体的不稳定性,共轭双键在室温时,其轨道上的电子接近于零,使得这一改变更容易实现。
聚吡咯(PPy)作为目前常见的导电高分子聚合物,其本征状态下其电导率很小。
但其用质子酸掺杂后,电导率能够提高几个甚至十几个数量级,即从绝缘的状态跃迁到导体或半导体的状态。
目前为了提高聚吡咯电导率,通常采用质子酸掺杂法、光掺杂法、化学氧化还原法、电化学氧化还原法、以及界面电荷注入法等方法。
1 聚吡咯的组成结构由上图可以看出,聚吡咯的单元结构是由碳碳单键与碳碳双键交替的二共扼体系构成,其中,聚合物内的二电子类似于金属导体中的自由电子。
聚吡咯在外加电场的作用下,组成π键的电子沿着大分子链将快速地移动,因此聚吡咯具有良好的导电性,属于导电高分子。
2 聚吡咯的合成目前合成导电聚吡咯最常用的合成方法是电化学聚合法和化学氧化法。
其中电化学聚合方法主要用于制备聚吡咯薄膜上,该方法制备聚吡咯薄膜操作简便,聚吡咯薄膜的厚度易控制,并且所制的导电聚吡咯具有较好的力学性能和良好的电导率性,但制备设备昂贵,而且产率比较低。
化学氧化法虽然在很多方面比电化学氧化法差,但该方法设备简便,成本较低,而且对反应条件要求较低,适合大规模工业生产,故应用较广。
聚吡咯的电导率的大小和环境稳定性等性能都与其反应条件、聚合方式等有紧密的联系,所以不同的聚吡咯反应条件,其物理化学性质和表面形态有很大差别,进一步影响其在工业生产中的应用范围。