UNIX硬盘分区简介
- 格式:doc
- 大小:48.00 KB
- 文档页数:10
ufs磁盘分区并格式化1.引言1.1 概述概述UFS(Unix File System)是一种常用的文件系统,用于在UNIX和类UNIX操作系统中管理磁盘上的文件和目录。
在使用UFS进行文件存储之前,我们首先需要对磁盘进行分区和格式化的操作。
本文将详细介绍UFS磁盘分区和格式化的过程以及其重要性。
磁盘分区是将物理硬盘划分为不同的逻辑部分的过程。
它将磁盘空间划分为多个独立的区域,每个区域可以被操作系统独立访问和管理。
而磁盘格式化则是为每个分区创建文件系统结构,以便操作系统能够读取、写入和管理文件和目录。
UFS磁盘分区和格式化过程是设置文件系统的基础步骤。
正确地进行分区和格式化可以确保磁盘空间被充分利用,并提供高效的文件存储和管理。
此外,分区和格式化还能够帮助提高文件读写速度和系统性能,同时保护文件数据的安全性。
本文的目的是为读者提供关于UFS磁盘分区和格式化的详细指南,以帮助他们了解如何正确地执行这些操作。
我们将首先介绍UFS磁盘分区的定义和作用,然后详细探讨UFS磁盘格式化的步骤和要点。
通过掌握这些知识,读者将能够更好地管理和维护自己的磁盘空间,提升系统的整体性能和效率。
在下一部分中,我们将深入了解UFS磁盘分区的相关内容。
1.2 文章结构文章结构本文主要介绍了UFS磁盘分区和格式化的相关知识。
文章分为引言、正文和结论三个部分。
在引言部分,我们将对整篇文章进行概述,介绍UFS磁盘分区和格式化的概念和作用,并明确本文的目的。
接下来的正文部分将分为两个章节。
第一个章节将详细介绍UFS磁盘分区的内容,包括什么是UFS磁盘分区以及其作用。
我们将详细解释UFS 磁盘分区的概念,并说明它在计算机存储中的重要性和作用。
第二个章节将重点讨论UFS磁盘格式化,包括什么是UFS磁盘格式化以及格式化的步骤。
我们将介绍UFS磁盘格式化的概念,并提供详细的步骤和指导,以帮助读者正确地进行UFS磁盘格式化操作。
最后,在结论部分,我们将总结UFS磁盘分区和格式化的重要性,并提出对于UFS磁盘分区和格式化的建议。
lvm的分区类型
LVM(逻辑卷管理)是一种在Linux和其他UNIX-like系统上对磁盘分区进行管理的技术。
LVM的分区类型主要包括以下几种:
1.PV(物理卷):这是LVM的基本存储逻辑块,但和基本的物理存储介质
(如分区、磁盘等)比较,却包含有与LVM相关的管理参数。
2.VG(卷组):LVM卷组类似于非LVM系统中的物理硬盘,其由物理卷组
成。
可以在卷组上创建一个或多个“LVM分区”(逻辑卷),LVM卷组由一个或多个物理卷组成。
3.LV(逻辑卷):LVM的逻辑卷类似于非LVM系统中的硬盘分区,在逻辑
卷之上可以建立文件系统(比如/home或者/usr等)。
以上信息仅供参考,如需了解更多信息,建议咨询专业人士。
存储基础(V G、L V、L P、P V、P P)传统UNIX磁盘存储存在的问题● 分区大小固定● 不能随意扩展分区● 文件系统和文件的大小受限制● 分区时需要大量的时间去计划传统UNIX的一个磁盘分区需要连续的磁盘空间,这样一个分区一但划定后如果发现其太小也不能在扩充了.如图如果发现分区1的空间不够尽管硬盘还有剩余空间但由于两部分不连续,这样分区1的大小不能该变了.由于分区需要占有连续的磁盘空间那么分区的空间大小受到系统硬盘空间的大小的限制,分区不能跨越硬盘存在.这样系统中的文件系统大小和文件大小除了受本身算法限制还要受硬盘大小的限制.在安装操作系统时系统管理员应该首先对系统硬盘进行分区,但分区划定后就不能改变其大小了这样需要系统管理员花时间和精力去很好的规划每个分区的大小.LVM(Logical Volume Manager)是由一组系统命令,系统调用和其它工具组成,用户使用它可以建立和控制系统的逻辑存储. 它通过逻辑视图存储空间数据和真实的物理硬盘的数据之间的对应关系管理磁盘资源.LVM在传统的磁盘驱动程序上加了一层逻辑卷设备驱动程序用于映射逻辑视图与物理硬盘间的数据.LVM由两部分组成:LVDD(Logical Volume Device Driver)和操作命令集.LVDD 负责管理和执行所有的I/O.它将逻辑地址转换成物理地址并将请求发送给相应的磁盘驱动程序.操作命令集包括一组系统调用和高级命令用于操纵LVM.这些高级命令一般以shell script形式出现,如lsvg表示列出系统的卷组.在这些script文件中包含许多LVM的基本命令,这些基本命令对应这一些系统调用.这些调用的API存放在liblvm.a中Physical partition(PP):硬盘存储的最小分配单位.当硬盘加入卷组中时系统安装卷组定义的PP大小对硬盘进行划分.PP的大小在创建VG时定义,以后就不能改变了.它的取值范围是1-1024M,以2的整数次幂变化.一个硬盘缺省时最多可以被划分成1016个PP.Physical Volume(PV):系统的物理硬盘,如果一个硬盘如果参与系统的存储分配,则需要将该硬盘加入的系统的卷组(VG)中或自己创建一个卷组.一个硬盘同时只能属于一个VG.图中的hdisk1,hdisk2,hdisk3为PV.Logical partition(LP):LP与PP相对应.一个LP一般对应一个PP,LP的大小与PP的大小相同.Logical Volume(LV):由同在一个卷组的一个或多个LP组成,它不需要占用连续的PV空间,它可以跨越硬盘存在可以动态的扩充容量.应用程序访问磁盘一般访问到LV这一层.LV中可以包括日志文件系统,Paging Space,日志log,BLV系统启动逻辑卷等.一般情况一个LV最大为64G,一个VG中最多包含256个LV.Volume Group(VG):AIX存储分配的最大单位,它包括一个或多个PV.一般情况下最多包括32个PV,一个系统最多有255个VG.VG从逻辑的角度来看还包含多个LV.在系统安装时系统会自动创建一个卷组rootvg.● 灵活的LV由于LV是由一个或多个LP组成,LP与PP相对应,这种对应关系被LVDD管理.LV可以不占用连续的物理硬盘空间这样LV在一个VG中可以跨硬盘存在,它的大小可以被动态增加,可以很容易的加镜像,可以很容易的被删除.● 高可靠性LVM通过镜像来提高数据的可靠性,被镜像的LV在系统中可以有2到3份拷贝.当一份数据被毁坏后系统可以用该数据的镜像.● 高性能LVM通过strping来提高系统访问数据的速度.strping技术将LV的数据分布到不同PV上访问这些数据时可以进行并行的读写.我们在创建LV时可以指定LV 在PV上的分布位置,我们将经常被访问的LV放在PV的热点位置可以提高访问速度.● 写校验LVM可以通过写校验对每次的磁盘写操作都被校验,提供数据的稳定性.● 动态管理我们可以在系统正常运行期间对系统的LV进行各种操作,操作后不需要重新启动机器.这些操作大部分对用户是透明的.● 容易使用我们课通过使用高级命令来管理系统存储也可以通过smit来管理系统存储.AIX的物理存储包括一些几个部分● VGAIX存储分配的最大单位,它包括一个或多个PV.一般情况下最多包括32个PV,一个系统最多有255个VG.VG从逻辑的角度来看还包含多个LV.在系统安装时系统会自动创建一个卷组rootvg.在一个VG中分配空间时是以PP为单位分配,VG中的所有PV作为一个整体进行使用.一个VG的PP大小在创建VG时定义,这个值以后不能在被改变.一个VG可以直接的从一个系统迁移到另一个系统中.● PV系统的物理硬盘,如果一个硬盘如果参与系统的存储分配,则需要将该硬盘加入的系统的卷组(VG)中或自己创建一个卷组.一个硬盘同时只能属于一个VG.当一个PV被加入到系统中在系统的/dev目录下创建hdiskn的设备文件与其对应.● PP硬盘存储的最小分配单位.当硬盘加入卷组中时系统安装卷组定义的PP大小对硬盘进行划分.PP的大小在创建VG时定义,以后就不能改变了.它的取值范围是1-1024M,以2的整数次幂变化.