导电高分子材料综述
- 格式:docx
- 大小:20.83 KB
- 文档页数:4
导电高分子材料引言导电高分子材料是一类具有导电性能的高分子材料,通常通过将一定量的导电剂与高分子基体进行混合来实现。
导电高分子材料具有许多独特的性能和应用,因此在电子学、能源技术、催化剂等领域有着广泛的应用和巨大的发展潜力。
1. 导电机制导电高分子材料的导电性能主要来源于导电剂的存在。
常见的导电剂包括金属粉末、碳纳米管、导电聚合物等。
这些导电剂在高分子基体中形成导电网络,使得材料能够传导电流。
导电高分子材料的导电性能与导电剂的种类、含量、分散性以及高分子基体的性质密切相关。
2. 特殊性能与应用导电高分子材料具有许多特殊的性能,使得其在多个领域具有广泛的应用。
2.1 电子学领域导电高分子材料在电子学领域有着重要的应用,例如导电高分子材料可以用于制备有机导电薄膜晶体管(OFET),用于构建柔性显示器、智能传感器和可穿戴设备等。
导电高分子材料不仅具有良好的导电性能,还具有优秀的可拉伸性和柔韧性,能够适应各种复杂的电子设备形状。
2.2 能源技术领域导电高分子材料在能源技术领域也有广泛的应用。
例如,导电高分子材料可以用于制备柔性太阳能电池,用于光电转换、能源收集和储存等。
导电高分子材料具有较高的导电性能和光吸收性能,可以有效提高太阳能电池的能量转换效率。
2.3 催化剂领域导电高分子材料还可以作为催化剂载体,用于催化剂的载体和固定。
导电高分子材料具有较大的比表面积和多孔结构,能够提供更多的活性位点和催化反应的接触面积,从而提高催化剂的反应效率和稳定性。
3. 导电高分子材料的制备方法导电高分子材料的制备方法多种多样,常见的制备方法包括物理共混法、化学共混法、原位聚合法等。
其中,物理共混法是将导电剂和高分子基体通过物理混合来制备导电高分子材料,适用于一些导电剂与高分子基体相容性较好的体系;化学共混法是通过化学反应将导电剂与高分子基体结合,适用于一些导电剂与高分子基体相容性较差的体系;原位聚合法是在高分子合成过程中引入导电剂,使导电剂与高分子基体同时合成。
导电高分子材料及其应用摘要:导电高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体- 半导体- 金属态(10-9 到105 S/cm)的范围里变化。
所以自从1977 年来,导电高分子材料的研究受到了普遍的重视和发展。
本文介绍了国内外导电高分子材料的分类、特点、应用及近年来研究发展的概况。
同时还展望了导电高分子有待发展的方向。
关键词:导电高分子;分类;应用1导电高分子简介20 世纪70 年代,白川英树、Heeger 和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。
经过40 多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为金属材料和无机导电材料的优良替代品。
[1]但是导电高分子在变形过程中不仅仅存在弯曲移动,而且还会产生蠕动现象,在器件的层间会发生快速分层的行为,溶剂易于挥发,使用寿命有限、低的能量转换效率等等缺点使其在应用中具有难以突破的难点技术。
[2]2 高分子材料的分类及导电机理导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/cm 以上的聚合物材料。
按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。
2.1结构型高分子导电材料结构型高分子导电材料。
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。
最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。
这种掺杂后的聚乙炔的电导率高达105 S/cm。
后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。
这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。
结构型高分子导电材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试制半导体元器件等[3] 。
但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。
概述一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10S/m 以上的聚合物材料。
[高分子导电材料具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十多个数量级的范围内进行调节等特点,不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。
