悖论的意思是什么
- 格式:doc
- 大小:14.00 KB
- 文档页数:4
三次数学危机论文数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下面店铺给你分享三次数学危机论文,欢迎阅读。
三次数学危机论文篇一摘要:本文主要通过数学史上的三次危机的产生与消除,针对它们的本质浅谈自己的认识,实际导致这三次危机原因在与人的认识。
第一次数学危机是人们对万物皆数的误解,随着无理数的发现,把第一次数学危机度过了。
第二次数学危机是人们对无穷小的误解,微积分的出现产生了一种新的方法,即分析方法,分析方法是算和证的结合。
是通过无穷趋近而确定某一结果。
罗素悖论的发现,给数学界以极大的震动,导致了数学史上的第三次危机。
为了探求其根源和解决难题的途径,在数学界逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
关键词:危机;万物皆数;无穷小;分析方法;集合一、前言数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。
本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。
二、数学史上的第一次“危机”第一次数学危机是发生在公元前580-568年之间的古希腊。
那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物旨数”。
所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。
在那个时期。
上述思想是绝对权威、是“真理”。
罗素悖论悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。
这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。
悖论是自相矛盾的命题。
即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。
古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。
解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
罗素悖论提出,危机产生后,数学家纷纷提出自己的解决方案。
人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。
“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。
”解决这一悖论在本质上存在两种选择,the Zermelo-Fraenkel alternative 和the von Neum ann-Bernays alternative。
1908年,策梅罗(Ernst Zermelo)在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。
这一公理系统在通过Abraham Fraenkel的改进后被称为Zermelo-Fraenkel(ZF) axio ms。
在该公理系统中,由于限制公理(The Axion Schema of Comprehension或S ubset Axioms):P(x)是x的一个性质,对任意已知集合A,存在一个集合B使得对所有元素x∈B当且仅当x∈A且P(x);因此{x∣x是一个集合}并不能在该系统中写成一个集合,由于它并不是任何已知集合的子集;并且通过该公理,存在集合A={x ∣x是一个集合}在ZF系统中能被证明是矛盾的。
悖论是什么意思
悖论是一个汉语词语,拼音是bèi lùn,逻辑学和数学中的“矛盾命题”,表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
即自相矛盾的命题。
如果认为它是真的,则它是假的;如果认为它是假的,则它是真的。
如说我现在说的是一句谎话。
”如果认为它是真的,那么它就是一句谎话,是假的;如果认为它是假的,那么它就不是一句谎话,是真的。
悖论长期被认为是一种无聊的诡辩,后来在严谨的数学理论中发现了悖论,才对悖论作了科学的研究,得出了有益的结果。
“悖论”(paradox)“悖论”(paradox)一词常见诸报端,其字面意思为“荒谬的理论或自相矛盾的话”。