一个硬盘缺省时最多可以被划分成1016个PP.用户可以给rootvg(在安装系统是自动创建)中加硬盘,也可以创建新的卷组我们为什么创建新的卷组● 将用户数据与系统数据分开我们在系统升级后重新安装操作系统时只对系统的rootvg进行操作,如果用户数据集中在rootvg上那么在重新安装系统时有可能毁坏用户数据(安装方式决定是否会毁坏用户数据).系统的崩溃一般也发生在rootvg上.这样我们将用户数据放在其他VG中可以提供用户数据的稳定性.● 灾难恢复系统提供的备份方式中有一种是卷组备份,如果我们对系统的每个卷组都进行了这样的备份,当发生故障时可以很快的恢复系统和用户数据.● 数据维护当我们希望用户数据不被用户访问而系统还需要正常运行,如果这些数据被放在一个独立的卷组中我们可以使用varyoffvg的命令时这个卷组暂时不被激活.● 数据移动我们在系统间移动数据时,不能以硬盘为单位移动只能以vg为单位移动.●VGDAVGDA(Volume Group Descriptor Area)是包含在卷组中硬盘上的一个区域.卷组中的每一个硬盘至少有一个VGDA区,同一个卷组中所有硬盘的VGDA内容是一样的.VGDA中存放的是关于卷组的管理信息如卷组的ID号,包含的硬盘ID,逻辑卷ID还存放PP与LP的对应关系.●Quroum当VG被激活时系统会对该卷组中的VGDA进行表决以决定是否可以激活该卷组.VGAD的表决数用于确保卷组的管理数据的完整性,这个数是该卷组的VGDA 数量的51%或51%以上.如图包含两块硬盘的VG有3个VGDA,其表决数为2.如果只包含一个VGDA的硬盘坏了该卷组还可以被激活,反之则不能被激活.由于卷组中的每个硬盘都包含至少一个VGDA,如果硬盘过多VGDA的管理不太容易所有一般来讲每个卷组最好只包含3到4块硬盘即可.LVM菜单被用于管理许多的系统存储●Volume Group 用于管理VG●Logical Volume 用于管理LV.由于LV包括paging space,文件系统,他们都有相应的管理菜单,这里只提供一些地层的管理菜单.●Physical Volume 用于管理PV●Paging Space 用于管理系统页面交换空间.我们使用smit vg的命令可以得到卷组管理菜单镜像卷组可以将卷组中的所有逻辑卷进行镜像使用的命令是mirrorvg.●列出所有的卷组lsvg命令列出系统中所有已经定义的卷组(无论是否被激活)lsvg -o 列出现在处于激活状态的卷组●列出一个卷组的内容我们使用lsvg vgname的命令可以得到该卷组的状态和该卷组的内容.PP SIZE 表示卷组中PP的大小.State表示卷组的状态.LVs表示该卷组中逻辑卷的个数,TOTAL PPs表示卷组中PP的个数,FREE PPs表示当前卷组中未分配的PP个数,QUORUM表示卷组的表决数.VG DESCRIPTORS表示卷组的VGDA数量.●列出卷组中硬盘lsvg -p 卷组名可以列出该卷组所包含的硬盘名称,状态,每个硬盘的中PP个数,未分配PP的个数,未分配的PP在拼音的位置.●列出卷组中逻辑卷用lsvg -l 卷组名可以列出该卷组中所有定义的逻辑卷的名称,类型,LV包含的LP的个数和PP的个数,LV跨越硬盘的个数,LV的状态,如果LV是被用于文件系统的列出它的mount点.LV的类型用paging,日志log,启动LV和日志文件系统.LV的状态表示该卷组是否可以被访问,open表示可以被使用,closed表示是不能被访问(如果LV的类型是文件系统closed表示该文件系统没有被mount).syncd表示LV的内容是同步的(LV做镜像时有用,如果不同步则表示为staled状态).●增加卷组在这个smit对话框中我们必须选择的是新卷组包含的硬盘名称,该硬盘已经不能属于其他卷组.我们可以根据硬盘的大小指定卷组的PP大小缺省为4M,卷组名称如果没有声明则以vgnn命名nn表示为数字,卷组主设备号,是否创建为并行卷组,在并在模式下自动被激活这三个选项用于HACMP中.创建卷组的命令是mkvg.●删除卷组当卷组中最后一块硬盘被删除该卷组会被自动删除.●给卷组中增加一个硬盘我们用 extendvg -f Volumegroup hdiskn 的命令可以个卷组中增加一块硬盘,当一块yp被加入到某个卷组时系统会安装该卷组的PP大小对硬盘进行划分该硬盘中所有内容将会被清除.-f选项表示自动确认将将硬盘加入到卷组当中.●从卷组中删除一个硬盘用reducevg [-d] Volumegroup hdiskn可以从卷组中删除一块硬盘,删除前需要先将该硬盘的内容清除或移动到别的硬盘上.-d选择表示可以不做清除或移动工作而将性删除.一个卷组创建后我们可以修改卷组的部分属性如卷组在下一次系统启动时是否自动被激活,卷组被激活后是否还需要vgda表决数如果需要则卷组中硬盘的失效影响导致好的VGDA数量不足表决数则卷组自动变成不可使用状态.我们创建逻辑卷时可以指定该逻辑卷在硬盘的位置,如果创建时指定位置已经被使用则系统会自动分配其他位置给该逻辑卷.系统使用一段时间后管理员发现指定位置已经被释放我们可以利用reorgvg的命令来重新安装lv的位置定义调整卷组中lv的位置.reorgvg volumegroup [lvname].如#reorgvg vg3 lv04 lv07 可以调整lv04和lv07在vg3上的位置.安装lv名字在命令中出现的次序依次调整.这种调整对用户是透明的.●激活一个卷组varyonvg [-s] Volumegroup如果系统启动时我们发现一些卷组没有被自动激活我们可以使用#varyonvg datavg的命令将datavg激活.-s选项可以将vg激活到维护模式,这时只能对其使用管理命令,其他操作不允许.●使一个卷组处于非激活状态varyoffvg [-s] Volunegroup可以将一个处于激活状态的卷组变为非激活状态.使用该命令时卷组中的所有lv必须处于closed状态.-s表示将该卷组变为维护模式.我们有时需要将一个卷组从一个系统A移动到另一个系统B并希望保留该卷组上的所有数据,这时我们可以在A系统上使用exportvg的命令将卷组从A系统中删除,在B系统安装识别好该卷组中的硬盘后使用importvg的命令将该卷组引入到B系统上.使用exportvg时需要该卷组处于非激活状态.这些命令常用在HACMP中和系统升级后导入以前的非rootvg卷组的内容.Logical partition(LP):LP与PP相对应.一个LP一般对应一个PP,LP的大小与PP的大小相同.Logical Volume(LV):由同在一个卷组的一个或多个LP组成,它不需要占用连续的PV空间,它可以跨越硬盘存在可以动态的扩充容量.应用程序访问磁盘一般访问到LV这一层.LV中可以包括日志文件系统,Paging Space,日志log,BLV系统启动逻辑卷等.一般情况一个LV最大为64G,一个VG中最多包含256个LV.●镜像是一个LP在同一个卷组中对应1块以上的PP.即该LP的内容在系统中用1份以上的拷贝.当我们创建逻辑卷时我们可以声明对该lv中的lv做镜像,我们也称为该lv做镜像.通常lv的每一份拷贝都应该放在不同的不同的物理硬盘上.我们可以给lv加镜像也可以删除其镜像.● 镜像的读写策略● 并行策略并行的写是指系统在对该lv进行写操作时,几块拷贝同时写当最后一份拷贝写完后将控制权交给用户.读策略表示系统读取lv内容时哪一个拷贝近就读那一块.● 串行策略串行写表示系统在对该lv进行写操作时先写第一份拷贝,写完后在写第二份.当最后一份写完后将控制权交给用户.读策略表示系统读取lv内容时先读第一份拷贝如果读不出则在读第二份拷贝.● 正常lv的数据块分布正常的率数据块时连续分布到不同的硬盘上,这样在读写数据时总是不能达到并行读写.● stripe lv的数据块分布strping技术将LV的数据分布到不同PV上访问这些数据时可以进行并行的读写.如图在读写数据时1,2,3块数据由于分布在不同的硬盘上可以同时进行操作.