历年自主招生试题分类汇编—集合与逻辑
- 格式:doc
- 大小:1.86 MB
- 文档页数:24
专题01集合与常用逻辑用语、等式与不等式考点01集合1.(2023年浙江)已知集合S={1,2,4},T={2,3},则∩=()u 1,2,3,4u 2u 1,3,4u2.(2022年浙江)已知全集03{}689U =,,,,,集合}9{3A =,,则U A =ð()A .{068},,B .{3,9}C .0368{}9,,,,D .∅3.(2021年浙江)集合{2,1,0,1,2}A =--,集合{2,4}B =-,则A B = ()A.{2,1,4}-- B.{2}- C.{0,1,2,4}D.{2,1,0,1,2,4}--4.(2020年浙江)集合{1,2,7,8}A =,集合{2,3,5,8}B =,则A B = ()A .{2}B .{3,5}C .{2,8}D .{1,2,3,5,7,8}5.(2019年浙江)已知集合{}1,0,1A =-,集合{}3,1,1,3B =--,则A B = ()A.{}1,1- B.{}1- C.{}1 D.∅6.(2018年浙江)已知集合A={1,2,4},B={1,3,5,7},则A ∪B=()A.{1}B.{1,3,5,7}C.{1,2,3,4,5,7}D.{1,2,4}7.(2017年浙江)已知集合{}1,0,1A =-,集合{}3,B x x x =<∈N ,则A B ⋂=()A.{}1,0,1,2- B.{}1,1,2,3- C.{}0,1,2 D.{}0,18.(2016年浙江)已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B ,则A B = A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}9.(2015年浙江)己知集合{}230M x x x =++=,则下列结论正确的是()A .集合M 中共有2个元素B .集合M 中共有2个相同元素C .集合M 中共有1个元素D .集合M 为空集10.(2014年浙江)已知集合{},,,M a b c d =,则含有元素a 的所有真子集个数有()A .5个B .6个C .7个D .8个考点02常用逻辑用语1.(2023年浙江)“=1”是“=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2022年浙江)“21x >”是“0x >”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.(2021年浙江)已知a ,b 为实数,则“330a b -=”是“a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2020年浙江)“45α=︒”是“sin 2α=”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.(2019年浙江)“2120191k -=”是“1k =”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件6.(2018年浙江)命题p :α=0是命题q :sin α=0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2017年浙江)命题p :1a =,命题q :()210a -=.p 是q 的()A.充分且必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件8.(2016年浙江)命题甲“sin 1α=”是命题乙“cos 0α=”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件9.(2015年浙江)命题甲“a b <”是命题乙“0a b -<”成立的()A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件10(2014年浙江)“0a b +=”是“0a b ⋅=”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件考点03等式与不等式1.(2023年浙江)已知实数a>b>c,则下列结论正确的是()A.a+b<2cB.a+b>2cC.a+c>2bD.a +c<2b 2.(2023年浙江)当x>-1时、函数f(x)=2+2r10r1的最大值的最小值是()A.2B.3C.6D.103.(2022年浙江)下列不等式(组)中,其解集在数轴上的表示如图的是()A .|1|3x -≤B .4020x x -<⎧⎨+≥⎩C .2280x x --<D .1311x x -≤⎧⎨+>-⎩4.(2022年浙江)已知00x y >>,,且221102x y +=,则xy 的最大值为__________.5.(2021年浙江)不等式3.5 1.5x -£的解集为()A.[2,5]B.(2,5)C.(,2][5,)-¥+¥ D.(,2)(5,)-¥+¥ 6.(2021年浙江)已知实数0m n <<,则下列不等式成立的是()A.220m n << B.22m n < C.n m m n-<- D.n m -<-7.(2021年浙江)已知3 4 (0,0)x y x y +=>>,则xy 的最大值为.8.(2020年浙江)已知a ,b ,c 是实数,下列命题正确的是()A .若a b >,则22a b>B .若22a b >,则a b >C .若22ac bc >,则a b>D .若a b >,则22ac bc>9.(2020年浙江)若正数a ,b 满足20ab =,则2a b +的最小值为_________.10.(2019年浙江)不等式240x x -≤的解集为()A.[]0,4 B.()0,4 C.[)(]4,00,4- D.(][),04,-∞+∞ 11.(2019年浙江)a 、b 、c 为实数,则下列各选项中正确的是()A.0a b a c b c-<⇔-<- B.0a b a b->⇔>-C.022a b a b ->⇔->- D.0bca b c a a>>>⇔>12.(2019年浙江)正数x 、y 满足lg lg 2x y +=,则x y +的最小值等于________.13.(2018年浙江)不等式|1-3x |≥2的解集是()A.−∞,B.−∞,⋃1,+∞C.−13,1D.1,+∞14.(2017年浙江)若x ∈R ,下列不等式一定成立的是()A.52x x < B.52x x->- C.2x > D.()2211x x x +>++15.(2017年浙江)如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.1522x -≥ D.302x x -≥+16.(2017年浙江)若1x <-,则函数()121f x x x =--+的最小值为______.17.(2016年浙江)不等式213x -<的解集是A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(2,4)-18.(2016年浙江)若1x >,则91x x +-的最小值为.19.(2015年浙江)已知()()2220x x y -++=,则3xy 的最小值为()A .2-B .2C .6-D .-20.(2015年浙江)不等式277x ->的解集为__________.(用区间表示)21.(2014年浙江)下列不等式(组)解集为{}|0x x <的是()A .3323x x -<-B .20231x x -<⎧⎨->⎩C .220x x ->D 12x -<x<<,则当且仅当x=时,x(4-x)的最大值为22.(2014年浙江)若04专题01集合与常用逻辑用语、等式与不等式考点01集合1.(2023年浙江)已知集合S={1,2,4},T={2,3},则∩=()u 1,2,3,4u 2u 1,3,4u答案B2.(2022年浙江)已知全集03{}689U =,,,,,集合}9{3A =,,则U A =ð()A .{068},,B .{3,9}C .0368{}9,,,,D .∅答案A3.(2021年浙江)集合{2,1,0,1,2}A =--,集合{2,4}B =-,则A B = ()A.{2,1,4}--B.{2}- C.{0,1,2,4}D.{2,1,0,1,2,4}--答案D4.(2020年浙江)集合{1,2,7,8}A =,集合{2,3,5,8}B =,则A B = ()答案C A .{2}B .{3,5}C .{2,8}D .{1,2,3,5,7,8}5.(2019年浙江)已知集合{}1,0,1A =-,集合{}3,1,1,3B =--,则A B = ()A.{}1,1-B.{}1-C.{}1 D.∅答案A6.(2018年浙江)已知集合A={1,2,4},B={1,3,5,7},则A ∪B=()A.{1}B.{1,3,5,7}C.{1,2,3,4,5,7}D.{1,2,4}答案C7.(2017年浙江)已知集合{}1,0,1A =-,集合{}3,B x x x =<∈N ,则A B ⋂=()A.{}1,0,1,2-B.{}1,1,2,3- C.{}0,1,2 D.{}0,1答案D8.(2016年浙江)已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B ,则A B = A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}【答案】D【解析】集合A ,B 中出现的所有元素1,2,3,4,5,6,7;所以答案选D 。
高中数学--《集合与逻辑》测试题(含答案)1.已知集合A={0,1,2},集合B={x|x﹣1≥0},则A∩B的真子集个数为()A.1 B.2 C.3 D.4【答案解析】C解:因为集合A={0,1,2},集合B={x|x﹣1≥0}={x|x≥1},所以A∩B={1,2},故A∩B的真子集个数为22﹣1=3.故选:C.2.设集合A={y|y=3x,x∈R},B={x|y=,x∈R},则A∩B=.【答案解析】解:因为集合A={y|y=3x,x∈R}={y|y>0},B={x|y=,x∈R}={x|},所以A∩B=.故答案为:.3.设z是复数,则“z2=1”是“|z|=1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件【答案解析】A解:设z=x+yi(x,y∈R),①若z2=1时,则z2=(x+yi)2=x2﹣y2+2xyi=1,∴,∴,∴|z|=1,∴充分性成立,②若z=+i,满足|z|=1,但z2==﹣+i,∴必要性不成立,∴z2=1是|z|=1的充分不必要条件,故选:A.4.已知集合A={m|m=x2﹣y2,x、y∈Z),将A中的正整数从小到大排列为:a1,a2,a3,….若an=2021,则正整数n=.【答案解析】1516解:m=x2﹣y2=(x+y)(x﹣y),当x﹣y=1时,m=2y﹣1表示奇数;当x﹣y=2时,m=4y+4表示4的倍数,所以A中的整数从小到大排列为:1,3,4,5,7,8,9,11,12,13……即数列{an}满足a3k=4k(k∈N+),又2021=505×4+1,所以n=505×3+1=1516.故答案为:1516.5.已知函数f(x)=2sin(x+φ),则“”是“f(x)为偶函数”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件【答案解析】A解:①当φ=时,f(x)=2sin(x+)=2cosx,∵f(﹣x)=2cos(﹣x)=2cosx=f(x),∴f(x)为偶函数,②当f(x)为偶函数时,φ=+kπ,k∈Z,综上所述,φ=是f(x)为偶函数的充分不必要条件.故选:A.6.