高分子材料长期以来被作为优良的电绝缘体,直至1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。
这是第一个导电的高分子材料。
以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。
“导电高分子材料具有良好的导电性和电化学可逆性,可用作充电电池的电极材料。
利用Ppy制作的可充电电池,经300次充放电循环后,效率无下降,已达到商业应用价值。
导电性高聚物在太阳能电池上的应用也引起了广泛的关注,美国科学家Jeskocheim 利用聚吡咯和聚氧化乙烯固态电介质膜试制了光电池,可产生1mA/cm2的电流,0.35V 的电压。
尽管这种光电池目前还不如Si太阳能电池,但由于导电聚合物重量较轻、易成形、工艺简单,并能生成大面积膜,具有绿色环保的特点,因而发展前景十分诱人。
导电高分子材料还是制作超级电容器的理想材料。
如采用掺杂后的聚吡咯高分子化合物,电导率高达100 S/cm,频率特征非常出色,尤其在高频区的特性与以前电容器相比有很大改善。
经过多年世界范围内的广泛研究,导电聚合物在新能源材料方面的应用已获得了很大的发展,但离实际大规模应用还有一定的距离。
这主要是因为其加工性不好和稳定性不高造成的。
”应用概况高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料.第一个高导电性的高分子材料是经碘掺杂处理的聚乙炔,其后又相继开发了聚吡咯、聚对苯撑、聚苯硫醚、聚苯胺等导电高分子材料。
导电高分子材料及其应用摘要:导电高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体- 半导体- 金属态(10-9 到105 S/cm)的范围里变化。
所以自从1977年来,导电高分子材料的研究受到了普遍的重视和发展。
本文介绍了国内外导电高分子材料的分类、特点、应用及近年来研究发展的概况。
同时还展望了导电高分子有待发展的方向。
关键词:导电高分子;分类;应用1导电高分子简介20 世纪70 年代,白川英树、Heeger 和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。
经过40 多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为金属材料和无机导电材料的优良替代品。
[1]但是导电高分子在变形过程中不仅仅存在弯曲移动,而且还会产生蠕动现象,在器件的层间会发生快速分层的行为,溶剂易于挥发,使用寿命有限、低的能量转换效率等等缺点使其在应用中具有难以突破的难点技术。
[2]2 高分子材料的分类及导电机理导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/cm 以上的聚合物材料。
按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。
2.1结构型高分子导电材料结构型高分子导电材料。
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。
最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。
这种掺杂后的聚乙炔的电导率高达105 S/cm。
后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。
这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。
结构型高分子导电材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试制半导体元器件等[3] 。
但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。
导电高分子材料导电高分子材料是一种具有导电性能的高分子材料,它在电子、光电子、信息和通信等领域具有广泛的应用前景。
与传统的金属导电材料相比,导电高分子材料具有重量轻、柔韧性好、加工成型方便等优点,因此备受研究和开发的关注。
首先,导电高分子材料的导电机理是通过在高分子基质中添加导电填料来实现的。
导电填料可以是导电碳黑、导电纳米颗粒、导电聚合物等,它们在高分子基质中形成导电网络,从而赋予材料导电性能。
同时,导电高分子材料的导电性能受填料浓度、填料形貌、填料分散性等因素的影响,因此需要在材料设计和制备过程中进行精细控制。
其次,导电高分子材料在电子领域具有重要的应用。
例如,导电高分子材料可以用于制备柔性电子器件,如柔性电子显示屏、柔性电池、柔性传感器等。