一个striped的lv不能做镜像,而且使用stripe时至少需要两块硬盘而且每一块硬盘必须有其独立的读写器.striped lv的数据块单位不使用lp而使用stripe的块单位.● intra-pv 分布策略当我们创建逻辑卷时或修改逻辑卷时我们可以指定lv在硬盘的分布方式,intra 分布方式指的是lv在硬盘上的位置,系统如图将硬盘分为5个部分边缘,中部,中心,内中部,内边缘.其中中心部分访问速度最快,中部其次,边缘最慢.我们可以将经常使用的逻辑卷放在硬盘的中心部分.● inter-pv 分布策略inter分布方式指的是lv跨越硬盘的个数,其有两个选项minimum分布到最少数量的硬盘,maximum分布到最多数量的硬盘.我们可以使用smit lv的得到的smit菜单管理逻辑卷●列出系统中所有的lv●显示lv的属性COPIES表示lv是否有镜像,如果该值为1表示没有镜像.LPs表示LV包含的LP 的个数.Mirror Write Consistency表示如果镜像是否做镜像写校验,SCHED POLICY表示如果有镜像镜像的策略是什么.●列出lv在硬盘上的映射列出该lv在硬盘上的分布情况,COPIES表示该lv的不同拷贝在硬盘上的PP数量.以:为分隔符第一个域为第一拷贝,第二个域为第二拷贝,第三个域为第三拷贝.IN BAND表示满足分布策略的PP的百分比.●列出lv的lp在硬盘上的分布显示该逻辑卷上的LP给个拷贝与硬盘上的PP的映射关系.我们使用mklv可以创建一个新的逻辑卷.在smit对话框中我们必须填写的是卷组名,lv的lp个数.我们也可以指定lv所有的硬盘,指定lv的分布策略,也可以修改Munber of COPIES of each logical Partition的值来创建带有镜像的lv.如果没有指定lv的名称系统自动分配名称为lvnn,nn表示数字.我们可以用rmlv命令删除定义好的逻辑卷,删除前该逻辑卷需要处于closed状态.不要用rmlv命令删除日志文件系统和paging space.我们可以使用chlv命令修改lv的部分属性如分布策略,镜像策略和读写权限.使用chlv -n的命令可以修改lv的名称使用extendlv命令来扩充lv的大小,lv的大小不能被动态的减小.我们用mklvcopy可以增加一个逻辑卷的拷贝数,一个逻辑卷最多有3个拷贝.拷贝增加后需要对所有拷贝做同步,我们可以在使用mklvcopy命令时加-k选项即可.也可以在加完拷贝后用syncvg的命令进行同步.我们用rmlvcopy删除lv的拷贝.在使用smit方式增加lv拷贝时我们需要注意我们填写的拷贝数是新的总拷贝数.● 列出系统中的所有物理卷可以得到物理卷的名称,物理卷的ID号,物理卷所属的卷组● 列出物理卷的属性VG DESCRIPTORS表示该物理卷中包含的VGDA数量,分配的PP的分布情况,未分配的PP的分布情况● 列出物理卷中的逻辑卷可以显示该物理卷上所有逻辑卷的分布情况● 显示物理卷的PP使用情况●增加一个硬盘增加一个硬盘可以通过smit来增加或通过cfgmgr的命令来配置.●移动一个物理卷的内容我们用migratepv [-l lvname] sourcePV targetPV将一个硬盘上的所有内容或几个逻辑卷的内容迁移到另一个硬盘上.目标盘和源盘必须在同一个卷组之内.我们一般在替换硬盘时使用这个命令.例如#migratepv -l lv02 hdisk0 hdisk6将hdisk0上的lv02的内容迁移到hdisk6上.。
硬盘是此刻运算机上最经常使用的存储器之一。
咱们都明白,运算机之因此神奇,是因为它具有高速分析处置数据的能力。
而这些数据都以文件的形式存储在硬盘里。
只是,运算机可不像人那么伶俐。
在读取相应的文件时,你必需要给出相应的规那么。
这确实是分区概念。
分区从实质上说确实是对硬盘的一种格式化。
当咱们创建分区时,就已经设置好了硬盘的各项物理参数,指定了硬盘主引导记录(即Master Boot Record,一样简称为MBR)和引导记录备份的寄存位置。
而关于文件系统和其他操作系统治理硬盘所需要的信息那么是通过以后的高级格式化,即Format命令来实现。
面、磁道和扇区硬盘分区后,将会被划分为面(Side)、磁道(Track)和扇区(Sector)。
需要注意的是,这些只是个虚拟的概念,并非是真正在硬盘上划轨道。
先从面提及,硬盘一样是由一片或几片圆形薄膜叠加而成。
咱们所说,每一个圆形薄膜都有两个“面”,这两个面都是用来存储数据的。
依照面的多少,依次称为0 面、1面、2面……由于每一个面都专有一个读写磁头,也经常使用0头(head)、1头……称之。
依照硬盘容量和规格的不同,硬盘面数(或头数)也不必然相同,少的只有2面,多的可达数十面。
各面上磁道号相同的磁道合起来,称为一个柱面(Cylinder)。
上面咱们提到了磁道的概念。
那么究竟何为磁道呢?由于磁盘是旋转的,那么持续写入的数据是排列在一个圆周上的。
咱们称如此的圆周为一个磁道。
若是读写磁头沿着圆形薄膜的半径方向移动一段距离,以后写入的数据又排列在另外一个磁道上。
依照硬盘规格的不同,磁道数能够从几百到数千不等;一个磁道上能够容纳数KB 的数据,而主机读写时往往并非需要一次读写那么多,于是,磁道又被划分成假设干段,每段称为一个扇区。
一个扇区一样寄存512字节的数据。
扇区也需要编号,同一磁道中的扇区,别离称为1扇区,2扇区……运算机对硬盘的读写,处于效率的考虑,是以扇区为大体单位的。
UNIX AIX 文件系统存储管理逻辑卷管理 PV VG PP LVLPUNIX.AIX.文件系统.存储管理.逻辑卷管理.PV.VG.PP.LV.LP aix使用日志2008-05-14 17:05 阅读78 评论0 字号大中小一.逻辑卷管理概念 5个概念: 物理卷 physical volumes PV 每个独立的硬盘称作物理卷PV并有一个名字如hdisk0 卷组 logical volume group VG 所有的物理卷属于一个称作rootvg的卷组VG 物理分区 physical Partitions PP 所有在一个VG中的PV被分为相同大小的物理分区PP 逻辑卷 logical volumes LV 每个VG中可以定义一个或多个逻辑卷LVLV是位于PV上的信息的组合在LV上的数据可以连续或者不连续地出现在PV 逻辑分区 LP 每个LV包含一个或多个逻辑分区LP每个LV相当至少一个PP如果对LV指定了镜象就要有双倍的PP被分配用来存储每个LP的备份. LV可以提供许多系统需要的服务如页面空间但是每个存储了一般系统/用户数据或程序的 LV都包含一个单独的日志式的文件系统JFS每个JFS包含一群页面大小4K的块.AIX4.1以后一个给出的文件系统可以被定义为拥有小于 4k的片断.系统安装完毕后有一个VGrootvg包含一套系统启动的基本的LV和其它在安装脚本中指定的VG. 二.逻辑卷管理器操作系统命令/库子程序/其它工具允许建立和控制LV存储成为逻辑卷管理器LVM.LVM通过简单而灵活地在存储空间的逻辑视图和实际物理盘之间映射来管理磁盘资源. 1.LVM配置数据描述LMV的组件的数据存放在好几个地方.理解这些关于VG/LV/PV的描述性的数据放在几个地方是很重要的. 1ODM 数据库 ODM数据库包含了所有PVVGLV的配置信息.这些信息与VGDA中的信息互为镜象.ODM数据也和LV控制块中的信息相互镜象 2VG描述区VGDescriptorArea VGDA位于每个物理卷的开头它包含所有属于本VG的LV和PV的信息.VGDA被几乎所有的LVM命令更新.VGDA产生每个VG的自述.AIX可以读取每个磁盘的VGDA从VGDA中可以获知哪些PV和LV属于这个卷组.每个盘至少包含一个VGDA时间的变化很重要VGDA中的时间戳用于确定哪个VGDA正确地反映了VG的状态.如果VG中一个盘出错VGDA可能无法同步磁盘这样磁盘上的VGDA就无法在磁盘不运行的时候更新.所以需要一种方法来更新VGDA刚在线的磁盘这就是处理进程要做的. 当磁盘被创建为一个PV以mkdev命令的时候VGDA也被创建这时会在盘开始保留一段空间给VGDA.