角的比较练习题
- 格式:docx
- 大小:59.57 KB
- 文档页数:1
二年级认识角练习题二年级认识角练习题在数学学习中,角是一个重要的概念。
对于二年级的学生来说,认识角是他们数学学习的一个重要内容。
通过练习题的形式,可以帮助学生巩固和加深对角的认识。
下面是一些适合二年级学生的认识角练习题。
练习题一:角的基本概念1. 请你用手指示出教室中的一个直角。
2. 你能找到一个锐角和一个钝角吗?请分别指出来。
3. 你能找到一个角的顶点和两个边吗?请指出来。
4. 如果一个角的两条边相等,这个角叫什么名字?练习题二:角的度量1. 请你用一个直角的角度来比较其他角的大小。
2. 请你用手指示出一个比直角大的角和一个比直角小的角。
3. 请你用手指示出一个锐角和一个钝角,并说出它们的角度大小。
4. 如果一个角的度数是90°,这个角叫什么名字?练习题三:角的分类1. 请你找到一个锐角和一个钝角,并说出它们的特点。
2. 请你找到一个直角和一个平角,并说出它们的特点。
3. 请你找到一个锐角和一个钝角,并说出它们的度数范围。
4. 请你找到一个直角和一个平角,并说出它们的度数范围。
练习题四:角的绘制1. 请你使用直尺和铅笔,绘制一个直角。
2. 请你使用直尺和铅笔,绘制一个锐角。
3. 请你使用直尺和铅笔,绘制一个钝角。
4. 请你使用直尺和铅笔,绘制一个平角。
练习题五:角的应用1. 请你找到教室中的一个锐角,并说出它的应用场景。
2. 请你找到教室中的一个钝角,并说出它的应用场景。
3. 请你找到教室中的一个直角,并说出它的应用场景。
4. 请你找到教室中的一个平角,并说出它的应用场景。
通过以上的练习题,二年级的学生可以巩固和加深对角的认识。
在练习过程中,他们不仅可以学习到角的基本概念、度量和分类,还可以通过绘制和应用来更好地理解角的概念。
通过这些练习题的训练,学生的数学能力和空间想象力也会得到提升。
除了练习题,老师还可以通过实际的教学活动来帮助学生认识角。
例如,可以利用教室中的物体,让学生观察和描述角的特点,或者进行角的测量和比较。
四年级数学角的练习题卷子题目一:角的概念与表示1. 给出下图,写出图中每个角的名称。
2. 写出下列角的度数并判断其为锐角、直角或钝角:a) 45°b) 90°c) 120°d) 150°题目二:角的比较1. 比较下列角的大小,并使用“<”、“>”或“=”表示:a) 30° ______ 60°b) 90° ______ 90°c) 120° ______ 135°d) 75° ______ 80°2. 根据下列关系式填空:a) 70° ______ 90°b) 180° ______ 360°c) 60° ______ 180°d) 90° ______ 180°题目三:角的补角与余角1. 求下列角的补角:a) 45°b) 60°c) 75°d) 120°2. 求下列角的余角:a) 30°b) 45°c) 60°d) 120°题目四:角的分类1. 根据角的度数范围,将下列角分类为锐角、直角或钝角:a) 30°b) 90°c) 150°d) 180°2. 下列角是什么类型的角?a) 45°b) 90°c) 120°d) 175°题目五:角的相等关系1. 判断下列各组角是否相等:a) 30°、60°、90°b) 120°、60°、60°c) 45°、135°、180°d) 90°、90°、270°2. 根据图形,判断下列各组角是否相等:a) ∠A、∠B、∠Cb) ∠D、∠E、∠Fc) ∠G、∠H、∠Id) ∠J、∠K、∠L题目六:角的应用1. 用直尺和量角器在纸上绘制一个60°的角。
4.3.2 角的比较与运算一.填空题1.如图,∠AOB∠AOC,∠AOB∠BOC(填>,=,<);用量角器度量∠BOC =,∠AOC=,∠AOC∠BOC.2.如图,∠AOC=+=﹣;∠BOC=﹣=﹣.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 4.将一副常规三角板拼成如图所示的图形,则∠ABC=度.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为度.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=.二.选择题14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC三.解答题19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON 的度数.参考答案与试题解析1.如图,∠AOB>∠AOC,∠AOB>∠BOC(填>,=,<);用量角器度量∠BOC =30°,∠AOC=25°,∠AOC>∠BOC.【分析】根据图形,射线OC在∠AOB的内部,即可判断角之间的大小关系.【解答】解:由图知,射线OC在∠AOB的内部,所以∠AOB>∠AOC,∠AOB>∠BOC,用量角器量得∠BOC=25°,∠AOC=30°,故∠AOC>∠BOC.故答案为:>,>,25°,30°,>.2.如图,∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD ﹣∠COD=∠AOC﹣∠AOB.【分析】根据图形即可求出∠AOC及∠BOC的不同表示形式.【解答】解:根据图形,∴∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD﹣∠COD=∠AOC﹣∠AOB.故答案为:∠AOB+∠BOC,∠AOD﹣∠COD,∠BOD﹣∠COD,∠AOC﹣∠AOB.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 【分析】由∠BOD=90°,∠COE=90°,得∠AOD=∠BOD=90°.