“0<a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】A解:当a+b>0,ab<0时,显然ab≤4成立,反之不成立,当a>0,b>0时,则4≥a+b≥2,故≤2,ab≤4,充分性成立,令a=4,b=,由ab≤4推不出a+b≤4,故“0<a+b≤4”是“ab≤4”的充分不必要条件,故选:A.7.已知集合A={y|y<1},B={x|3x<1},则()A.A∪B=R B.A∩B={x|x<0} C.A∪B={x|x>1} D.A∩B=∅【答案解析】B解:∵A={y|y<1}={x|x<1},B={x|3x<1}={x|x<0},∴A∪B={x|x<1}∪{x|x<0}={x|x<1},A∩B={x|x<1}∩{x|x<0}={x|x<0}.故选:B.8.给定正整数n(n≥3),集合Un={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①Un=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3整除的数都在集合C 中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为SA,SB,SC,有SA=SB=SC;则称集合Un为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3的倍数,则Un不是可分集合;(Ⅲ)若Un为可分集合且n为奇数,求n的最小值.【答案解析】【分析】(I)取A={5,7},B={4,8},C={1,2,3,6},即可满足条件.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,可得SC≥3+6+…+3k,而这n个数的和为,即可得出矛盾.(Ⅲ)n=35.由于所有元素和为,又SB中元素是偶数,所以=3SB=6m (m为正整数),可得以n(n+1)=12m,由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.可得:k(12k﹣1)=m.定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,可得k≥3.即可得出.解:(I)依照题意,可以取A={5,7},B={4,8},C={1,2,3,6}.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,故SC≥3+6+…+3k=,而这n个数的和为,故SC==,矛盾,所以n是3的倍数时,Un一定不是可分集合.(Ⅲ)n=35.因为所有元素和为,又SB中元素是偶数,所以=3SB=6m(m为正整数),所以n(n+1)=12m,因为n,n+1为连续整数,故这两个数一个为奇数,另一个为偶数.由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,所以一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.…定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,根据集合A,B,C的性质知道,集合A⊆D,B⊆E,此时集合D,E中的元素之和都是24k2,而,此时Un中所有3的倍数的和为,24k2﹣(24k2﹣2k)=2k,(24k2﹣2k)﹣(24k2﹣6k)=4k显然必须从集合D,E中各取出一些元素,这些元素的和都是2k,所以从集合D={1,5,7,11,…}中必须取偶数个元素放到集合C中,所以2k≥6,所以k≥3,此时n≥35而令集合A={7,11,13,17,19,23,25,29,31,35},集合B={8,10,14,16,20,22,26,28,32,34},集合C={3,6,9,12,15,18,21,24,27,30,33,1,5,2,4},检验可知,此时U35是可分集合,所以n的最小值为35.…9.已知数列{an}的通项公式为,则“a2>a1”是“数列{an}单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】C【分析】数列{an}单调递增⇔an+1>an,可得a的范围.由“a2>a1”可得:2+>1+a,可得a的范围.即可判断出关系.解:数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n2+n.∴a<2.由“a2>a1”可得:2+>1+a,可得:a<2.∴“a2>a1”是“数列{an}单调递增”的充要条件,故选:C.10.已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的个数.①若A={2,4,8,16},则card(TA)=;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=.【答案解析】6;2n﹣3解:①若A={2,4,8,16},则TA={6,10,18,12,20,24},∴card(TA)=6;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,取特殊的等差数列进行计算,取A={1,2,3,…,n},则TA={3,4,5,…,2n﹣1},由于(2n﹣1)﹣3+1=2n﹣3,∴TA中共2n﹣3个元素,利用类比推理可得若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=2n﹣3.故答案为:6;2n﹣3.。
专题01集合与常用逻辑用语1.【2021·浙江高考真题】设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【解析】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.【2021·全国高考真题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .3.【2021·全国高考真题(理)】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.4.【2021·全国高考真题(理)】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.5.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.6.【2021·全国高考真题(理)】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .7.【2021·全国高考真题(理)】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .8.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.9.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B = ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.10.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为A .2B .3C .4D .6【答案】C 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.11.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩ðA .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知{}2,1,1U B =--ð,则(){}U 1,1A B =- ð.故选C .【点睛】本题主要考查补集运算,交集运算,属于基础题.12.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】【分析】根据交集定义直接得结果.【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D .【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.13.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选A .【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.14.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U .故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.15.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则P I Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<【答案】B 【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q ==I I .故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.16.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选B.【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.17.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得π(1)k k αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)k k αβ=+-.所以,“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的充要条件.故选C .【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.18.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<,则{|22}M N x x =-<< .故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.19.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞ .故选A .【名师点睛】本题考点为集合的运算,为基础题目.20.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =- .故选A .【名师点睛】本题考查了集合交集的求法,是基础题.21.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B = A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C = ,所以(){1,2,3,4}A C B = .故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.22.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =- ð.故选A.【名师点睛】注意理解补集、交集的运算.23.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.24.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<,易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围.25.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.26.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.27.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2A B =I .故答案为{}0,2.【点睛】本题考查了交集及其运算,是基础题型.28.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.29.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B = .【名师点睛】本题主要考查交集的运算,属于基础题.。