当PV被分派到一个VG用mkvg或extendvg的时候实际的VG信息就被写到VGDA中去.当一个PV从VG中删除的时候用reducevgVG信息也从VGDA中删除. 3VG状态区VGSA VGSA包含了PP和PV的状态信息.如VGSA知道一个VG中的PV是否不可用.VGDA和VGSA都有非常重要的开始和结束时间戳.时间戳可以让LVM了解最近的VGDA和VGSA的拷贝在时间上的变化. LVM要求选择VGDA的时间戳和选择VGSA的时间戳是相同的. 4LV控制块LVCB LVCB位于每个LV的开头.它包含了LV的一些信息占用几百个字节.可以使用getlvcb命令获取某个LV的LVCB信息并显示出来.如:getlvcb -TA hd2显示了hd2 LV的LVCB信息. 2.磁盘quorum 每个VG中的物理盘至少有一个VGDA/VGSA.一个盘中VGDA的数量根据VG中的盘的总数而变化.变化规律如下: VG中有一个PV两个VGDA在一个盘上 VG中有两个PV两个VGDA在一个盘上一个在另外一个盘上 VG中有两个以上的PV每个盘上有一个VGDA quorum是一种状态这种状态确保一个VG中一半以上的PV是可以访问的是活动的VGDA/VGSA的数量决策它可以确保在发生磁盘出错的时候的数据完整性. 如果quorum失败VG会关闭自身使磁盘不再可以由LVM访问防止磁盘进一步读写而导致的数据丢失.另外错误日志中也会记录该错误.这也暗示了磁盘镜象的某些注意的地方在一个双盘镜象的系统中如果第一个盘出错那么就丢失了66的 VGDA整个VG就变得不可用.这就失去了镜象的目的.由于这种原因两个以上的盘通常是奇数提供了更高的可用性特别是想使用镜象的时候. 也可以关闭任何VG的quorum保护.关闭quorum保护可以使一个VG在出现前面的情况的时候仍然在线.这种能力提供了相对廉价的镜象方案但是有数据丢失的危险.磁盘出错后数据可以访问但是不再被镜象了. 3.磁盘镜象磁盘镜象是两个或三个PP的联合与每个LV中的LP的联合.当数据被写到LV中的时候也被写入与该LV的LP关联的PP中所以镜象数据提高了数据的可用性.AIX和LVM提供了在LV级别上的镜象工具.如果镜象建立当LV创建的时候就可以实现. mklv命令允许为每个LV选择一到两个额外副本.镜象也可以被加入到一个已经存在的LV 中需要使用mklvcopy命令.采用以下镜象选项可以进一步提高数据可用性:三个数据副本比两个数据副本更可靠把LP副本分布在不同的PV上比分配在一个PV上可靠.进一步地可以把数据副本存放在不同适配器上的不同PV中. mirrorvg命令镜象一个VG中所有的LV.相同的功能也可以对VG中的每个LV用mklvcopy命令人工完成.使用mklvcopy时要被镜象的目标物理驱动器必须是该VG的成员.使用语法: mirrorvg -S -s -Q -c Copies -m VolumeGroup PhysicalVolume .. 默认情况下mirrorvg试图镜象LV到VG中的任何盘上.mirrorvg命令使用LV被镜象时的默认设置镜象LV.如果想改变镜象创建策略必须用mklvcopy手工去创建所有的镜象. 也可以使用smitty mirrorvg完成VG镜象: 三重镜象一个VG:mirrorvg workvg -c 3 workvg在workvg中的LV中的LP就有三个副本. 默认镜象rootvg:mirrorvg rootvg rootvg就有两个数据副本在镜象VG中替换失败盘:unmirrorvg workvg hdisk7gtgtreducevg workvghdiak7gtgtrmdev -l hdisk7 -d.替换失败的磁盘然后命名为hdisk7:extendvg workvghdisk7gtgtmirror workvg.默认情况下mirrorvg将试图为workvg中的LV创建两个副本试图创建新的镜象到被替换的磁盘.但是如果原系统是三重镜象的可能就没有新的镜象创建到hdisk7上因为该LV中的其它副本可能已经存在. 同步新创建的镜象:mirrorvg -S -c 3 workvgc参数指出mirrorvg后每个LV必须有的副本数.而-S参数指出立即返回mirrorvg命令并完成VG的后台同步.当镜象同步的时候不会显示出来但是一旦准备好可以立即被系统使用. 创建一个原样的镜象VG: mirrorvg -m datavghdisk2 hdisk3-m参数允许在PP层次镜象一个LV该LV的PP可以组织已经在源副本上组织好的数据. rootvg镜象:rootvg镜象完成要完成以下任务:1.bosboot命令从RAM文件系统和核心创建一个引导镜象.该命令在自定义新的镜象盘上的引导记录时是被要求使用的.2.bosboot命令总是为硬盘保存设备配置数据不更新NVRAM中的引导设备列表要修改列表使用bootlist.3.最后mirrorvg命令关闭quorum功能.要关闭rootvg的该功能系统必须重启.注意:如果bosboot命令没有成功创建引导盘不要重启.这个问题应该被解决并且bosboot命令成功完成运行.bosboot要求一些 /tmp和目标保存的文件系统中的空间如果该镜象存在. 非rootvg镜象:如果一个非rootvg被镜象quorum状态是去活的.要使所有 quorum去活所有开放的LV必须被关闭.然后VG varyoff再vary on使quorum改变生效.如果VG的vary on没有完成尽管镜象正常运行但quorum的改变没有生效. rootvg 和非rootvg镜象:系统dump设备主:/dev/hd6次:/dev /sysdumpnull不应被镜象在某些系统中页面设备和dump设备是相同的而用户想对页面设备做镜象.当mirrorvg探测到一个 dump设备和页面设备相同时该LV就会自动被镜象.如果mirrorvg发现dump设备和页面设备在不同的LV页面设备自动镜象而dumpLV 不会.dump设备可以用sysdumpdev命令来查询和修改. 三.物理卷管理讨论:加入新磁盘/改变PV属性/监控PV 6.3.1PV配置:三种方法 a该方法用于可以在连接磁盘前关机的情况.当系统在加入一个磁盘后引导cfgmgr命令在系统引导时运行它可以自动配置磁盘.引导完成以root用户登录运行lspv查看新盘.显示如下hdisk1nonenone 或者hdisk100005264d21adb2enone 其中第二行中的16位号码是PV的ID.如果输出以PVID显示新的磁盘他可以用于LVM的配置.如果新盘没有PVID要使用3.2节说明的方法把一个盘创建为一个PV然后该盘才可以被LVM使用. b这种方法适用于不能在连接磁盘前关机的情况.运行lspv列出已经配置的物理盘显示如下:hdisk0000005265ac63976rootvg 然后运行cfgmgr配置所有新发现的设备.再次运行lspv查看新盘条目例如: hdisk1nonenone 或者hdisk100005264d21adb2enone 一旦确认了新配置的盘名使用6.3.2描述的创建PV方法来使该盘可以被LVM使用. c 该方法适用于不能在连接磁盘前关机的情况.该方法要求知道以下信息:盘如何连接的subclass/磁盘类型type/盘连接到哪个系统接口parent name/盘的逻辑地址连接到哪里.如果知道以上信息使用以下方法配置该盘通过pvyes属性来确保该盘是一个可用的PV: mkdev -c disk -s subclass -t type -p parentname -w whereconnected -a pvyes pvyes属性使磁盘成为一个PV并以独特的PVID写入引导记录. 6.3.2把一个磁盘变为一个PV 一个新盘必须被配置为PV才可使用.可以通过指派一个PVID使一个磁盘变为一个PV:chdev -l hdisk1 -a pvyes.这个命令对于已经是PV的磁盘没有影响.6.3.3修改PV属性讨论两个可以被chpv命令修改的PV属性: 为一个PV设置分配许可:一个PV的分配许可决定了该PV上的未指派到LV中的PP是否可以被分配使用.