由于其轻薄柔软的特性,导电高分子材料可以实现器件的弯曲和拉伸,从而拓展了电子器件的应用场景。
此外,导电高分子材料还可以用于制备导电薄膜,用于电磁屏蔽、抗静电、防雷击等领域。
此外,导电高分子材料在光电子领域也有着重要的应用。
例如,导电高分子材料可以用于制备有机太阳能电池、有机发光二极管等光电子器件。
由于其可塑性和可加工性,导电高分子材料可以实现器件的柔性化和大面积制备,从而降低了器件的制造成本,并且有望实现可穿戴电子产品的发展。
总之,导电高分子材料具有广泛的应用前景,它在电子、光电子、信息和通信等领域都有着重要的作用。
随着材料科学和工程技术的不断发展,导电高分子材料的性能和应用将会得到进一步的提升,为人类社会的发展和进步做出更大的贡献。
希望通过对导电高分子材料的研究和开发,能够推动材料科学和工程技术的发展,为人类社会的可持续发展做出更多的贡献。
导电高分子材料的研究进展一、本文概述导电高分子材料作为一种新兴的功能材料,因其独特的导电性能和可加工性,在电子、能源、生物医学等领域展现出广阔的应用前景。
本文旨在综述导电高分子材料的研究进展,重点关注其导电机制、性能优化以及实际应用等方面。
我们将简要介绍导电高分子材料的基本概念、分类和导电原理,为后续讨论奠定基础。
接着,我们将重点回顾近年来导电高分子材料在合成方法、性能调控以及导电性能提升等方面的研究成果。
本文还将探讨导电高分子材料在电子器件、能源存储与转换、生物传感器等领域的应用进展,并展望未来的发展趋势和挑战。
通过本文的综述,希望能够为相关领域的研究人员提供有价值的参考信息,推动导电高分子材料的进一步发展。
二、导电高分子材料的分类导电高分子材料可以按照其导电机制、化学结构、应用方式等多种维度进行分类。
从导电机制来看,导电高分子材料主要分为电子导电高分子和离子导电高分子两大类。
电子导电高分子主要依靠其共轭结构中的π电子进行导电,如聚乙炔、聚吡咯、聚噻吩等;而离子导电高分子则通过离子在固态中移动实现导电,如聚电解质、离子液体等。
从化学结构上看,导电高分子材料主要包括共轭聚合物、金属络合物高分子、复合型导电高分子等。
共轭聚合物由于具有大的共轭体系和离域π电子,表现出优异的电子导电性;金属络合物高分子则通过金属离子与高分子链的配位作用,形成导电通道;复合型导电高分子则是通过在绝缘高分子基体中添加导电填料(如碳黑、金属粒子、导电聚合物等),实现导电性能的提升。
在应用方式上,导电高分子材料可以分为结构型导电高分子和复合型导电高分子。
结构型导电高分子本身即具有导电性,可以直接用于电子器件的制备;而复合型导电高分子则需要通过添加导电填料等方式实现导电性能的调控,其导电性能受填料种类、含量、分散状态等多种因素影响。
根据导电高分子材料的导电性能,还可以分为导电高分子、抗静电高分子和高分子电解质等。
导电高分子具有高的导电性,可以作为电极材料、电磁屏蔽材料等;抗静电高分子则主要用于防止静电积累,如抗静电包装材料、抗静电涂层等;高分子电解质则具有离子导电性,可应用于电池、传感器等领域。
导电高分子材料综述摘要:导电高分子复合材料是一类具有重要理论研究价值和广阔应用前景的新型功能材料,导电高分子材料具有高电导率、半导体特性、电容性、电化学活性,同时还具有一系列光学性能等,具有与一般聚合物不同的特性。
因此,导电高分子复合材料是一类具有重要理论研究价值和广阔应用前景的新型功能材料。
简介:与传统导电材料相比较,导电高分子材料具有许多独特的性能。
导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。
介绍了导电高分子材料的分类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。
1976 年美国宾夕法尼亚大学的化学家Mac Diarmid 领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene ,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科——导电高分子领域诞生了。
导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。
到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。
1.1导电高分子材料的分类按照材料的结构与组成,高分子导电材料通常分为结构型和复合型两大类1.1.1结构型高分子导电材料。
是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。
根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。
按照导电机理可分为电子导电高分子材料和离子导电高分子材料。
电子导电高分子材料的电导率一般在半导体的范围[1]。