华约自主招生试题一、数学部分1. 有一个集合A={1,2,3,4,5},请列举出A中的所有子集。
2. 设集合A={a, b, c},集合B={1, 2, 3},则集合A与集合B的笛卡尔积为什么?3. 已知函数f(x) = 3x + 4,求f(-2)的值。
4. 已知集合A={1, 2, 3},集合B={2, 3, 4},则集合A与集合B的交集为什么?5. 求方程3x^2 - 2x + 1 = 0的解。
6. 在一个等边三角形ABC中,BC=x,求三角形ABC的面积。
7. 已知函数f(x) = x^3 + 2x^2 - 3x,求f'(x)。
二、英语部分1. 根据所给的短文,回答以下问题:The Great Wall is one of the most famous sights in the world. It is more than 20,000 kilometers long and is known as one of the Seven Wonders of the World. The Great Wall was built over 2,000 years ago to protect the Chinese Empire from invasions. It attracts millions of tourists from all over the world every year.a) How long is the Great Wall?b) Why was the Great Wall built?c) What does the Great Wall attract every year?2. 根据所给的对话,填写空缺处的单词:A: Can you help me with my math homework?B: Sure, what's the problem?A: I can't solve this equation. _______ you show me how?B: Of course, let me take a look. ________ the equation for me.A: It's 3x^2 + 4x - 5 = 0.B: Alright, first we need to find the _______ of the equation. Then we can use the quadratic formula.A: How do we find the _______?B: We look at the coefficient of the x^2 term, which is 3 in this case. Now let's plug the values into the quadratic formula...三、逻辑思维部分1. 莉莉、爱丽丝、汤姆和鲍勃是四个朋友。
考纲要求:2.集合,简易逻辑 考试内容:集合、子集、真子集、补集、交集、并集内容要点:1、集合集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;如果B A ⊆,同时A B ⊆,那么A = B.如果C A C B B A ⊆⊆⊆,那么,.2、①n 个元素的子集有2n 个. ②n 个元素的真子集有2n-1个.③n 个元素的非空真子集有2n -2个.3: ⑴ ①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题.⑵小范围推出大范围;大范围推不出小范围.例:若255 x x x 或,⇒.1. 集合运算:交、并、补. {|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C习题汇总:06年(共5分):(1)设集合M={χ||χ|≤2},N= {1,2,3,4,5}则集合N ⋂M =A 、{1,2} (B 、{-2,-1,1,2}(C 、{χ| 0≤χ≤2}(D 、{χ|1≤χ≤2 } 【 】07年(共10分):08年(共5分):09年(共5分):(1)集合I={0,1,2,3,4,5},M={0,2,4},N={1,3,5},则⋂M (C I N )=A 、空集B 、IC 、MD 、N10年(共5分)(1)已知集合M={x |-23<X <23},N={x |x=2n,n ∈Z },则M∩N= (A )φ (B ){0} (C ){-1,1} (D ){-1,0,1}【 】11年(共5分)(1)设集合M = {x|0<x<1},集合N={x| -1<x<1},则【 】(A )M ∩N=M (B )M ∪N=N(C )M ∩N=N (D )M ∩N= M ∩N2012年体育单招数学模拟试题之集合、简易逻辑1.已知集合A ={x|x 2―1>0},B ={x|log 2x <0},则A ∩B 等于 ( )A .ØB .{x|x <-1}C .{x|x >1}D .{x|x <-1或x >1}1.设集合M = {x|0<x<1},集合N={x|-1<x<1},则下列正确的是( )(A )M ∩N=N (B )M ∪N=M (C )M ∩N=M (D )M ∪N= M ∩N2.“a>0,b>0”是“ab>0”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )= ( )A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}1. 设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________. 1“p 或q ”为真命题是“p 且q ”为真命题的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10、已知命题“存在x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是____。
1第一单元 <<集合与简易逻辑>>一.选择题:(60分)1.如果C 、R 和I 分别表示复数集、实数集和纯虚数集,其中C是全集。
则有( ) A. C=R ∪I B. R ∩I={0} C. R ∩I=φ D. CcR=C ∩I 2.集合M={}220,x x x a x R +-=∈,且M ∅Ø.则实数a 的取值范围是( )A. a ≤-1B. a ≤1C. a ≥-1D.a ≥13.满足{a ,b }UM={a ,b ,c ,d }的所有集合M 的个数是 A. 7 B. 6 C. 5 D. 44.a ∈R,a <3成立的一个必要不充分条件是( ) A. a<3 B. a <2 C. 2a <9 D. 0<a<2 5.若命题P :x ∈A I B ,则τ P 是( ) A. x ∉A U B B. x ∉A 或x ∉BC. x ∉A 且x ∉BD. x ∈A U B6.已知集合M={2a ,a }.P={-a,2a-1};若card(M U P)=3,则M I P= ( )A.{-1}B.{1}C.{0}D.{3}7.设集合P={3,4,5}.Q={4,5,6,7}.定P*Q=(){},,a b a p b Q ∈∈,则P*Q 中元素的个数是 ( )A. 3B. 7C. 10D. 12 8.不等式20052006ab +=()()22111a x a x ----<0的解集为全体实数,则实数a 的取值范围是 ( ) A. 35-<a<1 B. 35-<a ≤1 C. 35-≤a ≤1 D.a<-1或a>1 9.用反证法证明:“若m ∈Z 且m 为奇数,则()1122mm --±均为奇数”,其假设正确的是 ( )A. 都是偶数B. 都不是奇数C. 不都是奇数D.都不是偶数 10.命题P:若a.b ∈R ,则a b +>1是a b +>1的充分而不必要条件:命题q:函数y =的定义域是(][),13,-∞-+∞U .则 ( )A.“ p 或q ”为假B. “p 且q ”为真C. p 真q假 D. p 假q 真 11.若集合1A ,2A ,满足1A U 2A =A ,则称(1A ,2A ) 为集合A 的一种分析,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A 1A ,)为集合A 的同一种分析,则集合的A={}123,,a a a 不同分析种数是 ( )A. 27B. 26C. 9D. 812.50名学生参加跳远和铅球两项测验,跳远和铅球两项及格的分别是40人和31人,两项均不及格的有4人,两项测验部分都及格的人数是 ( )A. 35B. 25C. 28D. 15 二.填空题:(20分) 13.设A={1,2},B={x |x ⊆A }若用列举法表示,则集合B 是14.若不等式210x ax -+≤和21ax x +->0均不成立,则a 的取值范围是15.含有三个实数的集合可表示为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20052006a b +=16.以下命题:①“菱形的两条对角线互相平分”的逆命题;②{}210,x xx R +=∈=∅ 或{0}⊇∅;③对于命题p 且q,若p 假q 真,则p 且q 为假;④有两条相等且有一个角是60o“是”一个三角形为等边三角形的充要条件。
完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。
A。
A⊆BB。
A∩B={2}C。
A∪B={1,2,3,4,5}D。
A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。
显然,A不是B的子集,排除A选项。
XXX表示A和B的交集,即A和B中都出现的元素构成的集合。
根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。
A∪B表示A和B的并集,即A和B中所有元素构成的集合。
根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。
A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。
根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。
2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。
A。
M=NB。
MNC。
NMD。
M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。
因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。
3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。
A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