设置分配许可要ㄒPV中一个新PP的分配是否被允许.以下的命令用于关闭hdisk1的分配许可:chpv -an hdisk1要打开把n该为y即可. 设置一个PV的可用性:一个PV的可用性定义了该PV是否可以完成任何逻辑输入输出操作.当一个PV被从系统删除或失败时应该被设为不可用.以下命令用于设置PV的状态为不可用:chpv -v r pvname这将去活PV中所有的VGDA和VGSA副本该PV也不会参与未来的quorum检查上的vary.关于该卷的信息也会从其它在一个VG 中的PV的VGDA中删除.要设为可用把以上命令的r 改为a即可.注意:chpv命令在运行时使用/tmp目录的空间存储信息如果失败可能是由于/tmp空间太少. 6.3.4删除PV 如果一个PV可以从系统删除那么它必须是没有配置的.使用rmdev命令把hdisk1的状态从available改变到defined状态:rmdev -l hdisk1.此后该PV的定义将仍然保留在ODM中如果加上-d参数则从ODM中删除. 6.3.5列出PV信息一个正确地配置在系统中的PV可以被指派到VG中并随后用于建立LV和文件系统.自由的PP的信息和磁盘上的扇区可用性非常有用.使用lspv命令可以获得这些信息. a列出系统中的PV:不带参数运行结果如下: lspv hdisk0 00615147ce54a7ee rootvg hdisk1 00615147a877976a rootvg 如果带-C和-c class参数也会连同每个PV的状态列出系统中的PV结果如下: lsdev -C -c disk hdisk0 Available 40-58-00-00 16 Bit SCSIDisk Drive hdisk1 Available 40-58-00-10 16 Bit SCSI Disk Drivehdisk2 Available20-68-L SSA Logical Disk Drive hdisk3 Available 20-68-L SSA Logical Disk Drivehdisk4 Available 20-68-L SSA Logical Disk Drive hdisk5 Available 20-68-L SSALogical Disk Drive hdisk6 Available 20-68-L SSA Logical Disk Drive b 列出PV属性:下面是用lspv命令找到更多信息的例子: lspv hdisk1 PHYSICAL VOLUME: hdisk1 VOLUME GROUP: rootvg PV IDENTIFIER: 00615147a877976a VG IDENTIFIER00615147b27f2b40 PV STATE: active//VG STATE可以用varyonvg命令来修改其取值有三个:active/complete所有PV是活动的active/partial一些PV没有激活ina- ctiveVG没有活动. STALE PARTITIONS: 0 ALLOCATABLE: yes//STALE PP是失效PPALLOCATABLE的值表示系统是否允许分配新的在该PV上的PP PP SIZE: 4 megabytes LOGICAL VOLUMES: 13//PP SIZE是VG属性是在用mkvg命令建立VG的时候定义的VG的最小片断大小 TOTAL PPs: 238 952 megabytes VG DESCRIPTORS: 1//VGDESCRIPTORS描述了包含该PV的VG中VGDA的个数 FREE PPs: 71 284 megabytes USED PPs: 167 668 megabytes FREE DISTRIBUTION:48..02..00..00..21//概括了自由PP依据它们所在的PV的位置的分布状况. USED DISTRIBUTION: 00..46..47..47..27 每栏的左边列出了PV本身的信息右边是该PV所属的VG的信息. c列出PV上的LV分配信息:以-l参数列出hdisk1上的LV信息:lspv -lhdisk1.显示结果: d列出PV上的PP分配:用lspv -p hdisk1找出更多关于PP分配到LV中的范围和这些PP使用的磁盘区域的详细信息.显示信息如下: 一些注释: PP RANGE当前行分区申请的PP的范围 STATE分区是否被分配了取值为:used或free REGION该分区在磁盘区域上的位置 LV NAME该分区所属的LV名 TYPE在LV中文件系统的类型 MOUNTPOINT文件系统的mount点 e列出PP分配表:可以用lspv -M命令对一个LV进行磁盘整理提高磁盘I/O性能.可以经过分析输出决定是否整理系统显示如下: 第一列为命令指定的盘指出了PP如果一组相邻分区都是自由的将会显示分区范围第二列指出了哪个LV的哪个LP被分配到该PP. f迁移PV中的内容:属于一个或多个指定的LV的PPs可以从一个PV移动到一个或多个其它在VG中的PV.这要使用migratepv命令.注意:该命令不能在不同VG之间移动数据.6.5.5讲述了如何在VG之间移动数据.要在VG内移动一个失败的盘中的数据有以下步骤: 1确定哪些盘在VG中确认目的和源PV在一个VG中.执行lsvg -p rootvg可以确认.然后进行第三步 2如果计划迁移到一个新盘又需要完成以下步骤:1用lsdev -Cc disk确认磁盘为PV2如果磁盘被显示可用确认该盘不属于其它VG:lspv PVNAME3如果磁盘不可用要检查或安装磁盘4加入新盘到VG中:extendvg VGname hdisknumber 3确认目标盘有足够的空间:1确认源盘PP数目:lspv SourceDiskNumbergrep quotUSED PPsquot2确认目标盘上的自由PP数目:lspv DestDiskNumbergrep quotFREE PPsquot把所有目标盘上的自由PP相加如果和大于源盘上使用的PP数就有足够的空间. 4要移动一个在非rootvg中的PV的数据的时候请跳到第5步.否则进行该步.查看是否bootLVhd5在源盘上:lspv -l SrcDiskNumgrep hd5没有输出则可以进行第5步.如果有输出运行migratepv -l hd5 SrcDiskNum DstDiskNum注意:如果VG在并发模式vary onmigratepv命令不可用而且该命令无法迁移条带化LV这种情况下要使用cplv拷贝数据再用rmlv删除旧数据该命令运行要有 root用户权限..下一步就会得到一条关于警告应该在目标盘上完成bosboot命令的消息注意:如果bootLV被从一个PV上迁移了源盘上的引导记录应该被清除如果清除失败可能会导致系统挂起.这样当运行bosboot命令时也必须运行mkboot -c运行mkboot -c命令清除源盘的引导记录. 5执行smitty migratepv迁移数据. 6按下F4列出PV选择源PV 7默认的目的PV是VG中随意的可用的PV如果想选择按F4 8如果愿意在Move only data belonging to this LV 域显示并选择一个LV.这就会只移动分配到指定的LV的该盘上的PP 9回车开始移动 10如果磁盘失败用reducevg VGname SrcDskNum从VG中删除源盘 11在从机器上拆下失败的硬盘的之前运行rmdev -l SrcDskNum -d 其它migratepv的用途:用该命令从hdisk1移动PPs到hdisk6和hdisk7均在一个VG:migratepv hdisk1 hdisk6 hdisk7 用该命令从hdisk1移动在某LV上的PP到hdisk6:migratepv -l lv02 hdisk1 hdisk6 四.卷组管理讨论可以在VG中完成的功能.象PV一样VG可以被创建/删除/更改属性.还可以激活或去活一个VG. 6.4.1加入一个VG.