采用掺杂技术可使这类材料的导电性能大大提高。
如在聚乙炔中掺杂少量碘,电导率可提高12个数量级,成为“高分子金属”。
经掺杂后的聚氮化硫,在超低温下可转变成高分子超导体。
导电高分子复合材料综述导电高分子复合材料是一种结合了导电填料和高分子基体的非金属导电材料。
由于其优异的导电性能和高分子材料的良好工艺性能,导电高分子复合材料在电子、电器、电磁波屏蔽、静电防护等领域得到了广泛应用。
本文将从导电填料、高分子基体、制备方法和应用领域等方面综述导电高分子复合材料的研究进展。
导电填料是导电高分子复合材料中的关键组成部分。
目前常用的导电填料包括金属填料、碳黑、导电纤维和导电聚合物等。
金属填料具有良好的导电性能,但其加工性差,易生锈。
碳黑填料性能稳定,但存在聚集现象,导致流变性能下降。
导电纤维可以提供较高的导电性能,但通常与高分子基体的相容性较差。
导电聚合物由于能够形成连续的导电网络,并且可以与高分子基体较好地相容,因此成为近年来发展的研究热点。
高分子基体对导电高分子复合材料的力学性能、导电性能和工艺性能等起着重要影响。
常用的高分子基体包括聚合物树脂、热塑性弹性体和热塑性聚合物等。
聚合物树脂由于具有良好的力学性能和化学稳定性,因此广泛应用于导电高分子复合材料。
热塑性弹性体由于可以在一定温度范围内恢复弹性,因此在导电弹性体材料中得到了广泛应用。
热塑性聚合物由于具有良好的工艺性能,在导电高分子复合材料中也得到了较好的应用效果。
制备方法是影响导电高分子复合材料性能的关键因素之一、常用的制备方法包括溶液共混法、熔融共混法、反应挤出法和电沉积法等。
溶液共混法通过将导电填料和高分子基体溶解在适当的溶剂中,然后通过挥发溶剂的方式获得导电高分子复合材料。
熔融共混法是将导电填料和高分子基体在高温下混炼,然后通过冷却固化得到复合材料。
反应挤出法是通过聚合反应实现导电高分子复合材料的制备。
电沉积法是将金属填料等导电材料沉积在高分子基体上来制备导电高分子复合材料。
导电高分子复合材料在电子、电器、电磁波屏蔽、静电防护等领域具有广阔的应用前景。
在电子和电器领域,导电高分子复合材料可以用于生产导电薄膜、导线、印刷电路板等;在电磁波屏蔽领域,导电高分子复合材料可以用于制备导电涂层和导电材料;在静电防护领域,导电高分子复合材料可以用于制备静电消除器和防静电材料。
导电高分子材料介绍导电高分子的研究始于20世纪70年代,因其诱人的应用前景而受到广泛重视,是目前国际上一个十分活跃的研究领域,对它的研究已从初期的纯实验室研究扩展到应用研究,已在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术等领域得到了广泛应用。
导电高分子材料按结构和制备方法不同可分为结构型和复合型两大类。
结构型导电高分子又称本征型导电高分子,是指具有共轭结构经少量掺杂后具有导电性的材料;复合型导电高分子材料是以高分子材料为基体,经物理或化学改性后具有导电性的材料。
根据在基体聚合物中所加入导电物质的种类不同又分为填充复合型导电高分子材料和共混复合型导电高分子材料两类。
填充复合型导电高分子材料通常是在基体聚合物中加入导电填料复合而成。
共混复合型导电高分子材料是在基体聚合物中加入结构型导电聚合物粉末或颗粒复合而成[3]。
本文将主要介绍填充复合型导电高分子材料的导电机理、制备方法、影响导电性能的因素等的研究进展。
聚合物一直被认为是绝缘体,但是自从1976年,美国宾夕法尼亚大学的化学家MacDiarnfid领导的研究小组首次发现掺杂后的聚乙炔具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,逐渐产生了导电高分子这门新兴学科。
在随后的研究中逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。
由于导电高分子材料作为新兴不可替代的基础有机材料之一,对导电高分子研究具有重大的理论价值和应用价值。
聚苯胺原料便宜,合成简便,耐高温及抗氧化性能良好,有较高的电导和潜在的溶液、熔融加工可能性。
具有易成膜且膜柔软、坚韧等优点和优良的电致变色性,在日用商品及高科技等方面有着广泛的应用前景。
因此聚苯胺已成为当今导电高分子研究的一个热点,在这十多年期间,国内外对聚苯胺的结构、特性、合成、掺杂及改性等方面进行了较为深入的研究。
目前,研究最广泛的导电聚合物包括PA、聚毗咯、聚噻吩和PAn,PA是人们发现最早的一个有机共轭导电聚合物,也是研究较多的导电聚合物,但南于其合成工艺、力学性能和稳定性等诸多因素的限制,人们对其研究兴趣逐渐减少,而后3种尤其是PAn由于原料易得、合成工艺简便、导电性和稳定性优良,倍受人们青睐,在应用研究方面已走到了前面,成为研究热点。
导电高分子材料及其应用综述导电高分子材料(Conductive Polymer Materials)是指在室温下能够具有电导性能的高分子材料。