从逻辑上看,悖论性的语句具有这样的特征:如果假定这个语句为真,那么会推出这个语句为假;反之,如果假定这个语句为假,又会推出这个语句为真。
说它对也不是,不对也不是,真是左右为难。
语义学悖论举例悖论古已有之。
一般认为,最早的悖论是古希腊的“说谎者悖论”。
《新约全书·提多书》是这样记述的:克里特人中的一个本地先知说:“克里特人总是撒谎,乃是恶兽,又馋又懒。
”这个见证是真的。
这个克里特岛的“先知”是伊壁孟尼德(Epimenides)。
后来欧布里德(Eubulides)将他的话改进为:我正在说谎。
这句话是真的,还是假的? 如果是句真话,由这句话的内容可知:说话者正在撒谎,既然是撒谎,那么说的是假话;反之,如果这句话是假的,说假话就是说谎,这句话的内容正是“我正在说谎”,因此这句话又是真的。
后来又发现了好几种“说谎者悖论”的变种,例如所谓“说谎者循环”:A说:“下面是句谎话。
”B说:“上面是句真话。
”“说谎者悖论”和“说谎者循环”是与自然语言的表达方式密切相关的悖论,涉及真假、定义、名称、意义等语义方面的概念,这类悖论被称为“语义学悖论”。
语义学悖论的实例很多,“格列林(K.Grelling)-纳尔逊(L.Nelson)悖论”就饶有趣味,它与形容词的应用有关:将形容词分为两类,一类称为“自谓的”,即可对于它们自身成立、对自己为真的。
例如,形容词“Polysyllabic(多音节的)”本身是多音节的,“English(英文的)”本身是英文的,它们都是自谓的。
另一类称为“它谓的”,即对于它们自身不成立、对自己不真的。
例如,形容词“Monosyllabic(单音节的)”是它谓的,因为这个词不是一个单音节词;“英文的”也是它谓的,因为这个词是中文的而不是英文的。
问题来了:形容词“它谓的”是不是它谓的?得到的结果是:如果“它谓的”是它谓的,那么会推出“它谓的”不是它谓的,反之亦然。
日常生活中的悖论问题如果你搭乘时空飞机回到过去杀死了你的祖父,那你还会存在吗?蝴蝶振翅可是我们幸免于可预测的未来?明明是双胞胎,其中一个人居然比另一个大十岁?猫竟可以同时处于活着和死亡两种状态?这些不合理的问题,也许颠覆了你现有的知识和逻辑,它们正是科学上所谓的“悖论”。
“悖论”来自于希腊语,意思是“多想一想”相信只要你仔细思考,一定能破解其中的奥秘。
生日悖论问题是这样的:如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%。
这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。
对于60或者更多的人,这种概率要大于99%。
先让我们用直观的常识来分析一下。
一年三百六十五天,可以想象为房间中有三百六十五个座位,一百个学生进入房间,每人随机选择座位。
没有学生会选择已经做有人的座位,两位同学抢座位的几率更是微小。
类比发现,其应用于生日中一百位学生当中任何人与别人生日在同一天生日的机会十分微小。
只有当房间中进入三百六十六人时,我们才能确定至少有两人生日在同一天。
事实上,房间中只需57人,就能让两人一天生日的几率超过99%!这就好比57人没人拿着一张365个座位的房间的座位表,在不知道别人会选择什么座位的条件下,两人选择同一座位的几率。
不计特殊的年月,如闰二月。
先计算房间里所有人的生日都不相同的概率,那么第一个人的生日是365选365第二个人的生日是365选364第三个人的生日是365选363:第n个人的生日是365选365-(n-1)所以所有人生日都不相同的概率是:(365/365)× (364/365) ×(363/365) ×(362/365)× ... ×【(365-n+1)/365】那么,n个人中有至少两个人生日相同的概率就是:1-(365/365)× (364/365) ×(363/365) ×(362/365)× ... ×【(365-n+1)/365】所以当n=23的时候,概率为0.507当n=100的时候,概率为0.9999996对于已经确定的个人,生日不同的概率会发生变化。
22个经典的诡辩故事和悖论命题,让睿智的你瞬间更幽默、有学识诡辩,诡辩论是⼀种论证⽅法,它的根本特点是⼀种歪曲的论证,外表上好像是运⽤正确的推理⼿段,实际上违反逻辑规律,做出似是⽽⾮的推论。
悖论,是表⾯上同⼀命题或推理中隐含着两个对⽴的结论,⽽这两个结论都能⾃圆其说。
诡辩故事1.⼀个⼈有三个头某甲对某⼄说:“我能证明‘⼀个⼈有三个头’。
”⼄说:“愿闻⾼见。