根据同角的余角相等,得∠COD=∠BOE,∠AOC=∠DOE.那么,∠AOC+∠BOE=90°.进而推断出A、B、C不合题意,D符合题意.【解答】解:A:∵∠BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOC+∠COD=90°.又∵∠COE=∠COD+∠DOE=90°,∴∠AOC=∠DOE.故A不合题意.B:∵∠COE=∠COD+∠DOE=90°,∠BOD=∠BOE+∠DOE=90°,∴∠COD=∠BOE.故B不符合题意.C:∵BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOD=∠BOD.故C不符合题意.D:由B知:∠BOE=∠COD.∵∠AOD=∠AOC+∠DOC=∠AOC+∠BOE=90°.∴∠BOE与∠AOC不一定相等.故选:D.4.将一副常规三角板拼成如图所示的图形,则∠ABC=135度.【分析】根据图形得出∠ABD和∠CBD的度数,即可求出∠ABC的度数.【解答】解:∵∠ABD=90°,∠DBC=45°,∴∠ABC=∠ABD+∠BCD=90°+45°=135°.故答案为:135.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.【分析】利用角的和差关系计算,注意此题要分两种情况.【解答】解:①如图1所示,OC在∠AOB内部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,∴∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°;②如图2所示,OC在∠AOB外部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,又∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+45°=135°.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=125°.【分析】本题是角的计算问题,根据周角是360°即可求出∠AOB的度数.【解答】解:设∠AOB=∠AOC=x,则2x+110°=360°,解得x=125°,∴∠AOB=125°,故答案为125°.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为180度.【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【解答】解:∠AOD+∠COB=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB=90°+90°=180°.故答案是:180.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=84°.【分析】由折叠的性质可得∠FEG=∠FEC=48°,再由点E在BC上,可求得∠BEG 的度数.【解答】解:∵长方形纸片ABCD沿EF折叠,∠FEC=48°,∴∠FEG=∠FEC=48°,∵点E在BC上,∴∠BEG=180°﹣∠FEC﹣∠FEG=180°﹣48°﹣48°=84°.故答案为:84°.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是75°.【分析】根据钟面上圆心角的大小关系进行计算即可.【解答】解:钟面上每相邻两个数字之间所对应的圆心角为360°÷12=30°,即∠DOC=∠COB=30°,而钟面上8:30时,时针指向“8与9中间”,因此∠AOB=×30°=15°,所以钟面上8:30这一时刻,钟面上时针与分针所形成的角∠AOD=30°×2+15°=75°,故答案为:75°.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=90°或150°.【分析】由于点C的位置不确定,所有此题要分类讨论,利用角之间相加减求出∠AOC 的大小.【解答】解:①当点C在射线OB左侧时,∠AOC1=∠AOB﹣∠BOC1=120°﹣30°=90°,②当点C在射线OB右侧时,∠AOC2=∠AOB+∠BOC2=120°+30°=150°.故答案为90°或150°.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=15°.【分析】根据角的和差计算即可.【解答】解:用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,∴∠DAB=∠CAB﹣∠CAD=45°﹣30°=15°.故答案为:重合,15°.14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角【分析】不大于90°的角还有直角,故A错误,135°的钝角﹣1°的锐角差还是钝角,故C错误,两个较小的锐角和可能还是锐角也可能是直角,故D错误,因为两个钝角都大于90°且小于180°,故B正确.【解答】解:∵不大于90°的角还有直角,故A错误,举例:135°的钝角﹣1°的锐角差还是钝角,故C错误,∵两个较小的锐角和可能还是锐角也可能是直角,故D错误,∵两个钝角都大于90°且小于180°,故B正确,故选:B.15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C【分析】根据角的大小与角的开口大小有关,与角的边的长短无关,角的大小是通过角的度数来体现的,然后对各选项分析判断后利用排除法求解.【解答】解:A、角的大小与角的边画出部分的长短没有关系,因为角的大小只与角的开口有关,故本选项正确;B、角的大小与它们的度数大小是一致的,正确;C、角的和差倍分的度数等于它们的度数的和差倍分,正确;D、∠A+∠B>∠C,∠A与∠C的大小关系无法确定,故本选项错误.