导电高分子材料以其独特的导电性能,广泛应用于电子技术、能源存储、敏感传感、生物医学等领域。
本文将综述导电高分子材料的种类、制备方法及其在各个领域的应用。
导电高分子材料种类繁多,常见的有聚苯胺(Polyaniline)、聚咔嚓(Polyacetylene)、聚苯乙烯(Polystyrene)等。
这些高分子材料通常通过掺杂或修饰来增加其电导性。
掺杂剂常用的有氧化剂、还原剂、离子等,修饰方法可以是在高分子材料上引入功能基团或接枝其他有机小分子。
导电高分子材料的制备方法有化学聚合法、电化学聚合法、溶液浇铸法等。
化学聚合法是将单体在化学反应条件下聚合为高分子材料,如聚合物链的活性自由基引发聚合法;电化学聚合法是通过电化学氧化或还原来实现高分子材料的聚合,如聚苯胺的电化学聚合法;溶液浇铸法是将聚合单体溶于适当的溶剂中,然后制备薄膜或纤维。
导电高分子材料在电子技术领域的应用十分广泛,例如,它们可用作导电薄膜、导电涂层和电磁屏蔽材料,以提高电子器件的性能;此外,它们还可用作电极材料和导电胶黏剂,用于柔性电子器件的制备。
在能源存储领域,导电高分子材料可用作超级电容器的电极材料和锂离子电池的导电添加剂,以提高电池的性能和循环寿命。
导电高分子材料还可用于敏感传感领域,例如,利用其导电性能可以制备传感器,实现对温度、湿度、光照等环境因素的监测。
另外,由于导电高分子材料具有良好的生物相容性和生物可降解性,它们还可以应用于生物医学领域,用作生物传感器、组织工程和药物释放等。
总结起来,导电高分子材料具有广泛的种类和制备方法,并在电子技术、能源存储、敏感传感、生物医学等领域有重要的应用。
未来,随着科学技术的不断发展,导电高分子材料的制备方法将更加多样化,应用领域也将进一步拓展。
导电高分子材料与器件导电高分子材料是一类具有导电性能的聚合物材料,广泛应用于电子器件、传感器、光伏设备等领域。
本文将介绍导电高分子材料的基本原理、制备方法以及其在不同领域的应用。
一、导电高分子材料的原理导电高分子材料的导电性能源于其中的导电性掺杂物或功能团。
它们可以分为有机导电高分子和无机导电高分子两大类。
1. 有机导电高分子有机导电高分子采用有机导电聚合物作为基材,通常通过掺杂的方式引入电子供体或受体,从而调整材料的导电性能。
有机导电聚合物通常具有共轭结构,形成了类似于金属的电子能带结构,电子在材料内部的传导使其具有导电性能。
常见的有机导电高分子材料有聚噻吩、聚苯胺等。
2. 无机导电高分子无机导电高分子主要由无机导电材料制备而成,如金属、碳纳米管、石墨烯等。
这些无机材料具有良好的导电性能,能够在高分子基材中提供电子传导通道,从而赋予材料导电性。
无机导电高分子具有导电性能稳定、机械强度高等优点。
二、导电高分子材料的制备方法导电高分子材料的制备方法多种多样,可以通过物理方法或化学方法进行。
1. 物理方法最常用的物理制备方法是导电高分子材料的加工和复合。
例如,可以采用热压、注塑、挤出等方式将导电高分子与基材进行复合,形成导电高分子复合材料。
此外,还可以通过电化学沉积、溶液旋转涂覆等方法将导电高分子层薄覆盖在基材上。
2. 化学方法化学方法主要包括合成法和化学改性法。
合成法是指通过化学反应将导电性团体引入到基材中,形成导电高分子材料。
化学改性法则是通过对已有的高分子材料进行化学改性,引入导电性团体或进行导电材料的反应,提高其导电性能。
三、导电高分子材料的应用领域导电高分子材料具有导电性能和良好的可塑性,因此在各个领域都有广泛的应用。
1. 电子器件导电高分子材料在电子器件中起到了重要的作用。
例如,导电高分子可以用于制备柔性电子器件,如柔性显示屏、可穿戴设备等。
此外,导电高分子也可应用于电池、传感器等电子元件的制备。
聚苯胺综述1、引言导电高分子材料也称导电聚合物,其分子是由许多小的、重复出现的结构单元组成,即具有明显聚合物特征;若在材料两端加上一定电压,在材料中有电流通过,即具有导电的性质。
同时具备上述两条性质的材料,称为导电聚合物。
虽然都是导电体,但导电聚合物和常规金属导电体不同。
前者属于分子导电物质,后者是金属晶体导电物质。
因此,其结构和导电方式都不同。
高分子导电材料包括结构型高分子导电材料和复合型高分子导电材料两大类。
结构型导电高分子材料又称本征导电高分子,是指聚合物获得导电性能不是通过加入导电性物质,而是由其本身结构带来的。
如掺杂后的导电高分子聚合物:聚乙炔(PAc)、聚吡咯(PPy)、聚噻吩(PTh)、聚苯胺(PAn)、聚苯乙烯撑(PPV)等,这类聚合物大多是具有共轭π键结构的结晶聚合物,共轭双键可以通过电子转移的氧化还原反应变成高分子离子。
复合型导电高分子材料是将各种导电性物质(高效导电粒子或导电纤维)通过分散、层合、涂敷等工艺填充到聚合物基体中。
2、聚苯胺由于导电聚合物具有良好的电学、光学以及氧化还原特性在近20年里一直备受关注,在能源、电磁屏蔽和电致变色等领域有着广阔的前景。