专题01集合与常用逻辑用语考点一:集合的概念1.(2023·江苏)对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A .1B .2C .3D .4【答案】C【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C考点二:集合间的基本关系1.(2023春·福建)已知全集为U ,M N M ⋂=,则其图象为()A .B .C .D .【答案】A【详解】全集为U ,M N M ⋂=,则有M N ⊆,选项BCD 不符合题意,选项A 符合题意.故选:A考点三:集合的基本运算1.(2023·北京)已知全集{}1,2,3,4U =,集合{}1,2A =,则U A =ð()A .{}1,3B .{}2,3C .{}1,4D .{}3,4【答案】D【详解】因为{1,2,3,4},{1,2}U A ==,所以{}3,4U A =ð;故选:D.2.(2023·河北)设集合{}2,3,4M =,{}3,4,5N =,则M N ⋂=()A .{}2B .{}5C .{}3,4D .{}2,3,4,5【答案】C【详解】根据列举法表示的集合可知,由{}2,3,4M =,{}3,4,5N =,利用交集运算可得{}3,4M N ⋂=.故选:C3.(2023·山西)已知集合{}1216=≤<∣x A x,{53}=-<≤∣B x x ,则A B = ()A .{54}xx -<<∣B .{53}-<≤∣x x C .{03}xx ≤≤∣D .{34}xx ≤<∣【答案】C【详解】解:因为1216x ≤<,即04222x ≤<,所以04x ≤<,所以{}{}|1216|04xA x x x =≤<=≤<,因为{|53}B x x =-<≤所以{}|03A B x x =≤≤ 故选:C4.(2023·江苏)已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A .{}0,2B .{}2,2,4-C .{}2,0,2-D .{}2,0,2,4-【答案】A【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A5.(2023春·浙江)已知全集{2,4,6,8,10}U =,集合{2,4}A =,{1,6,8}B =,则()U B A ⋂=ð()A .{2,4}B .{6,8,10}C .{6,8}D .{2,4,6,8,10}【答案】C【详解】因为全集{2,4,6,8,10}U =,集合{2,4}A =,所以{}6,8,10U A =ð,因为{1,6,8}B =,所以(){}6,8U A B = ð,故选:C6.(2023春·湖南)已知集合{}0,1A =,{}1,2,3B =,则A B = ()A .{}1B .{}1,2C .{}0,1D .{}1,2,3【答案】A【详解】由题意得A B = {}1,故选:A7.(2023·广东)设集合{}012M =,,,{}1,0,1N =-,则M N ⋃=()A .{}0,1B .{}0,1,2C .{}1,0,1,2-D .{}1,0,1-【答案】C【详解】因为集合{}012M =,,,{}1,0,1N =-,因此,{}1,0,1,2M N ⋃=-.故选:C.8.(2023春·新疆)已知集合{}{}1,0,1,0,1,2A B =-=,则A B = ()A .{}1,0,1,2-B .{}0,1C .{}1,0,1-D .{}1,1,2-【答案】B【详解】因为集合{}{}1,0,1,0,1,2A B =-=,所以A B = {}0,1.故选:B9.(2022春·天津)已知集合{}1,3A =,{}2,3,4B =,则A B ⋂等于()A .{}1B .{}3C .{}1,3D .{}1,2,3,4【答案】B【详解】集合{}1,3A =,{}2,3,4B =,则A B ⋂等于{}3.故选:B10.(2022·山西)已知集合{1U =,2,3,4},{1A =,3},{1B =,4},则()U A B ⋂=ð()A .{2,3}B .{3}C .{1}D .{1,2,3,4}【答案】B【详解】集合{1U =,2,3,4},{1A =,3},{1B =,4},则{}2,3U C B =,{}3U A C B ⋂=故选:B11.(2022春·辽宁)已知集合{}2,4A =,{}2,3B =,则A B ⋃=().A .{2}B .{2,3}C .{2,4}D .{2,3,4}【答案】D【详解】解:因为{}2,4A =,{}2,3B =,所以{}2,3,4A B = 故选:D12.(2022春·浙江)已知集合{}0,1,2A =,{}1,2,3,4B =,则A B = ()A .∅B .{}1C .{}2D .{}1,2【答案】D【详解】∵{}0,1,2A =,{}1,2,3,4B =,∴{}1,2A B = .故选:D.13.(2022秋·浙江)已知集合P ={0,1,2},Q ={1,2,3},则P ∩Q =()A .{0}B .{0,3}C .{1,2}D .{0,1,2,3}【答案】C【详解】 P ={0,1,2},Q ={1,2,3}∴P ∩Q ={1,2};故选:C.14.(2022春·浙江)已知集合{}{}0,1,2,3,4,1,1,2,3,5A B ==-,则A B = ()A .{}1,5-B .{}1,3C .{}1,2,3D .{}1,0,1,2,3,4,5-【答案】C【详解】由题意中的条件有{1,2,3}A B ⋂=.故选:C15.(2022秋·福建)已知集合{}{}2,0,1,0,1,2A B =-=,则A B = ()A .{}0,1B .{}2,0,1-C .{}0,1,2D .{}2,0,1,2-【答案】A【详解】解:因为集合{}{}2,0,1,0,1,2A B =-=,所以{}0,1A B = ,故选:A.16.(2022秋·广东)已知集合{}0,2,3M =,{}1,3N =,则M N ⋃=()A .{}3B .{}0,1,2C .{}0,1,2,3D .{}0,2,3,1,3【答案】C【详解】依题意M N ⋃={}0,1,2,3.故选:C17.(2022春·贵州)已知集合{}{}1,2,1,3A B ==,则A B = ()A .{}1B .{}2C .{}3D .∅【答案】A【详解】由{}{}1,2,1,3A B ==得,A B = {}1.故选:A.18.(2021·北京)已知集合{}1,4,5A =,{}1,2,3B =,则A B ⋃=()A .{}1,2,3B .{}1,2,3,4C .{}2,3,4,5D .{}1,2,3,4,5【答案】D【详解】{}{}{}1,4,51,2,31,2,3,4,5A B ⋃⋃==.故选:D.19.(2021春·天津)已知集合{}1,2A =,{}1,2,3B =,则A B ⋃等于()A .∅B .{}3C .{}1,2D .{}1,2,3【答案】D【详解】因为{}1,2A =,{}1,2,3B =,则{}1,2,3A B = .故选:D.20.(2021春·河北)已知集合{}1,0,1M =-,{}0,1N =,则M N ⋂=()A .{}0,1B .{}0C .{}1D .{}1,0,1-【答案】A【详解】 集合{}1,0,1M =-,{}0,1N =,{}0,1M N ∴= ,故选:A .21.(2021秋·吉林)设集合{}1,2A =,{}2,3,4B =,则A B = ()A .{}1,2,3,4B .{}1,2C .{}2,3,4D .{}2【答案】D【详解】因为{}1,2A =,{}2,3,4B =,所以{2}A B = ,故选:D22.(2021·吉林)已知集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = ()A .{}1B .{}2C .{}1,2D .{}2,0,1,2-【答案】C【详解】集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = {}1,2.故选:C23.(2021春·浙江)设集合{}1,2,3A =,{}2,3,4B =,则A B = ()A .{}1,3B .{}2,3C .{}1,4D .{}2,4【答案】B【详解】由题意可得{}2,3A B ⋂=.故选:B.24.(2021秋·浙江)已知集合{4,5,6},{3,5,7}A B ==,则A B = ()A .∅B .{5}C .{4,6}D .{3,4,5,6,7}【答案】B【详解】因为{4,5,6},{3,5,7}A B ==,所以{}5A B = .故选:B.25.(2021春·福建)已知集合{}1,3A =-,{}1,0B =-,则A B = ()A .{}1,0,3-B .{}1,0-C .{}1-D .∅【答案】C【详解】由已知{1}A B ⋂=-.故选:C .26.(2021秋·福建)已知集合{}0,1A =,{}1,0B =-,则A B ⋃=()A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-【答案】D【详解】因为{}0,1A =,{}1,0B =-,所以A B ⋃={}1,0,1-,故选:D27.(2021秋·河南)已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,则U A =ð()A .{1,3,5}B .{2,4,6}C .{3,4,5}D .{1,3,4,5}【答案】B【详解】由题意U A =ð{2,4,6}.故选:B .28.(2021·湖北)设集合{}1,2,3,4,5A =,{}2,4,6,8B =,则A B = ()A .∅B .{}2C .{}2,4D .{}2,4,8【答案】C【详解】因为集合{}1,2,3,4,5A =,{}2,4,6,8B =,所以A B = {}2,4,故选:C29.(2021秋·广东)设全集U ={}12345,,,,,A ={}12,,则U A =ð()A .{} 12345,,,,B .{} 2345,,,C .{} 345,,D .{} 34,【答案】C【详解】解:因为{}12345U =,,,,,{}12A =,所以{}U 3,4,5A =ð故选:C30.(2021春·贵州)已知集合{}{}1101A B =-=,,,,则A B = ()A .{0}B .{1}C .{2}D .∅【答案】B【详解】集合{}{}1101A B =-=,,,,则{1}A B ⋂=,故选:B考点四:充分条件与必要条件1.(2023·北京)已知a ,b ∈R ,则“0a b ==”是“0a b +=”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】如果0a b ==,则有0a b +=,是充分条件;如果0a b +=,则有a b =-,但不能推出0a b ==,比如1,1,0a b a b ==-+=,不是必要条件;所以“0a b ==”是“0a b +=”的充分不必要条件;故选:A.2.(2023·河北)设,a b R ∈,则“a b >”是“33a b >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详解】∵函数()3f x x =在(),-∞+∞上单调递增,∴当a b >时,()()f a f b >,即33a b >,反之亦成立,∴“a b >”是“33a b >”的充分必要条件,故选C.3.(2023春·浙江)设x ∈R ,则“|1|1x -<”是“22x x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由|1|1x -<得02x <<,由22x x <得02x <<,所以“|1|1x -<”是“22x x <”的充要条件,故选:C4.(2023春·福建)“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由1x =可得1x =±,由21x =可得1x =±,所以“1x =”是“21x =”的充要条件.故选:C.5.