一个VG要被加入系统需要系统中存在一个或多个PV这些PV必须是可用状态且没有被其它VG使用.在加入一个VG之前需要确定一些重要信息如VG名和要被加入到VG中的PV.新VG可以通过用mkvg命令或smit加入系统.所有属性在VG创建时设置以下是非常重要的一些问题:VG名在系统中必须是唯一的所有要在VG中使用的PV的名字VG可以容纳的 PV的最大数量VG 中的PP的大小每次启动系统时自动激活VG的标识.下面用mkvg命令创建一个名为myvg的VG使用hdisk1和 hdisk5两个PV每个PP的大小是4k该VG限制能容纳最多10个PV.命令如下: mkvg -y myvg -d 10 -s 8 hdisk1 hdisk5 也可以使用smitty mkvg来创建在界面各个域中输入属性值即可.smitty mkvg会用varyonvg 自动激活VG.但smit命令与命令行方式相比限制了以下功能:smitty mkvg不提供-d参数设置能容纳的最多PV个数仅使用默认的32个不提供-m参数设置PV的最大容量该参数决定多少PP被使用默认的是1016 个分区smitty mkvg用-f参数强制创建VG.注意:每用mkvg创建一个新VG根文件系统至少应该有2MB自由空间可以用df命令来检查因为每创建一个新 VG/etc/vg目录就会写入一个文件. 6.4.2修改VG属性修改活动属性用以下命令可以让名为newvg的VG在每次系统启动时自动被vary on: chvg -ay newvg 如果要关闭自动vary on功能用: chvg -an newvg. 对VG解锁当LVM命令在操作时因为系统冲突异常中断VG将被锁住要解锁可以用: chvg -u newvg 加入一个PV要增加VG的空间需要VG中额外的PV可用.加PV的命令是extendvg下面是一个加PV的例子: extendvg newvg hdisk3 注意:如果一个要加的PV已经属于一个vary on的VG扩展会失败如果属于一个vary off的VG用户也会被提示是否确定要继续.也可以使用smitty vgsc命令来实现要选择Add a PV to a VG. 删除一个PV要减少VG的PVVG必须是vary on的.下面是删除的例子: reducevgmyvg hdisk3 可以用smitty reducevg从一个VG中删除一个PV.注意:reducevg命令提供了-d和-f参数.-d参数很危险因为它会在从VG中删除PV之前自动删除所有在PV上的LV数据如果一个LV跨越了多个PV那么任何这种PV的删除会危害整个LV的完整性.而-f参数则使-d参数更危险它禁止和用户交互无法让用户确认是否要删除. 如果在要被删除的PV上的LV跨越了VG中其它PV删除操作会破坏这些LV的完整性而不管它们所在的PV.如果删除一个VG中所有PV则VG本身也被删除. 删除PV的参数有时从系统中删除磁盘没有先运行reducevgVGDA仍然保存了被删除的磁盘的参数而PV名已经不存在或被重分配了.要删除这些参数仍然可以在reducevg命令中使用被删除的PV的PVID.如要删除PVID为 000005265ac63976则可以用:reducevg newvg 000005265ac63976. 6.4.3导入导出VG 有时候一个VG需要被从一个系统移动到另外一个系统以便于其中的LV和文件系统可以在目标系统中被直接访问.要删除ODM数据库中一个VG的系统定义该VG需要用exportvg命令导出.该命令不会删除VG中的任何用户数据而只删除它在 ODM数据库中的定义.同样当一个VG被迁移了目标系统需要加入该VG的定义.这可以通过用importvg命令导入VG来完成这会在ODM数据库中加入一个条目.例子:导出myvg的定义:exportvg myvg导入myvg:importvg -y myvg hdisk12可以使用smitty exportvg或smitty importvg来导入或导出.如果指定的VG名正在使用importvg命令将会失败因为相同的VG名是不被允许的.在该实例中该命令可以返回一个独特的指定的VG名.该命令也可以没有-y参数或VG名得到返回但这样执行时被给定了一个默认唯一的导入名. 也有可能某些LV名与系统中已有的冲突.importvg命令将自动以系统默认名命名.重要的是要记住当移动VG时exportvg命令总是在源系统中执行并且先于导入目标系统的操作.假设到一个VG被导入系统Y没有在系统X上实际完成 exportvg.如果系统Y对VG作了诸如删除PV的改变而后来VG又被导回系统X系统X上的ODM数据库将和VG上改变过的信息不一致但在移动前没有在源系统上导出那兔挥惺裁匆庖辶?也可用exportvg和importvg改变用户定义的VG名.如以下命令:lspv列出所有的 PVvaryoffvgvg00exportvgvg00importvg -y cadsvg hdisk1lspv就可以发现两次lspv的不同.注意:如果当前系统包含一个相同的名字的LVimportvg命令改变被导入的LV的名字.同时如果一个LV被改名一个错误消息被打印到标准错误输出如果没有冲突该命令还创建文件mount点和/etc/filesystems中的条目. 有页面文件的VG中如果页面文件是活动的VG不能被导出.在导出一个包含活动页面的VG之前确认页面空间不会在系统初始化时自动激活要使用:chps -a n page_space_name然后重启系统. 如果不能用smitty importvg命令激活VG必须用varyonvg命令来使文件系统和LV可用. 如果导入的VG包含文件系统或者通过smitty importvg激活了VG建议在mount文件系统之前使用fsck命令检查文件系统.如果移动一个VG到其它系统确认在移动前反配置这些盘即导出. smitty exportvg命令删除在/etc/filesystems中的文件系统参数但留下mount点在系统中. 6.4.4打开关闭一个VG 一个VG存在就可以使用varyonvg命令使其可以被系统管理活动可用.这个处理包含的步骤如下: 1.一个VG的每个P.。
LVM(Logicl Volume Manager),逻辑卷管理器,通过使用逻辑卷管理器对硬盘存储设备进行管理,可以实现硬盘空间的动态划分和调整。
一、基本概念1、物理卷-----PV(Physical V olume)物理卷在逻辑卷管理中处于最底层,它可以是实际物理硬盘上的分区,也可以是整个物理硬盘。
2、卷组--------VG(V olumne Group)卷组建立在物理卷之上,一个卷组中至少要包括一个物理卷,在卷组建立之后可动态添加物理卷到卷组中。
一个逻辑卷管理系统工程中可以只有一个卷组,也可以拥有多个卷组。
3、逻辑卷-----LV(Logical V olume)逻辑卷建立在卷组之上,卷组中的未分配空间可以用于建立新的逻辑卷,逻辑卷建立后可以动态地扩展和缩小空间。
系统中的多个逻辑卷要以属于同一个卷组,也可以属于不同的多个卷组。
4、物理区域--PE(Physical Extent)物理区域是物理卷中可用于分配的最小存储单元,物理区域的大小可根据实际情况在建立物理卷时指定。
物理区域大小一旦确定将不能更改,同一卷组中的所有物理卷的物理区域大小需要一致。
5、逻辑区域—LE(Logical Extent)逻辑区域是逻辑卷中可用于分配的最小存储单元,逻辑区域的大小取决于逻辑卷所在卷组中的物理区域的大小。
6、卷组描述区域-----(V olume Group Descriptor Area)卷组描述区域存在于每个物理卷中,用于描述物理卷本身、物理卷所属卷组、卷组中的逻辑卷及逻辑卷中物理区域的分配等所有信息,卷组描述区域是在使用pvcreate建立物理卷时建立的。