”甲说:“每个⼈有⼀个头,没有⼈有两个头,⼀个⼈⽐没有⼈多⼀个头,所以,⼀个⼈有三个头。
”2.你是头上有⾓的⼈古希腊著名诡辩家欧布利德斯有⼀次对⼀个⼈说:“你没有失掉的东西,就是你有的东西,对不对?”那⼈回答:“当然对呀!”接着欧布利德斯⼜说:“你没有失掉头上的⾓,那你就是头上有⾓的⼈了。
”那个⼈被弄得莫名其妙,知道受了愚弄,⼜说不出所以然,不知怎样反驳欧布利德斯。
3.⼤胆刁民,本官何曾亏了你从前有⼀个县官要买⾦锭,店家遵命送来两只⾦锭。
县官问:“这两只⾦锭要多少钱?”店家答:“太爷要买,⼩⼈只按半价出售。
”县官收下⼀只,还给店家⼀只。
过了许多⽇⼦,他不还帐,店家便说:“请太爷赏给⼩⼈⾦锭价款。
”县官装作不解的样⼦说:“不是早已给了你吗?”店家说:“⼩⼈从没有拿到啊!”县官拍案⼤怒道:“⼤胆刁民,本官要你两只⾦锭,你说只收半价,我已把⼀只还给了你,就折合那⼀半的价钱,本官何曾亏了你!”店家听罢,苦不堪⾔。
4.天机不可泄露从前,有三个秀才进京赶考,途中遇到⼀个⼈称“活神仙”的算命先⽣,便前去求教:“我们此番能考中⼏个?”算命先⽣闭上眼睛掐算了⼀会⼉,然后竖起⼀根指头。
三个秀才不明⽩是什么意思,请求说清楚⼀点。
算命先⽣说:“天机不可泄露,以后你们⾃会明⽩。
”后来三个秀才只考中了⼀个,那⼈特来酬谢,⼀见⾯就夸奖说:“先⽣料事如神,果然名不虚传。
”还学着当初算命先⽣那样竖起⼀根指头说:“确实‘只中⼀个’。
”秀才⾛后,算命先⽣的⽼婆问他:“你怎么算得这么灵呢?”算命先⽣嘿嘿⼀笑说:“你不懂其中的奥妙,竖⼀根指头,可以作出多种解释:如果三⼈都考中,那就是‘⼀律考中’;要是都没有考中,那就是‘⼀律落榜’;要是考中⼀⼈,那就是‘⼀个考中’;要是考中两⼈,那就是‘⼀⼈落榜’。
让人惊讶的十个悖论悖论看似自相矛盾,其实往往揭示了真实。
印象里大多数悖论都只是无法成立的争论,但是对于提高批判思维能力,悖论确实具有一定价值。
读一读接下来的10条悖论,看看是不是能震惊小伙伴们。
悖论之一:价值悖论[维基]作为生活必需品的水价值很低,奢侈品如钻石的价值却很高,但为什么水的价值比钻石低?价值悖论(也被叫做钻石与水悖论)就是一类典型的自相矛盾的例子,尽管在维持生存的价值上水要高出钻石,但是市场价水却不如钻石。
我们来试着解释一下这个悖论,当消费量较小时,两者相比水的边际效用要大于钻石,因此两者都缺少的时候,水的价值就更高。
事实上,现在我们对水的消费量往往都比较大,钻石的消费量却远没有那么大。
我们可以天天喝水喝到吐,却不能天天买钻石。
所以,大量水的边际效用小于少量钻石的边际效用。
按照边际效用学派的解释,比较钻石和水的价值并不是比较两者的总价值,而是比较每份单位的价值。
尽管水的总体价值对于人类来说再大也不为过,毕竟水是生存必需品,但是,考虑到全球的水资源足够充沛,水的边际效用也就处在相对较低水平。
另一方面,急需用水的领域一旦被满足,水就被用作不那么紧急的用途,边际效用因此递减。
所以,水的总量增加,水的总体价值就减少。
钻石的情况就不同了,不管地球上到底有多少钻石,市场上的钻石始终是少量,一颗钻石的用途比一杯水大得多得多得多。
所以钻石对于人更有价值。
钻石的价格远高于水,消费者愿意,商人也乐意,一个愿打一个愿挨。
悖论之二:祖父悖论[维基]如果你乘坐时光机回到你祖父祖母相遇之前并杀死你的祖父会发生什么?关于时间旅行最有名的悖论是科幻小说作家赫内·巴赫札维勒1943年的小说《不小心的旅行者》(《Future Times Three》)中提出的。
悖论内容如下:时间旅行者回到自己的祖父祖母结婚之前的时空,时间旅行者在该时空杀死了自己的祖父,也就是说,时间旅行者自身从未降生过;但是,如果时间旅行者从未降生,也就不能穿越时空回到以前杀死自己的祖父,如此往复。
悖论及其意义----6c50d6c2-715e-11ec-bf83-7cb59b590d7d一、悖论的举例及其注释为了理解悖论的特点和意义,我们不妨从例子开始。
由于悖论的起源和发展几乎与科学史同步,所以悖论已经历了几千年漫长的发展和演变过程,因而种类繁多,无法一一列举,下面仅举几个典型例子。
1.说谎者悖论公元前六世纪,克里特人构造了这样一个语句,一个克里特人说:“所有克里特人说的每一句话都是谎话,”试问这句话是真是假?这里给出这句活是真是假的逻辑论证:假设它是真的,即所有克里特人说的每一句话都是谎话,由于这句话正是克里特人所说,故根据此话的论断可推出这句话是假的。
由此可见,由这句话的真可推出它是假的。