(2023春·湖南)设p :四棱柱是正方体,q :四棱柱是长方体,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】正方体是特殊的长方体,而长方体不一定是正方体,所以p 是q 的充分不必要条件.故选:A.6.(2022·山西)如果不等式1-<x a 成立的充分不必要条件是1322x <<;则实数a 的取值范围是()A .13,22⎛⎫ ⎪⎝⎭B .13,22⎡⎤⎢⎥⎣⎦C .13,,22∞∞⎛⎫⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭D .13,,22∞∞⎛⎤⎡⎫-⋃+ ⎪⎥⎢⎝⎦⎣⎭【答案】B【详解】1-<x a ,解得:11a x a -<<+,所以11a x a -<<+成立的充分不必要条件是1322x <<,故13<<22x x ⎧⎫⎨⎬⎩⎭是{}1<<1+x a x a -的真子集,所以1123+1>2a a -≤⎧⎪⎪⎨⎪⎪⎩或11<23+12a a -≥⎧⎪⎪⎨⎪⎪⎩,解得:1322a ≤≤,故实数a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.故选:B7.(2022春·浙江)设a ,b 是实数,则“a b >”是“a b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【详解】对于a b >,比如1,3a b ==-,显然13a b =<=,不能推出a b >;反之,如果a b >,则必有0,a a a b b >∴=>≥;所以“a b >”是“a b >”的必要不充分条件;故选:B.8.(2021·北京)设a R ∈,则“1a =”是“21a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】当1a =时,21a =,充分性成立;反过来,当21a =时,则1a =±,不一定有1a =,故必要性不成立,所以“1a =”是“21a =”的充分而不必要条件.故选:A9.(2021秋·吉林)设x ,R y ∈,则“1x >”是“0x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】若1x >可以得出0x >,但0x >得不出1x >,所以“1x >”是“0x >”的充分不必要条件,故选:A10.(2021春·浙江)“4x =”是“22x x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】解:若4x =,则422416==,即22x x =成立,故充分性成立;显然2x =时22224==,即22x x =,故由22x x =推不出4x =,故必要性不成立;故“4x =”是“22x x =”的充分不必要条件;故选:A11.(2021秋·浙江)若,a b ∈R ,则“14ab ≥”是“2212a b +≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】解:当14ab ≥,由于,a b ∈R ,22112242a b ab +≥≥⨯=,故充分性成立;当,a b ∈R ,不妨设1,1a b =-=,2212a b +≥成立,114ab =-≥不成立,故必要性不成立.故“14ab ≥”是“2212a b +≥”的充分不必要条件.故选:A.12.(2021湖北)已知:02p x <<,:13q x -<<,则p 是q 的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分不必要条件【答案】A【详解】由:02p x <<,可得出:13q x -<<,由:13q x -<<,得不出:02p x <<,所以p 是q 的充分而不必要条件,故选:A.13.(2021秋·广西)“0x =”是“20x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】若0x =,则0x =,若20x =,则0x =,则“0x =”是“20x =”的充要条件,故选:C.考点五:全称量词与存在量词1.(2023·河北)设命题p :R α∀∈,sin 1α≥-,则p 的否定是()A .R α∃∈,sin 1α≤-B .R α∃∈,sin 1α<-C .R α∀∈,sin 1α≤-D .R α∀∈,sin 1α<-【答案】B【详解】由题意可知,含有一个量词命题的否定将∀改为∃,并否定结论即可,所以命题p :R α∀∈,sin 1α≥-的否定为“R α∃∈,sin 1α<-”.故选:B2.(2023·江苏)命题“x ∀∈R ,210x x ++>”的否定为()A .x ∀∈R ,210x x ++≤B .x ∃∈R ,210x x ++≤C .x ∃∈R ,210x x ++<D .x ∃∈R ,210x x ++>【答案】B【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤【答案】B【详解】由题意得“x ∃∈R ,210x x ++<”的否定是x ∀∈R ,210x x ++≥,故选:B4.(2023春·新疆)命题“2 0,250x x x ∃>++>”的否定是()A .2 0,250x x x ∀>++≤B .2 0,250x x x ∀≤++>C .2 0,250x x x ∃>++≤D .2 0,250x x x ∃≤++>【答案】A【详解】因为命题“2 0,250x x x ∃>++>”是特称量词命题,故其否定是“2 0,250x x x ∀>++≤”.故选:A5.(2022春·天津)命题“x ∃∈R ,21x x +≥”的否定是()A .x ∃∈R ,21x x +<B .x ∃∈R ,21x x +≤C .x ∀∈R ,21x x +<D .x ∀∈R ,21x x +≤【答案】C【详解】命题“x ∃∈R ,21x x +≥”的否定为“x ∀∈R ,21x x +<”.故选:C6.(2022春·辽宁)如果命题p :()3,x ∀∈+∞,29x >,则p ⌝为().A .p ⌝:()3,x ∃∈+∞,29x >B .p ⌝:()3,x ∀∈+∞,29x <C .p ⌝:()3,x ∃∈+∞,29x ≤D .p ⌝:()3,x ∀∈+∞,29x ≤【答案】C【详解】解:命题p :()3,x ∀∈+∞,29x >,是全称命题,所以p ⌝为:p ⌝:()3,x ∃∈+∞,29x ≤故选:C7.(2022春·浙江)命题“2,210x R x x ∀∈-+>”的否定为()A .2000,210x R x x ∃∈-+>B .2,210x R x x ∀∈-+≥C .2,210x R x x ∀∈-+≤D .2000,210x R x x ∃∈-+≤【答案】D【详解】命题“2,210x R x x ∀∈-+>”的否定为“2000,210x R x x ∃∈-+≤”【答案】C【详解】对于全称量词命题“x M ∀∈,()p x ”,其否定为存在量词命题“x M ∃∈,()p x ⌝”,因此,命题“x ∀∈R ,2210x x -+≥”的否定为“x ∃∈R ,2210x x -+<”,故选:C.。
一、选择题1.(2009年 广 东 卷 文 )已 知 全 集 UR, 则 正 确 表 示 集 合 M{ 1,0,1} 和Nx | x 2x 0关系的韦恩(Venn )图是()答案B分析由 Nx | x 2x 0,得 N { 1,0} ,则 NM , 选B.2. ( 2009 全国卷Ⅰ理)设会合 A={ 4,5, 7, 9}, B={ 3, 4, 7, 8, 9},全集 U=A U B ,则会合 u ( AI B) 中的元素共有()A. 3 个B. 4个C. 5个 D. 6 个解: A U B {3,4,5,7,8,9} , A I B{4,7,9} C U ( A I B){3,5,8} 应选 A 。
也可用摩根律: C U ( A I B) (C U A) U (C U B)答案 A3. ( 2009 浙江理)设 U R , A { x | x 0} , B { x | x 1} ,则 A I e U B ( )A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B分析对于 C Bx x 1 ,所以 A Ie U B { x | 0 x 1}U4. ( 2009 浙江理)设 U R , A { x | x 0} , B { x | x 1} ,则 A I e U B ( )A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B分析对于C U Bx x 1 ,所以 A I e U B { x | 0 x 1} .5. ( 2009 浙江文)设 UR , A{ x | x 0} , B { x | x1} ,则 A I e U B ()A . { x | 0 x 1}B . { x | 0 x 1}C . { x | x 0}D . { x | x 1}答案 B【命题企图】本小题主要观察了会合中的补集、交集的知识,在会合的运算观察对于会合理解和掌握的程度,自然也很好地观察了不等式的基天性质.分析 对于 C Bx x 1 ,所以 A I e U B { x | 0 x 1} .U6.( 2009 北京文)设会合 A{ x |1 x 2}, B { x x2 1} ,则 A U B()21 A . { x 1 x 2}B.{ x |x 1}2C . { x | x 2} D. { x |1 x 2}答案 A分析本题主要观察会合的基本运算以及简单的不等式的解法 . 属于基础知识、基本运算的观察∵ A{ x | 1 x2}, B { x x 21} x | 1 x1 ,2∴ A U B { x1 x2} ,应选 A.7.(2009 山东卷理 ) 会合 A 0,2, a , B1,a 2 , 若 A U B0,1,2,4,16 , 则 a 的值为()答案 D分析 ∵ A0,2, a , B1,a 2 , A U B0,1,2,4,16 ∴ a 216∴ a 4 , 应选 D.a 4【命题立意】 : 本题观察了会合的并集运算 , 并用察看法获得相对应的元素 , 进而求得答案 ,本题属于简单题 .8. (2009 山东卷文 ) 会合 A 0,2, a , B 1,a 2 , 若 A U B 0,1,2,4,16 , 则 a 的值为()答案 D分析 ∵ A0,2, a , B1,a 2 , A U B0,1,2,4,16 ∴ a 2 16∴ a 4 , 应选 D.a 4【命题立意】 : 本题观察了会合的并集运算 , 并用察看法获得相对应的元素 , 进而求得答案 ,本题属于简单题 .9. ( 2009 全国卷Ⅱ文)已知全集 U ={1 , 2, 3,4, 5, 6,7, 8} , M ={1 , 3, 5,7} , N ={5 ,6, 7} ,则 C ( M U N )=( )uA.{5 , 7}B.{2 ,4}C. {2.4.8}D. {1, 3, 5, 6, 7}答案 C分析 本题观察会合运算能力。