二、 LVM的一般操作过程1、在磁盘分区上建立物理卷#fdisk /dev/hdb#pvdisplay /dev/hdb1 //在已经建立好的分区或硬盘上建立物理卷#pvcreate /dev/hdb12、使用物理卷建立卷组#vgcreate myVG /dev/hdb1 //建立卷组,日后可以根据需要添加新的物理卷到已有卷组中3、在卷组中建立逻辑卷#lvcreate –L 10M –n myLV1 myVG //从已有卷组建立逻辑卷,通常只分配部分空间给该逻//辑卷4、在逻辑卷上建立文件系统5、将文件系统挂载到Linux系统的目录树中6、在卷组中添加新的物理卷当卷组中没有足够的空间分配给逻辑卷时,可以使用vgextend命令添加新的物理卷到该卷组中,来扩充卷组容量。
第1章 UNIX操作系统概述1.1 UNIX操作系统简介UNIX是较早广泛使用的计算机操作系统之一,它的第一版于1969年在Bell实验室产生,1975年对外公布,1976年以后在Bell实验室外广泛使用。
应用范围应用到几乎所有16位及以上的计算机上,包括微机、工作站、小型机、多处理机和大型机等等。
UNIX特点(1) 多任务、多用户(2) 并行处理能力(3) 管道(4) 安全保护机制(5) 功能强大的shell(6) 强大的网络支持,Internet上各种服务器的首选操作系统(7) 稳定性好(8) 系统源代码用C语言写成,移植性强(9) 出售源代码,软件厂家自己增删UNIX流派举例UNIX类别计算机SCO UNIX PC兼容机Digital Unix Dec Alpha机Solaries Sun 小型机工作站AIX IBM机HPUX HP小型机工作站Linux 各种机器1.2 UNIX系统组成UNIX操作系统结构由三大部分组成:(1)kernel(内核)(2)shell(外壳)(3)工具及应用程序UNIX Kernel(UNIX内核)是UNIX操作系统的核心,指挥调度UNIX机器的运行,直接控制计算机的资源,保护用户程序不受错综复杂的硬件事件细节的影响。
UNIX Shell(UNIX外壳)是一个UNIX的特殊程序,是UNIX内核和用户的接口,是UNIX的命令解释器。
目前常见的Shell有三种:shell类型简称命令主要特点Bourne Shell B Shell sh 最老、使用最广泛,每个UNIX都提供。
Korn Shell K Shell ksh 是对B Shell的扩充,兼容B Shell。
C-Shell csh 格式有点象C语言。
功能强,命令记忆稍难,在大学和学院中较为流行。
一般系统缺省为Bourne Shell, 本文以此shell为例。
要想将当前Shell改为其它Shell,只需在操作系统提示符下键入相应的Shell命令即可。
hp unix 基本概念物理卷(Physical Volume)称为PV:指物理上的硬盘,一个硬盘就是一个PV;逻辑卷(Logical Volume)称为LV:相当于对大硬盘进行逻辑分区,一个VG里可有若干个LV。
逻辑卷组(Logical Volume Group)称为VG:一个VG包含整数个PV,可理解为一个大硬盘。
文件系统(File System):在逻辑卷的基础上,可建立文件系统,然后MOUNT到一个目录下,这样就可以文件存取的方式来使用这块硬盘了。
当然,您也可以不建文件系统,而直接把LV当作裸设备,以TRUNK方式来存取数据,许多数据库都是用这种方式存取数据。
hp unix 逻辑卷管理在HP-UX下使用硬盘的相应命令:1. 先建物理卷:# pvcreate -f /dev/rdsk/cCdDtT这里必须使用硬盘的字符设备文件,其中的cCdDtT:例如c0t6d0等在hp中可以用ls -l dev 看到硬盘的字符设备文件exm: pvcreate -f /dev/rdsk/c0t6d02. 再建逻辑卷组:# mkdir /dev/vg0Xexm: mkdir /dev/vg01mknod 用指定名称产生一个FIFO(命名管道),字符专用或块专用文件。
文件系统中的一个专用文件存贮着三种信息(布朗型、整型、整型)。
布朗型在字符文件与块文件之间作出选择,两个整型是主、次设备号。
c表示字符文件b表示块文件VG的GROUP总是64,是定义好的在/dev下用ls -l可以看到major和minor号# mknod /dev/vg0X/group c 64 0x0X0000exam: mknod /dev/vg01/group c 64 0x020000# vgcreate vg0X /dev/dsk/cCdDtTexam: vgcreate /dev/vg01 /dev/dsk/c0t6d03. 然后划分逻辑卷:# lvcreate -L size vg0X size:该逻辑卷大小exam: lvcreate -L 200 -n lv01 /dev/vg014. 在LV上建文件系统:# newfs -F file_system_type /dev/vg0X/rlvolYfile_system_type:文件系统类型,包括hfs和vxfs,注意此时用该逻辑卷的字符设备文件。
UNIX硬盘分区简介写这份文档的初衷是在网络上和一些朋友聊天的时候,常常会被问到这个问题,回答了很多次。
为了一劳永逸的解决这个问题,决定写一份文档,方便以后再次被问到的时候copy,呵呵。
同时,也是为了帮助自己不断巩固这些知识,算是一份粗糙的笔记吧。
“Unix硬盘分区简介”这个标题有些大,本来只是为了介绍一下Solaris和Linux的分区,但是也希望对其他Unix熟悉的朋友们分享您们的知识,将您们所熟悉的Unix,例如FreeBSD,Sco Unix,Hp Unix等的硬盘分区知识,share出来。
假如发现了文章之中的错误,请联系我(E-Mail:cqwlyh@;MSN:cqwlyh@),假如对文章进行了修改,请留下您的名字和联系方式。
ok,闲话少说,让我们进入正题吧:1.Solaris硬盘分区简介Solaris下,一个磁盘包含8个分区,标记为0-7。
此信息能够通过format命令,然后选择一个硬盘来看到,例如,在我自己的系统中(Solaris 9,Ultra 60),显示出来的信息如下:# formatSearching for disks...doneAVAILABLE DISK selectIONS:0. c0t0d0/pci@1f,4000/scsi@3/sd@0,0Specify disk (enter its number): 0selecting c0t0d0[disk formatted]Warning: Current Disk has mounted partitions.FORMAT MENU:disk - select a disktype - select (define) a disk typepartition - select (define) a partition table current - describe the current diskformat - format and analyze the diskrepair - repair a defective sectorlabel - write label to the diskanalyze - surface analysisdefect - defect list managementbackup - search for backup labelsverify - read and display labelssave - save new disk/partition definitions inquiry - show vendor, product and revision volname - set 8-character volume name! - e, then returnquitformat> pPARTITION MENU:0 - change `0’ partition1 - change `1’ partition2 - change `2’ partition3 - change `3’ partition4 - change `4’ partition5 - change `5’ partition6 - change `6’ partition7 - change `7’ partitionselect - select a predefined tablemodify - modify a predefined partition tablename - name the current tableprint - display the current tablelabel - write partition map and label to the disk!- e, then returnquitpartition>不要看到内容这么多,就被吓住了,其实,format命令之后0. c0t0d0/pci@1f,4000/scsi@3/sd@0,0所显示出来的含义很简单,0. c0t0d0就代表这台Ultra 60里面只装了一个硬盘(至于c0t0d0的具体含义,稍后会介绍),代表的是这个硬盘的大小和柱面信息,/pci@1f,4000/scsi@3/sd@0,0所代表的,就是这个硬盘的实际物理地址。