显然,这是一个逻辑矛盾。
产生矛盾的原因是,命题的论断中包含了前提。
反之,假设这句话是假的,也就是说并非每一个克里特人的每一句话都是假话,从而既不能导致逻辑矛盾,也推不出它的真。
这种悖论的特点是,它的真理可以推导出它的谬误,相反,它的谬误不能推导出它的真理。
通过稍微修改这个悖论,我们可以构建一个强化的说谎者悖论:“我说这句话的时候是在撒谎。
”。
这句话是对的还是错的?下面是这句话真假的逻辑证明。
假设这句话是真的,即肯定了这句话的论断,但由此话的论断推出这句话是假。
反之,假设这句话是假,则应否定这句话的论断,即肯定其反面,从而又推出这句话是真。
产生上述矛盾的原因是,由于语言结构层次的混乱,具体来说,这是一个固定词的句子,而固定词本身就是固定词,或者固定词与固定词混合在一起。
2.康托悖论这一悖论是康托在1899年发现的,现将其描述如下。
设集合m是所有集合的集合,试问集合m的基数m与集合m的幂集的基数p(m),哪个大。
=======一方面,根据康托定理,任何集合a的基数a都小于其幂集P(a),即=a另一方面,由p(m)是m的幂集,可知集p(m)中的任一个元素x,即x∈p(m)都是m的子集,所以x必是一个集合。
悖论的意思是什么
导读:我根据大家的需要整理了一份关于《悖论的意思是什么》的内容,具体内容:悖论的意思:悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐...悖论的意思:
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。
英文解释
[数] antinomy;paradox ;
[paradox] 逻辑学和数学中的矛盾命题
定义
悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
性质
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
根源
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。
解悖
悖论与解悖只要运用对称逻辑,没有一个悖论无解。
悖论是表面上同一命题或推理中隐函着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。
用对称逻辑思维层次法解"说谎者悖论" 这个悖论即"我在说谎"这句话中所蕴含的悖论。
这个悖论表面上由"我在说谎"和"我说实话"这两个对立的"命题"组成,实际上这两个"命题"并不等价——前一个命题包含思维内容,后一个"命题"只是前一个命题的语言表达式,因此后一个"命题"不是
严格意义上的命题。
长期以来人们之所以把其看成悖论,是由于把两个"命题"看成等价,即都是思维内容和语言表达式统一的命题。
只要把思维的两大层次:命题的思维内容和命题的语言表达式区别开来,"我在说谎"这个悖论即可化解。
释义
悖论指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系,比如:"没有绝对的事物",但仔细想想就知道,"没有"就是绝对的事物,认同它对的同时,恰恰也说明它是错的。
悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确。
悖论的成因极为复杂且深刻,但深入研究有助于数学、逻辑学、语义学、形而上学等等理论学科的发展,因此具有重要意义。
其中最经典的悖论包括罗素悖论、说谎者悖论、康托尔悖论等等。
悖论,亦称为吊诡、诡局或佯谬,是指一种导致矛盾的命题。
在逻辑学上指可以同时推导或证明出两个互相矛盾的命题的理论体系或命题。
哥德尔关于一阶逻辑完全性定理与不完全性定理的本身就是悖论,已经暴露出逻辑导致发生的问题。
哥德尔不完全性定理是缺乏评判,以决定的主导方面为衡量标准,或衡量标准过多而引起的悖论。
所谓的标准也是一种规定。
失效以后还可以根据实际需要再次进行新的规则规定,反正原来的规则也是规定,为什么出现发生悖论以后不可以再次重新进行规定规则,以满足实际应用的目的的需要呢?明明是自己的规定,可是自己又制造新的规定来破坏原来的规定,如果这样来干活,那么将永远有活干了,永远有干不完的活。
悖论(paradox)来自希腊语"para+dokein",意思是"多想一想"。
这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。
悖论是自相矛盾的命题。