文科数学2010-2019高考真题分类训练专题一,,集合与常用逻辑用语第一讲,,集合—后附解析答案专题一集合与常用逻辑用语第一讲集合 2019年 1.(2019全国Ⅰ文2)已知集合,则 A. B. C. D. 2.(2019全国Ⅱ文1)已知集合,,则A∩B= A.(–1,+∞) B.(–∞,2) C.(–1,2) D. 3.(2019全国Ⅲ文1)已知集合,则 A. B. C. D. 4.(2019北京文1)已知集合A={x|–1<x<2},B={x|x>1},则A∪B= (A)(–1,1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)5.(2019天津文1)设集合,,,则(A){2} (B){2,3} (C){-1,2,3} (D){1,2,3,4}6.(2019江苏1)已知集合,,则 .7.(2019浙江1) 已知全集,集合,,则= A. B. C. D. 2010-2018年一、选择题 1.(2018全国卷Ⅰ)已知集合,,则A. B. C. D. 2.(2018浙江)已知全集,,则 A. B.{1,3} C.{2,4,5} D.{1,2,3,4,5} 3.(2018全国卷Ⅱ)已知集合,,则 A. B. C. D. 4.(2018北京)已知集合,,则 A.{0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5.(2018全国卷Ⅲ)已知集合,,则 A. B. C. D. 6.(2018天津)设集合,,,则A. B. C. D. 7.(2017新课标Ⅰ)已知集合,,则 A. B. C. D. 8.(2017新课标Ⅱ)设集合,则= A. B. C. D. 9.(2017新课标Ⅲ)已知集合,,则中元素的个数为 A.1 B.2 C.3 D.4 10.(2017天津)设集合,,,则A. B. C. D. 11.(2017山东)设集合则 A. B. C. D. 12.(2017北京)已知,集合,则= A. B. C. D. 13.(2017浙江)已知集合,,那么=A. B. C. D. 14.(2016全国I卷)设集合,,则 A.{1,3} B.{3,5} C.{5,7} D.{1,7} 15.(2016全国Ⅱ卷)已知集合,则 A. B. C. D. 16.(2016全国Ⅲ)设集合,则= A. B. C. D. 17.(2015新课标2)已知集合,,则=A. B. C. D. 18.(2015新课标1)已知集合,则集合中的元素个数为 A.5 B.4 C.3 D.2 19.(2015北京)若集合,,则= A. B. C. D. 20.(2015天津)已知全集,集合,集合,则集合 A. B. C. D. 21.(2015陕西)设集合,,则= A.[0,1] B.(0,1] C.[0,1) D.(-∞,1] 22.(2015山东)已知集合,,则A. B. C. D. 23.(2015福建)若集合,,则等于 A. B. C. D. 24.(2015广东)若集合,,则 A. B. C. D. 25.(2015湖北)已知集合,,定义集合,则中元素的个数为 A.77 B.49 C.45 D.30 26.(2014新课标)已知集合A={|},B={|-2≤<2},则= A.[2, 1] B.[1,1] C.[1,2)D.[1,2)27.(2014新课标)设集合=,=,则= A.{1} B.{2} C.{0,1} D.{1,2}28.(2014新课标)已知集合A={2,0,2},B={|},则 A. B. C. D. 29.(2014山东)设集合则 A. [0,2] B.(1,3) C. [1,3) D. (1,4) 30.(2014山东)设集合,则A. B. C. D. 31.(2014广东)已知集合,,则 A. B. C. D. 32.(2014福建)若集合,,则等于 A. B. C. D. 33.(2014浙江)设全集,集合,则=A. B. C. D. 34.(2014北京)已知集合,则 A. B. C. D. 35.(2014湖南)已知集合,则 A. B. C. D. 36.(2014陕西)已知集合,则A. B. C. D. 37.(2014江西)设全集为,集合,则 A. B. C. D. 38.(2014辽宁)已知全集,则集合 A. B. C. D. 39.(2014四川)已知集合,集合为整数集,则 A. B. C. D. 40.(2014湖北)已知全集,集合,则A. B. C. D. 41.(2014湖北)设为全集,是集合,则“存在集合使得,”是“”的A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件42.(2013新课标1)已知集合A={x|x2-2x>0},B={x|-<x<},则 A.A∩B=ÆB.A∪B=R C.B⊆A D.A⊆B 43.(2013新课标1)已知集合,,则A. B. C. D. 44.(2013新课标2)已知集合,,则= A. B. C. D. 45.(2013新课标2)已知集合,,则 A. B. C. D. 46.(2013山东)已知集合均为全集的子集,且, ,则 A.{3} B.{4} C.{3,4} D. 47.(2013山东)已知集合A={0,1,2},则集合B=中元素的个数是 A.1 B.3 C.5 D.9 48.(2013安徽)已知,则A. B. C. D. 49.(2013辽宁)已知集合 A. B. C. D. 50.(2013北京)已知集合,,则 A. B. C. D. 51.(2013广东)设集合,,则A. B. C. D. 52.(2013广东)设整数,集合,令集合,且三条件恰有一个成立,若和都在中,则下列选项正确的是 A., B., C., D., 53.(2013陕西)设全集为R, 函数的定义域为M, 则为 A. [-1,1] B. (-1,1) C. D. 54.(2013江西)若集合中只有一个元素,则= A.4 B.2 C.0 D.0或4 55.(2013湖北)已知全集为,集合,,则A. B. C. D. 56.(2012广东)设集合;则 A. B. C. D. 57.(2012浙江)设全集,设集合,,则=A. B. C. D. 58.(2012福建)已知集合,,下列结论成立的是A. B. C. D. 59.(2012新课标)已知集合,,则 A. B. C. D. 60.(2012安徽)设集合A={},集合B为函数的定义域,则AB= A.(1,2)B.[1,2] C.[ 1,2)D.(1,2 ] 61.(2012江西)若集合,,则集合中的元素的个数为 A.5 B.4 C.3 D.2 62.(2011浙江)若,则 A. B. C. D. 63.(2011新课标)已知集合M={0,1,2,3,4},N={1,3,5},,则的子集共有 A.2个 B.4个 C.6个 D.8个 64.(2011北京)已知集合=,.若,则的取值范围是 A.(∞, 1] B.[1, +∞)C.[1,1] D.(∞,1][1,+∞)65.(2011江西)若全集,则集合等于 A. B. C. D. 66.(2011湖南)设全集,,则= A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4} 67.(2011广东)已知集合A=为实数,且,B=为实数且,则AB的元素个数为 A.4 B.3 C.2 D.1 68.(2011福建)若集合={1,0,1},={0,1,2},则∩等于A.{0,1}B.{1,0,1}C.{0,1,2}D.{1,0,1,2} 69.(2011陕西)设集合,,则为 A.(0,1)B.(0,1] C.[0,1)D.[0,1] 70.(2011辽宁)已知M,N为集合I的非空真子集,且M,N不相等,若,则 A.M B.N C.I D. 71.(2010湖南)已知集合,,则A. B. C. D. 72.(2010陕西)集合A=,B=,则= A. B. C. D. 73.(2010浙江)设P={x︱x<4},Q={x︱<4},则 A. B. C. D. 74.(2010安徽)若集合,则 A. B. C. D. 75.(2010辽宁)已知均为集合={1,3,5,7,9}的子集,且,,则= A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 二、填空题 76.(2018江苏)已知集合,,那么. 77.(2017江苏)已知集合,,若,则实数的值为____. 78.(2015江苏)已知集合,,则集合中元素的个数为.79.(2015湖南)已知集合=,=,=,则()= .80.(2014江苏)已知集合A={},,则. 81.(2014重庆)设全集,,,则= . 82.(2014福建)若集合且下列四个关系:①;②;③;④有且只有一个是正确的,则符合条件的有序数组的个数是_________. 83.(2013湖南)已知集合,则= . 84.(2010湖南)若规定的子集为的第个子集,其中=,则(1)是的第____个子集;(2)的第211个子集是_______. 85.(2010江苏)设集合,,,则实数=__.专题一集合与常用逻辑用语第一讲集合答案部分 2019 1.解析因为,所以,则. 故选C. 2.解析,,.故选C. 3.解析因为,,所以.故选A. 4.解析由数轴可知,.故选C. 5.解析设集合,,则. 又,所以. 故选D. 6.解析因为,,所以. 7.解析,.故选A. 2010-20181.A【解析】由题意,故选A. 2.C【解析】因为,,所以{2,4,5}.故选C. 3.C 【解析】因为,,所以,故选C. 4.A【解析】,,∴,故选A. 5.C【解析】由题意知,,则.故选C. 6.C【解析】由题意,∴,故选C. 7.A【解析】∵,∴,选A. 8.A【解析】由并集的概念可知,,选A. 9.B【解析】由集合交集的定义,选B. 10.B【解析】∵,,选B. 11.C【解析】,所以,选C. 12.C【解析】,选C. 13.A【解析】由题意可知,选A. 14.B【解析】由题意得,,,则.选B. 15.D【解析】易知,又,所以故选D. 16.C【解析】由补集的概念,得,故选C. 17.A【解析】∵,,∴. 18.D【解析】集合,当时,,当时,,当时,,当时,,当时,,∵,∴中元素的个数为2,选D. 19.A【解析】. 20.B【解析】,∴. 21.A【解析】∵,,∴=[0,1]. 22.C【解析】因为,所以,故选C. 23.D【解析】∵. 24.B【解析】. 25.C【解析】由题意知,,,所以由新定义集合可知,或.当时,,,所以此时中元素的个数有:个;当时,,,这种情形下和第一种情况下除的值取或外均相同,即此时有,由分类计数原理知,中元素的个数为个,故应选C. 26.A【解析】,故=[2, 1]. 27.D【解析】,∴={1,2}. 28.B【解析】∵,∴. 29.C【解析】,∴,.∴. 30.C【解析】∵,,所以.31.C【解析】,选C.32.A【解析】=.33.B【解析】由题意知,,所以=,选B. 34.C【解析】∵.∴=. 35.C【解析】. 36.B【解析】∵,∴,∴,故选B. 37.C【解析】,,∴. 38.D【解析】由已知得,或,故. 39.A【解析】,,故. 40.C【解析】. 41.C【解析】“存在集合使得”“”,选C. 42.B【解析】A=(,0)∪(2,+),∴AB=R,故选B. 43.A【解析】,∴. 44.A【解析】∵,∴. 45.C【解析】因为,, 所以,选C. 46.A【解析】由题意,且,所以中必有3,没有4,,故. 47.C【解析】;;.∴中的元素为共5个. 48.A【解析】A:,,,所以答案选A 49.D【解析】由集合A,;所以. 50.B【解析】集合中含1,0,故. 51.A【解析】∵,,∴. 52.B【解析】特殊值法,不妨令,,则, ,故选B.如果利用直接法:因为,,所以…①,…②,…③三个式子中恰有一个成立;…④,…⑤,…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时,于是,;第二种:①⑥成立,此时,于是,;第三种:②④成立,此时,于是,;第四种:③④成立,此时,于是,. 综合上述四种情况,可得,. 53.D【解析】的定义域为M=[1,1],故=,选D 54.A【解析】当时,不合,当时,,则. 55.C【解析】,,∴. 56.A【解析】=. 57.D【解析】,=,=. 58.D【解析】由M={1,2,3,4},N={2,2},可知2∈N,但是2M,则NM,故A错误.∵MN={1,2,3,4,2}≠M,故B错误.M∩N={2}≠N,故C错误,D正确.故选D. 59.B【解析】A=(1,2),故BA,故选B. 60.D【解析】,. 61.C【解析】根据题意容易看出只能取1,1,3等3个数值.故共有3个元素. 62.D【解析】∴,又∵,∴,故选D. 63.B【解析】,故的子集有4个. 64.C【解析】因为,所以,即,得,解得,所以的取值范围是. 65.D 【解析】因为,所以==. 66.B【解析】因为,所以 ==. 67.C 【解析】由消去,得,解得或,这时或,即,有2个元素. 68.A【解析】集合. 69.C【解析】对于集合,函数,其值域为,所以,根据复数模的计算方法得不等式,即,所以,则. 70.A【解析】根据题意可知,是的真子集,所以. 71.C【解析】故选C. 72.D【解析】 73.B 【解析】,可知B正确, 74.A【解析】不等式,得,得,所以=. 75.D【解析】因为,所以3∈,又因为,所以9∈A,所以选D.本题也可以用Venn图的方法帮助理解. 76.{1,8}【解析】由集合的交运算可得{1,8}. 77.1【解析】由题意,显然,此时,满足题意,故. 78.5【解析】,5个元素. 79.{1,2,3}【解析】,()=. 80.【解析】. 81.【解析】,, . 82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为,;若只有③正确,①②④都不正确,则符合条件的有序数组为;若只有④正确,①②③都不正确,则符合条件的有序数组为,,.综上符合条件的有序数组的个数是6. 83.【解析】=. 84.【解析】(1)5 根据的定义,可知;(2)此时,是个奇数,所以可以判断所求集中必含元素,又均大于211,故所求子集不含,然后根据(=1,2,7)的值易推导出所求子集为. 85.1【解析】考查集合的运算推理.3,,.以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