自从1984年MacDiarmid在酸性条件下由苯胺单体获得具有导电性聚合物,聚苯胺已成为现在研究进展最快的导电聚合物之一。
原因在于聚苯胺具有以下诱人的独特优势:a)原料易得,合成简单;b)具有优良的电磁微波吸收性能、电化学性能、化学稳定性及光学性能;c)独特的掺杂现象;d)高的电导率;e)拥有良好的环境稳定性[1,2]。
聚苯胺被认为是最有希望在实际中得到应用的导电高分子材料。
以导电聚苯胺为基础材料,目前正在开发许多新技术,例如电磁屏蔽技术、抗静电技术、船舶防污技术、隐身技术、全塑金属防腐技术、太阳能电池、电致变色、传感器元件、二次电池材料、催化材料和防腐材料[3~11]。
3、聚苯胺的结构聚苯胺有多种结构,这是由反应条件决定的,它们之间的转化关系如下[12,13]:其中,聚苯胺最重要的存在形式是翠绿苯胺(EM,emeraldine),它具有导电性,通常可以在酸性条件下(如盐酸)通过化学氧化法制得,如果氧化剂过量,翠绿苯胺就被氧化成全氧化态聚苯胺(PNB,blue protonated pernigraniline),这种形态的聚苯胺可能具有导电性。
导电高分子材料的研究与应用随着科技的不断发展,对材料性能的要求越来越高,导电高分子材料也因其独特的导电性和机械性能在各领域应用得到广泛关注。
本文将就这一主题从定义、研究以及应用三个方面阐述导电高分子材料的重要性、发展状况以及前景展望。
一、定义导电高分子材料是指为改善传统高分子材料的常规性质,通过添加导电性组分(如导电碳黑、金属粉末、碳纤维等)使其具有导电性的高分子复合材料,主要包括:聚合物复合导体材料、聚合物封装导电材料和聚合物导体膜材料等。
导电高分子材料的优点是结构轻,柔韧性好,加工成型方便,成本低廉等。
二、研究导电高分子材料的研究最初起源于20世纪70年代,随着研究发展,越来越多的人对导电高分子材料进行了研究。
现阶段导电高分子材料研究的主要方向包括三个方面:1. 组合物导电增强理论研究电导性是导电高分子材料的重要性质之一。
在这个研究方向中,研究人员通过改变高分子材料和导电组分的比例和形态,探索实现高电导的机制,从而制备出具有预期性能的导电高分子材料。
2. 导电高分子材料制备和加工工艺研究导电高分子材料的制备和加工工艺是实现产业化生产的前提。
在这个方向中,主要关注导电高分子材料的制备工艺、加工方法的优化以及实现大面积无限制性制备等问题。
3. 导电高分子材料的传感器及器件研究导电高分子材料作为一种新的智能材料,在传感器及器件方向上也有大量的研究。
利用导电高分子材料制作出各种传感器和器件,并具有其它传感材料所没有的优点。
例如,导电高分子材料能够吸水、膨胀、反复弯曲等,利用这些特性可以制作出新型柔性传感器和芯片等。
三、应用导电高分子材料作为一种新型材料,具有许多优点。
其应用领域非常广泛,涉及诸如光电领域、能源材料领域、光学材料领域、纳米材料领域、生物医学材料领域等多个领域。
1. 光电领域导电高分子材料在光电领域的应用主要是太阳能电池、显示技术和照明器件等。
利用导电高分子材料的高光电转换效率,有效提高了太阳能电池的效率,可广泛应用于城市、工业和农村领域。
导电高分子复合材料综述摘要:随着社会的发展,科学技术的进行,人们各种材料的要求在不断的提高,在这种情况下,就研究出了高分子复合材料,为社会的发展提供了重要的帮助。
而导电高分子复合材料就是这项研究中的一项重要的内容,而在导电高分子复合材料出现的早期,通常将其作为良好的电绝缘体,直到20世纪80年代才真正的在电力系统中使用导电高分子复合材料。
本文就对导电高分子复合材料进行了介绍,将其基本的导电理论以及特殊的效应理论进行了阐述,然后重点讨论了当前阶段中的应用以及研究进展,以使人们对其更好的了解。
关键词:导电高分子复合材料;导电性;应用导电高分子材料就是在高分子材料的基础上,根据使用的要求,加入了相应的导电体,经过多重技术的处理之后,使其具有了较高的导电能力。
而由于这种材料在制造的过程中,使用对材料的要求不高,使用的技术加工手段简单,使用的生产成本较低,导电性能较好等原因,受到了社会各界的广泛重视。
因此,为了使导电高分子复合材料在当前阶段中更好的应用,在当前的科学研究中,加强对其进行研究成为了必然趋势。
1导电高分子复合材料的导电理论1.1 统计渗滤模型在高分子复合材料的导电理论中,首先就是统计渗滤模型,这一模型通常是几何模型为基础上建立的,就是将复合材料中基本物质使用一定技术将其抽象化,使其存在一定形状的分散体系,然后根据一定的机理要求,将其进行重新的排列,使其重新组合成一个整体,使高分子材料中的基本物质成为了连续相,而加入的导电体材料根据其功能的不同,有些成为了连续相,有些成为了分散相,这些有效的分散相以及连续相,就在导电高分子复合材料中构造出了导电通道。
在这一模型的基础上,对导电高分子复合材料的电阻率与导电体进行深层次的分析,在两者之间建立相应的联系。