这些信息看起来很复杂,其实一般都只需要看看format命令抓出来的硬盘数量,是不是我们装在系统上的数量,例如您装了两个硬盘,但是这里只有一个硬盘的信息,就需要认真面对了。
FORMAT MENU:disk - select a disktype - select (define) a disk typepartition - select (define) a partition tablecurrent - describe the current diskformat - format and analyze the diskrepair - repair a defective sectorlabel - write label to the diskanalyze - surface analysisdefect - defect list managementbackup - search for backup labelsverify - read and display labelssave - save new disk/partition definitionsinquiry - show vendor, product and revisionvolname - set 8-character volume name! - e, then returnquitformat> p这里所列出来的,是能够使用的命令,比如我在最下面format>,就是用了p这个命令(慢点,上面没有p这个命令啊?其实,这里p就是partition的简写),然后,列出了以下内容:PARTITION MENU:0 - change `0’ partition1 - change `1’ partition2 - change `2’ partition3 - change `3’ partition4 - change `4’ partition5 - change `5’ partition6 - change `6’ partition7 - change `7’ partitionselect - select a predefined tablemodify - modify a predefined partition tablename - name the current tableprint - display the current tablelabel - write partition map and label to the disk!- e, then returnquitpartition>OK,到这里,我们的目的也达到了,这些信息应该很清楚的证实了:Solaris下,一个磁盘包含8个分区,标记为0-7。
后面的仍然是一些能够用到的命令,这些命令的具体含义,大家能够看命令后面的英文介绍,至于怎么使用,以后再说。
下面我们将进入今天的重点。
向一块硬盘写入数据之前,首先需要将其分区和格式化,这个过程一般能够分为3个步骤:1. 物理格式化,也就是通常所说的低级格式化(Low-Level Formatting,LLF);2. 分区;3. 逻辑格式化,也就是通常所说的高级格式化(High-Level Formatting,HLF)低级格式化的时候,硬盘被分成若干个磁道,这些磁道又被分成若干个扇区,每个扇区填充了随机数据。
几乎任何的硬盘在出厂前都已被低级格式化过,所以,用户只要对硬盘进行下面两个步骤(分区和逻辑格式化)就能够了。
分区的动作将硬盘分成几个部分,成为分区或是分片(注意:前面的“分区”是动词,后面的是名词哦)。
每个分区/分片由若干个柱面组成。
绝大多数下,Solaris中的一个硬盘分区对应一个文档系统。
一个分区不能包含多个文档系统;同样,一个文档系统也不能跨越多个分区。
Solaris中,对硬盘进行分区,就是使用我们开始的时候使用过的format命令。
当Solaris进行高级格式化的时候,将每个分区分成许多柱面组,每个柱面组包括了几个连续的柱面。
文档系统在这些柱面组中建立文档和目录,并尽量将同一个文档的数据保存在同一个柱面组中。
这样的机制能够确保磁头读取数据的时候移动最少,从而加快数据的读取速度。
Solaris中使用newfs命令来实现高级格式化,默认的文档系统是Unix文档系统(UFS:Unix File System),他使用下列类型的块:1. 引导块:存储系统启动时所需的信息2. 终极块:存储文档系统信息3. 索引节点(i节点):存储文档系统中的单个文档信息4. 存储块/数据块:存储文档数据下面来周详介绍一下这几种类型的块。
引导块:引导块存储系统启动时所需的信息。
引导块总是位于硬盘的第一个柱面组,占用分区的前8KB。
终极块:终极块存储文档系统信息,他包含了下列信息:1. 文档系统中总块数(文档系统大小)2. 文档系统中数据块的数目3. 索引节点的数目4. 柱面组的数目5. 块的大小6. 磁盘碎片的大小7. 空闲块的个数8. 空闲的索引节点的个数终极块对文档系统及其重要,所以Solairs系统采用多个备份来确保他的安全。
偶尔,当没有正常关闭系统或硬盘出现故障的时候,会造成默认终极块不能正确读取或是和其备份的终极块不一致。
这时,就需要进行修复工作。
通常在重新启动系统的时候,系统会调用fsck 命令来自动完成。
当fsck发现默认的终极块已损坏而且无法自动修复的时候,会提示用户手动进行修复。
手动进行修复的时候,能够根据以下几个步骤进行:1. 以单用户的身份进入系统,例如在PROM的模式下(即ok状态下)用命令boot -s 可进入单用户模式,或在系统中sync;sync;sync;init 0也可进入单用户模式(至于什么是单用户模式,以后会周详介绍)2. 假如损坏的文档已安装到文档树中,能够进入另一个目录,然后将损坏的文档系统卸载,例如:#cd /#umount /var3. 使用newfs -N命令显示终极块的值,此命令会列出备用的终极块在文档系统中的位置:# newfs -N /dev/dsk/c0t0d0s1/dev/rdsk/c0t0d0s1: 961248 sectors in 204 cylinders of 19 tracks, 248 sectors469.4MB in 13 cyl groups (16 c/g, 36.81MB/g, 17664 i/g)super-block backups (for fsck -F ufs -o b=#) at:32, 75680, 151328, 226976, 302624, 378272, 453920, 529568, 605216, 680864,756512, 832160, 907808,4. 从newfs -N命令列出的备用终极块中选择一个作为fsck命令的一个选项进行修复:#fsck -F ufs -o b=453920 /dev/rdsk/c0t0d0s1索引节点索引节点包含了一个文档除去文档名以外的任何信息。