专题一 集合与逻辑1、已知{1,2,3,4,5,6,7,8},A B A B ==Φ ,又||,||A A B B ∉∉,求总分配数.【解】由已知得||,||||A B B A ∈∈,分类讨论所有情况:①若||0,||8A B ==,则8A ∈,矛盾;②若||1,||7A B ==,则7,1A B ∈∈,且{1,2,3,4,5,6,8}B =,共一种;③若|| 2.||6A B ==,则2,6B A ∈∈,则这样的构成共有(以A 为标准,B 随机确定)166C =种;④若||3,||5A B ==,则5,3A B ∈∈,同理这样的构成有2615C =种;⑤若||||4A B ==,则4A B ∈ ,矛盾.故综上可之,共有2(1615)44N =++=种.2、设σ是坐标平面按顺时针方向绕原点做角度为27π的旋转,τ表示坐标平面关于y 轴的镜面反射.用τσ表示变换的复合,先做τ,再做σ,用σk 表示连续k 次的变换,则στσ2τσ3τσ4是( D )(A )σ4 (B )σ5 (C )σ2τ (D )τσ23、是否存在四个正实数,使得它们的两两乘积为2,3,5,6,10,16?【解】假设存在满足条件的四个正实数,,,a b c d ,不妨,a b c d <<<则有,.ab ac ad bc bd cd <<<<(1)若ad bc <,则有2,3,5,6,10,16ab ac ad bc bd cd ======所以,23,b c a a==.由6bc =得1,2,3,5a b c d ====.所以15,cd =与16cd =矛盾. (2)若,ad bc >则有2,3,5,6,10,16.ab ac bc ad bd cd ====== 所以236,,b c d a a a ===.由5bc =,得265a =,由16cd =,得298a =,矛盾. 综上所述,假设不存立,所以不存在四个正实数,它们两两乘积分别为2,3,5,6,10,16. 4、12345,,,,x x x x x 是正整数,任取四个其和组成的集合为{44,45,46,47},求这五个数.【解】五个数任取四个应该可以得到455C =个不同的和,现条件中只有4个不同的和,故必有两个和值相同.而这五个和值之和为123454()x x x x x ++++,是4的倍数,所以这个相同的和值只可能是46,从而有123454445464647574x x x x x ++++++++==,故这五个数分别为57-44=13,57-45=12,57-46=11,57-47=10,57-46=11,即10,11,11,12,13.5、将一个正11边形用对角线划分为9个三角形,这些对角线在正11边形内两两不相交,则()A、存在某种分法,所分出的三角形都不是锐角三角形B、存在某种分法,所分出的三角形恰有两个锐角三角形C、存在某种分法,所分出的三角形至少有3个锐角三角形D、任何一种分法所分出的三角形都恰有1个锐角三角形解:我们先证明所分出的三角形中至多只有一个锐角三角形。
(名师选题)(精选试题附答案)高中数学第一章集合与常用逻辑用语知识总结例题单选题1、集合M ={2,4,6,8,10},N ={x |−1<x <6 },则M ∩N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M ={2,4,6,8,10},N ={x|−1<x <6},所以M ∩N ={2,4}.故选:A.2、已知集合A ={x |-1<x <1},B ={x |0≤x ≤2},则A ∪B =( )A .{x |0≤x <1}B .{x |-1<x ≤2}C .{x |1<x ≤2}D .{x |0<x <1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A ∪B ={x |-1<x ≤2},故选:B.3、已知A ={1,x,y },B ={1,x 2,2y },若A =B ,则x −y =( )A .2B .1C .14D .23答案:C分析:由两集合相等,其元素完全一样,则可求出x =0,y =0或x =1,y =0或x =12,y =14,再利用集合中元素的互异性可知x =12,y =14,则可求出答案.若A =B ,则{x =x 2y =2y 或{x =2yy =x 2 ,解得{x =0y =0 或{x =1y =0 或{x =12y =14,由集合中元素的互异性,得{x =12y =14,则x −y =12−14=14,故选:C .4、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是()A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C5、已知集合A ={x |x+2x−4<0 },B ={0,1,2,3,4,5},则(∁R A )∩B =( )A .{5}B .{4,5}C .{2,3,4}D .{0,1,2,3}答案:B分析:首先化简集合A ,再根据补集的运算得到∁R A ,再根据交集的运算即可得出答案.因为A ={x |x+2x−4<0 }=(−2,4),所以∁R A={x|x≤−2或x≥4}.所以(∁R A)∩B={4,5}故选:B.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,,1).综上,实数a的取值范围是[−13故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合A,B,定义A﹣B={x|x∈A且x∉B},A+B={x|x∈A或x∈B},则对于集合M,N下列结论一定正确的是()A.M﹣(M﹣N)=N B.(M﹣N)+(N﹣M)=∅C.(M+N)﹣M=N D.(M﹣N)∩(N﹣M)=∅答案:D解析:根据集合的新定义逐一判断即可.解:根据题中的新定义得:M﹣N={x|x∈M且x∉N},N−M={x|x∈N且x∉M},M+N={x∈M或x∈N},对于A,M﹣(M﹣N)=M∩N,故A不正确;对于B,设M={1,2,3},N={2,3,4},则(M﹣N)+(N﹣M)={1,4},故B不正确;对于C,设M={1,2,3},N={2,3,4},则(M+N)﹣M={4}≠N,故C不正确;对于D,根据题中的新定义可得:(M﹣N)∩(N﹣M)=∅.故选:D.9、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a ∈A,b ∈A 时a +b 最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B = {−2,−1,0,1,2}故选:D10、已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( )A .{﹣1,0,1}B .{0,1}C .{﹣1,1,2}D .{1,2}答案:D分析:根据交集的定义写出A ∩B 即可.集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B ={1,2},故选:D填空题11、已知条件p:2k −1≤x ≤2,q:−5≤x ≤3,p 是q 的充分条件,则实数k 的取值范围是_______. 答案:[−2,+∞)分析:设A ={x |2k −1≤x ≤2 },B ={x |−5≤x ≤3 },则A ⊆B ,再对A 分两种情况讨论得解.记A ={x |2k −1≤x ≤2 },B ={x |−5≤x ≤3 },因为p 是q 的充分条件,所以A ⊆B .当A =∅时,2k −1>2,即k >32,符合题意;当A ≠∅时,k ≤32,由A ⊆B 可得2k −1≥−5,所以k ≥−2,即−2≤k ≤32.综上所述,实数的k 的取值范围是[−2,+∞).所以答案是:[−2,+∞).12、若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M ={−1,0,13,12,1,2,3,4}的所有非空子集中,具有伙伴关系的集合个数为_________________.答案:15分析:首先确定具有伙伴集合的元素有1,−1,“3和13” ,“2和12”四种可能,它们组成的非空子集的个数为即为所求.因为1∈A ,11=1∈A ;−1∈A ,1−1=−1∈A ;2∈A ,12∈A ;3∈A ,13∈A ;这样所求集合即由1,−1,“3和13” ,“2和12”这“四大”元素所组成的集合的非空子集.所以满足条件的集合的个数为24−1=15,所以答案是:15.13、设集合A ={(x,y)|x +y =3,x ∈N ∗,y ∈N ∗},则用列举法表示集合A 为______.答案:{(1,2),(2,1)}分析:根据题意可得{x >0y =3−x >0,则0<x <3,对x =1,2代入检验,注意集合的元素为坐标. ∵x +y =3,x ∈N ∗,y ∈N ∗,则可得{x >0y =3−x >0,则0<x <3 又∵x ∈N ∗,则当x =1,y =2成立,当x =2,y =1成立,∴A ={(1,2),(2,1)}所以答案是:{(1,2),(2,1)}.14、已知命题p :∀x ∈R ,x 2+x ﹣a >0为假命题,则实数a 的取值范围是 __.答案:a ≥−14分析:根据命题p 为假命题,则它的否定¬p 是真命题,利用判别式Δ≥0求出实数a 的取值范围.解:因为命题p :∀x ∈R ,x 2+x ﹣a >0为假命题,所以它的否定¬p :∃x ∈R ,x 2+x ﹣a ≤0为真命题,所以Δ=12﹣4×(﹣a )≥0,解得a ≥−14.所以答案是:a ≥−1415、已知集合A ={1,3,5,7,9},B ={x ∈Z |2≤x ≤5},则A ∩B =_____________.答案:{3,5}分析:首先确定集合B,由交集定义可得结果.∵B={x∈Z|2≤x≤5}={2,3,4,5},∴A∩B={3,5}.所以答案是:{3,5}.解答题∈N+},B={x|x=2a,a∈A}.16、已知全集U={1,2,4,6,8},集合A={x∈N+|4x(1)求A∪B;(2)写出∁U(A∩B)的所有非空真子集.答案:(1)A∪B={1,2,4,8}(2){1},{6},{8},{1,6},{1,8},{6,8}分析:(1)根据题意求出集合A,B,然后结合并集的概念即可求出结果;(2)根据集合间的基本运算求出∁U(A∩B),进而根据非空真子集的概念即可求出结果.(1)由题意得A={1,2,4},B={2,4,8},故A∪B={1,2,4,8}.