最具有代表性的就是在建立统计渗滤模型时,根据不同的需求,将基本物质抽象为形状、大小不同的球型、规则的多面体等,同时将导电体抽象成连续性的珠串等[1]。
课题名称:导电高分子材料的研究进展及发展趋势检索主题词:导电高分子材料检索工具:万方数据知识服务平台检索途径及步骤:登录学校图书馆网站,从“中文资源”分类中找到“万方数据资源(主网站)”,选择“高级检索”,规定好想要检索的文献类型,出版时间,主题等进行检索。
导电高分子材料的研究进展及发展趋势综述高材1208 2012012247 曹凯摘要:介绍了导电高分子材料的类型,分析了导电材料的导电机理,对其在实际中的应用进行了研究和总结,并且在此基础上展望了导电高分子材料的未来发展趋势。
关键词:导电;高分子材料;机理;应用;发展引言:近年来, 导电高分子的研究取得了较大的进展, 科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已成为一门相对独立的学科。
按导电性质的不同,导电高分子材料分为复合型和结构型两种。
前者是利用向高分子材料中加人各种导电填料来实现导电,而后者是通过改变高分子结构来实现导电。
在社会的发展中,需要这种材料的地方有很多,这也使得对进行加工和应用的研究受到了人们着重地关注。
1导电高分子材料分类按照材料的结构与组成,可将导电高分子材料分为两大类。
一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。
1.1复合型导电高分子材料复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。
几乎所有的聚合物都可制成复合型导电高分子材料。
其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维。
复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。
1.2结构型导电高分子材料结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。
这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。
从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。
离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。
电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。
导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。
2电高分子材料的导电机理2.1复合型高分子材料导电机理复合型导电高分子材料导电性主要取决于填料的分散状态”J。
根据渗流理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后,就会形成连续的导电通路。
这时离子处于两种状态,一是离子问发生物理接触,电荷载流子可在连续的导体内流动;二是离子间有粘接剂薄层存在,以致载流子本身被激活而运动。
复合型导电高分子材料实际上需要的既不是填料分而不开的集团状分布,也不是粒子被牯接剂严密包裹呈互相孤立隔离的分布,而应该是既能一定程度的分散又能形成网络的分布。
材料成分起决定性作用。
另外填料粒子的分散状态及其与聚合物基体的相互作用也决定丁复合材料的导电性。
只有填料粒子能较好地分散,卫能形成三维网状结构或蜂窝状结构时,材料才能具有良好的导电性。
2.2结构型高分子材料导电机理其导电机理主要是通过聚合物分子中的电子盯域(结构中带有共轭双键.耵键电子作为载流子)引人导电性基团或者掺杂一些其它物质通过电荷变换形成导电性。
3应用导电高分子材料具有易成型、质量轻、柔软、耐腐蚀、低密度、高弹性, 具有优良的加工性能, 可选择的电导率范围宽, 结构易变和半导体特性, 且价格便宜等特点。
导电聚合物不仅在国民经济、工业生产、科学实验和日常生活等领域具有极大的应用价值, 而且孕育的巨大潜在商机已使许多企业家将目光聚焦于导电高分子产品的开发和应用研究上。
3.1显示材料电解合成的导电高分子材料在电化学掺杂时会伴随着颜色的变化,利用这一特性可以将其用作变色器材。
这一类导电高分子能够进行电化学脱掺杂和再掺杂,并且发生还原可逆的电化学反应,通过电化学掺杂可以使导电高分子材料变为绝缘体,氧化掺杂又可以使其变为导体,并且材料的导电性会随着掺杂与脱掺杂的程度不同而相应变化。
通过对施加电量的控制就可以使导电高分子材料在导体、半导体和绝缘体之间变化,并且随着导电度的变化,导电高分子材料的光学特性也会随之变化,根据这个特性,可以将导电高分子材料用作显示材料。