(2)由题意得A∩B={2,4},∁U(A∩B)={1,6,8},故∁U(A∩B)的所有非空真子集为{1},{6},{8},{1,6},{1,8},{6,8}.17、已知集合A={x|m−1<x<m2+1},B={x|x2<4}.(1)当m=2时,求A∪B,A∩B;(2)若′′x∈A′′是′′x∈B′′成立的充分不必要条件,求实数m的取值范围.答案:(1)(−2,5),(1,2);(2)−1<m≤1分析:(1)当m=2时,A={x|1<x<5},B={x|−2<x<2},根据交集并集运算法则即可得解;(2)根据A 是B 的真子集,建立不等关系求解参数范围.(1)当m =2时,A ={x|1<x <5},B ={x|−2<x <2},A ∪B =(−2,5),A ∩B =(1,2);(2)若′′x ∈A′′是′′x ∈B′′成立的充分不必要条件,则A 是B 的真子集,m −1≥m 2+1或{m −1<m 2+1m −1≥−2m 2+1≤2解得:−1≤m ≤1,因为m =-1时为充要条件,不合题意,所以−1<m ≤118、已知集合A ={x |(x −a )(x +a +1)≤0},B ={x |x ≤3 或x ≥6}.(1)当a =4时,求A ∪B ;(2)当a >0时,若“x ∈A ”是“x ∈B ”的充分条件,求a 的取值范围.答案:(1)A ∪B ={x |x ≤4 或x ≥6};(2)(0,3].解析:(1)当a =4时,解出集合A ,计算A ∪B ;(2)由集合法判断充要条件,转化为A ⊆B ,进行计算.解:(1)当a =4时,由不等式(x −4)(x +5)≤0,得−5≤x ≤4,故A ={x |−5≤x ≤4},又B ={x |x ≤3 或x ≥6},所以A ∪B ={x |x ≤4 或x ≥6}.(2)若“x ∈A ”是“x ∈B ”的充分条件,等价于A ⊆B ,因为a >0,由不等式(x −a )(x +a +1)≤0,得A ={x |−a −1≤x ≤a },又B ={x |x ≤3 或x ≥6},要使A ⊆B ,则a ≤3或−a −1≥6,综合可得a 的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.19、已知p:∃x ∈R ,x 2+ax +2=0.q:∀x ∈(0,1),x 2−a <0.(1)若p 为真命题,求a 的取值范围;(2)若p ,q 一个是真命题,一个是假命题,求a 的取值范围.答案:(1)[2√2,+∞)∪(−∞,−2√2](2)(−∞,−2√2]∪[1,2√2)分析:(1)根据p 为真命题,则Δ≥0,解之即可;(2)分别求出p ,q 是真命题时,a 的范围,再分p 是真命题,q 是假命题时和p 是假命题,q 是真命题时,两种情况讨论,即可得出答案.(1)解:由p:∃x ∈R ,x 2+ax +2=0,若p 为真命题,则Δ=a 2−8≥0,解得a ≥2√2或a ≤−2√2,所以a 的取值范围为[2√2,+∞)∪(−∞,−2√2];(2)解:若q 为真命题时,则a >x 2对∀x ∈(0,1)恒成立,所以a ≥1,若p ,q 一个是真命题,一个是假命题,当p 是真命题,q 是假命题时,则{a ≥2√2a <1 或{a ≤−2√2a <1,解得a ≤−2√2,当p 是假命题,q 是真命题时,则{−2√2<a <2√2a ≥1,解得1≤a <2√2, 综上所述a ∈(−∞,−2√2]∪[1,2√2).。
(完整版)集合与简易逻辑试卷及详细答案集合与简易逻辑⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.每⼩题中只有⼀项符合题⽬要求)1.集合M={x|lg x>0},N={x|x2≤4},则M∩N=( )A.(1,2) B.[1,2)C.(1,2] D.[1,2]2.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表⽰的集合等于()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}3.已知?Z A={x∈Z|x<6},?Z B={x∈Z|x≤2},则A与B的关系是() A.A?B B.A?BC.A=B D.?Z A?Z B4.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列选项中,p是q的必要不充分条件的是()A.p:a+c>b+d,q:a>b且c>dB.p:a>1,b>1,q:f(x)=a x-b(a>0,且a≠1)的图像不过第⼆象限C.p:x=1,q:x2=x D.p:a>1,q:f(x)=log a x(a>0,且a≠1)在(0,+∞)上为增函数6.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数.则下列命题中为真命题的是() A.(⾮p)或q B.p且qC.(⾮p)且(⾮q) D.(⾮p)或(⾮q) 7.下列命题中,真命题是()B.?x∈R,2x>x2C.a+b=0的充要条件是ab=-1D.a>1,b>1是ab>1的充分条件8.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“ac2>bc2”是“a>b”的充要条件,则()A.“p或q”为真B.“p且q”为真C.p真q假D.p,q均为假9.命题p:?x∈R,x2+1>0,命题q:?θ∈R,sin2θ+cos2θ=1.5,则下列命题中真命题是()A.p∧q B.(⾮p)∧qC.(⾮p)∨q D.p∧(⾮q)10.已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,则命题“若a=1或a=-1,则直线l1与l2平⾏”的否命题为() A.若a≠1且a≠-1,则直线l1与l2不平⾏B.若a≠1或a≠-1,则直线l1与l2不平⾏C.若a=1或a=-1,则直线l1与l2不平⾏D.若a≠1或a≠-1,则直线l1与l2平⾏11.命题“?x∈[1,2],x2-a≤0”为真命题的⼀个充分不必要条件是() A.a≥4 B.a≤4C.a≥5 D.a≤512.设x,y∈R,则“|x|≤4且|y|≤3”是“x216+y29≤1”的()A.充分⽽不必要条件B.必要⽽不充分条件C.充分必要条件D.既不充分也不必要条件⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在题中横线上)13.已知集合A={1,a,5},B={2,a2+1}.若A∩B有且只有⼀个元素,则实数a的值为________.14.命题“?x∈R,x2+ax-4a<0”为假命题,是“-16≤a≤0”的________条件.15.设全集U=A∪B={x∈N*|lg x<1},若A∩(?U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.16.若f(x)=x2-2x,g(x)=ax+2(a>0),?x1∈[-1,2],?x0∈[-1,2],使g(x1)=f(x0),则a的取值范围是________.三、解答题(本⼤题共6⼩题,共70分,解答应写出⽂字说明、证明过程或演算步骤)17.(本⼩题满分10分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A??R B,求实数m的取值范围.18.(本⼩题满分12分)已知命题“?x∈R,|x-a|+|x+1|≤2”是假命题,求实数a的取值范围.19.(本⼩题满分12分)已知集合E={x||x-1|≥m},F={x|10x+6>1}.(1)若m=3,求E∩F;(2)若E∪F=R,求实数m的取值范围.20.(本⼩题满分12分)已知全集U=R,⾮空集合A={x|x-2x-(3a+1)<0},B={x|x-a2-2x-a<0}.(1)当a=12时,求(?U B)∩A;(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.21.(本⼩题满分12分)设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+1x+1的值域,集合C为不等式(ax-1a)(x+4)≤0的解集.(1)求A∩B;(2)若C??R A,求a的取值范围.22.(本⼩题满分12分)已知命题p:⽅程2x2+ax-a2=0在[-1,1]上有解;命题q:只有⼀个实数x0满⾜不等式x20+2ax0+2a≤0,若命题“p或q”是假命题,求a的取值范围.答案:⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.每⼩题中只有⼀项符合题⽬要求)1.答案C解析因为M={x|x>1},N={x|-2≤x≤2},所以M∩N={x|12解析依题意知A={0,1},(?U A)∩B表⽰全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表⽰的集合等于{-1,2},选A.3.答案A4.D.既不充分也不必要条件答案 B解析∵“A∩{0,1}={0}”得不出“A={0}”,⽽“A={0}”能得出“A∩{0,1}={0}”,∴“A∩{0,1}={0}”是“A={0}”的必要不充分条件.5.解析B选项中,当b=1,a>1时,q推不出p,因⽽p为q的充分不必要条件.C选项中,q为x=0或1,q不能够推出p,因⽽p为q的充分不必要条件.D选项中,p、q可以互推,因⽽p为q的充要条件.故选A.6.答案D解析由于命题p是真命题,命题q是假命题,因此,命题綈q是真命题,于是(綈p)或(綈q)是真命题.7.答案D解析∵a>1>0,b>1>0,∴由不等式的性质,得ab>1.即a>1,b>1?ab>1.8.答案A解析由x>3能够得出x2>9,反之不成⽴,故命题p是假命题;由ac2>bc2能够推出a>b,反之,因为1c2>0,所以由a>b能推出ac2>bc2成⽴,故命题q是真命题.因此选A.9.答案D解析易知p为真,q为假,⾮p为假,⾮q为真.由真值表可知p∧q假,(⾮p)∧q假,(⾮p)∨q假,p∧(⾮q)真,故选D.10.答案A解析命题“若A,则B”的否命题为“若綈A,则綈B”,显然“a=1或a =-1”的否定为“a≠1且a≠-1”,“直线l1与l2平⾏”的否定为“直线l1与l2不平⾏”,所以选A.11.答案C解析命题“?x∈[1,2],x2-a≤0”为真命题的充要条件是a≥4,故其充分不必要条件是实数a的取值范围是集合[4,+∞)的⾮空真⼦集,正确选项为C.12.答案B⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在题中横线上)13.答案0或-2解析若a=2,则a2+1=5,A∩B={2,5},不合题意舍去.若a2+1=1,则a=0,A∩B={1}.若a2+1=5,则a=±2.⽽a=-2时,A∩B={5}.若a2+1=a,则a2-a+1=0⽆解.∴a=0或a=-2.14.答案充要解析∵“?x∈R,x2+ax-4a<0”为假命题,∴“?x∈R,x2+ax-4a≥0”为真命题,∴Δ=a2+16a≤0,即-16≤a≤0.故为充要条件.15.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(?U B)={m|m=2n+1,n =0,1,2,3,4}={1,3,5,7,9},∴B={2,4,6,8}.16.答案(0,1 2]解析由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2],使得g(x1)=f(x0),因此问题等价于函数g(x)的值域是函数f(x)值域的⼦集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤12,⼜a>0,故a的取值范围是(0,12].三、解答题(本⼤题共6⼩题,共70分,解答应写出⽂字说明、证明过程或演算步骤)17 答案 (1)2。