这类变色功能高分子材料还可以作为节能玻璃窗的涂层,在炎热的夏天它会阻止太阳能热辐射到室内和汽车内,保持内部的凉爽舒适。
此外,这类材料还在显示元件、仪器仪表等方面有广泛的应用。
3.2电池如前所述,导电高分子具有可逆的电化学氧化还原特性,而且还有相对密度小、室温电导率大和比表面积较大等特点,所以它可以作为电池极好的电极材料。
比如聚吡咯有较高的掺杂程度和较强的稳定眭,并且对电信息的变化也十分敏感,例如在传统的纺织物上涂上聚吡咯;就可以使其变成导电体。
用导电高分子材料做成的二次电池具有易生产加工成膜、可绕曲、小型轻便、能量高等特点,如果解决了有机物的耐久性和高压下有机溶剂的稳定性问题,那么以导电高分子材料为基础的二次电池就有可能实现商品化。
3.3导体将金属粉、炭黑等导体粉末与高分子材料经过填充复合、表面复合等方式进行合成,就可制成具有导电性的高分子材料。
经复合合成的导电高分子材料与传统金属导体相比具有如下优点:加工性能强,适于更多场合的应用;耐腐蚀、弹性高、密度低;电导率可调节,使用范围相对更广,方便实际应用;适于批量生产,价格便宜。
导电高分子作为超级电容器电极拥有很多优点,例如柔韧性好、电导性高、易加工而且可被制成薄膜。
很多导电高分子材料显示出高比容量和电容,并且可以在—个高相对速度下传递能量,但是作为超级电容器电极的主要战最就是循环使用寿命短。
3.4药物释放导电高聚物的掺杂和脱杂过程实际上是—个对阴离子嵌入和脱嵌入过程,离子电疗法是借助电化学过程来驱动药物通过皮肤而进人体内,利用这两点就可以制作一种含药物的导电高分子电池,接通电流的时候药物就能释放出来,并通过皮肤而进^血液。
聚毗咯是在这方面研究最早也是应用最广泛的一种导电高分子。
3.5电磁屏蔽材料传统的电磁屏蔽材料多为铜, 随着各种商用和家用的电子产品数量的迅速增加, 电磁波干扰已成为一种新的社会公害。
对计算机房、手机、电视机、电脑和心脏起博器等电子仪器、设备进行电磁屏蔽是极为重要的。
直接使用混有导电高分子材料的塑料做外壳, 因其成形与屏蔽一体较其他方法更为方便, 而导电聚合物具有防静电的特性, 因此它也可以用于电磁屏蔽, 而且其成本低, 不消耗资源, 任意面积都可方便使用, 因此导电高分子是非常理想的电磁屏蔽材料替代品,利用这一特性, 人们已经研制出了保护用户免受电磁辐射的电脑屏保。
这方面聚苯胺被认为是电磁干扰屏蔽最有希望的新材料, 也是制造气体分子膜的理想材料。
4导电高分子材料发展趋势高分子材料替代金属材料是今后材料学科领域的发展趋势,由此带来导电性高分子的市场需求也将日益增长,其应用领域也会逐步扩大,这就必然对导电性高分子提出更高的要求。
4.1解决导电高聚物的加工性和稳定性。
现有的导电高分子聚合物多数不能同时满足高导电性、稳定性和易加工性。
合成可溶性导电高聚物是实现可加工性和研究结构与性能的有效途径。
4.2自掺杂或不掺杂导电高分子。
掺杂剂不稳定或聚合物脱杂往往影响聚合物的导电性。
因此,合成自掺杂或不掺杂导电高分子可以解决聚合物稳定性问题。
4.3在分子水平研究和应用导电高聚物。
开发新的电子材料和相应的元件已引起各国科技工作者的重视。
如果技术上能很好地解决导电高分子的加工性并满足绿色化学的要求,使其实现导电高分子实用化,必将对传统电子材料带来一场新的技术革命。
4.4结构型导电高分子材料主要的开发应用方向是大功率蓄电池、微波吸收材料、太阳能电池、新型感光材料。
4.5复合型导电高分子材料是目前开发应用的重点,主要集中在抗静电材料和电磁屏蔽产品。
5结语高分子合成材料被广泛地应用于生产与生活之中,在现代技术发展与科技进步的要求下,导电高分子材料的应用也得到了普遍的应用。
社会的发展需要新型材料的不断支持,同时也需要对现有材料进行更加深入和完善的研究。
而且随着现代科技的速发展,这种新型材料的需求量也会越来越大,因此,对导电高分子材料进行继续研究,使其能够充分利用到实际的生产和生活中是非常重要的。
参考文献1.袁玫;导电高分子材料的发展现状及未来发展趋势;民营科技2014年第3期2.崔志勇汪海澎孙长亮;导电高分子材料的研究与应用现状;中国科技纵横2010(14)3.于海涛;导电高分子材料在智能隐身技术中的应用;上海涂料2010第48卷第2期4.张学勇李斌付朝阳刘坤;复合型导电高分子材料的电阻一温度效应;材料导报2013年11月第27卷专辑225.杨逢时张琼李国斌苏毅;复合型导电高分子材料的研究进展;化工新型材料2013年第41卷6.胡婷婷代坤郑国强;复合型导电高分子材料的液体敏感行为研究进展;《上海塑料》2012年第3期(总第159期)7.杨鸿昌李志刚;结构型导电高分子材料现状及发展趋势;广东化工2010年第5期8.宋固全陈忠良陈煜国;有效介质理论在复合型导电高分子材料研究中的应用;化工新型材料2013,41(11)9.杨永芳刘敏江;导电高分子材料研究进展;工程塑料应用2002,30(7)10.张凯曾敏雷毅江潞霞;导电高分子材料的进展;化工新型材料2002,30(7)。