故选:D.16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】A选项:75°的角,45°+30°=75°;B选项:135°的角,45°+90°=135°;C选项:160°的角,无法用三角板中角的度数拼出;D选项:105°的角,45°+60°=105°.故选:C.17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定【分析】由∠1﹣∠2=∠3,可把∠1等效替换为∠2与∠3的和,进而求解.【解答】解:∵∠1﹣∠2=∠3,∴∠1=∠2+∠3,又∠4+∠2=∠1,即∠4+∠2=∠2+∠3,∴∠4=∠3故选:B.18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC 【分析】根据题意画出图,观察图即可得答案.【解答】解:如图:∵C点是∠AOB内部任一点,∴∠AOC与∠BOC的大小无法确定,由图可知∠AOB必大于∠AOC,故选:D.19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.【分析】可根据旋转前后,图形的大小形状不变,旋转角相等的性质,寻找相等角.【解答】解:①∠AOB=∠A′OB′.因∠A′OB′是由∠AOB旋转得到的.②∠AOA′=∠BOB′.∵∠AOB=∠A′OB′,∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,∴∠AOA′=∠BOB′.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?【分析】本题是角的计算问题,利用角的加法定义即可.【解答】解:由图可知,∠AOB=∠AOD+∠DOB,∠DOC=∠DOB+∠BOC,∵∠AOB=∠COD,∠AOD=∠AOB﹣∠BOD,∠COB=∠COD﹣∠BOD,∴∠AOD=∠COB.21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.【分析】在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.【解答】解:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是60°;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=60、90、150.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.【分析】(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.【解答】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.故答案为:60°.(2)①∵0<n<180,∴分三种情况.a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;b:点C在射线OB上,∠AOC=∠AOB=90°;c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.综上得n为60、90、150.故答案为:60、90、150.②∵∠AOC=n°,OM平分∠AOC,∴∠AOM=n°,∠AOD=∠AOC+∠COD=n°+30°,∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,∵ON平分∠BOD,∴∠DON=∠BOD=×(n°﹣60°)=n°﹣30°,∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣n°﹣(n°﹣30°)=60°。
7.5 角的大小比较课内练习A组1.下列语句中,正确的是()(A)小于钝角的角是锐角;(B)大于直角的角是钝角(C)小于直角的角是锐角;(D)大于锐角的角是直角或钝角2.钝角减去锐角所得的差是()(A)锐角(B)直角(C)钝角(D)都有可能3.已知∠A=50°24′,∠B=50.24°,∠C=50°14′24″,那么下列各式正确的是()(A)∠A>∠B>∠C (B)∠A>∠B=∠C(C)∠B>∠C>∠A (D)∠B=∠C>∠A4.根据图1,完成下列填空:(1)∠BOD=∠BOC+_______;∠AOC=•______+•_______;•∠AOB=•______+•_____+______;∠AOD+∠BOC=_______-______;(2)若∠AOC=90°,∠BOC=30°,则∠AOB=________.(1) (2) (3)5.如图2,∠AOB和∠COD都是直角,则∠AOD+∠BOC=________.6.如图3,∠AOC=50°,∠BOD=40•°,•∠AOD=•60•°,•求∠1=•_____,•∠2=_______,∠3=______.7.读题画图并按题目要求解答:已知∠AOB的外部有∠BOC,OM,ON分别是∠AOB和∠BOC 的平分线,若∠MON=75°,求∠AOC的度数.8.如图,直线AB,CD相交于点O,OB平分∠DOE.如果∠COE=80°,求∠EOB•与∠AOC的度数.9.已知两个角有公共顶点和一条公共边,且一个角为130°,另一个角为40°,那么这两个角的另一条边所成的角为几度?并画图说明.B组10.下列说法,错误..的个数是()①直角都相等②直角大于任何锐角③钝角大于直角④大于直角的角是钝角(A)3个(B)2个(C)1个(D)0个11.OC在∠AOB的内部,下列给出的条件中不能得到OC为∠AOB的平分线的是()(A)∠AOC=12∠BOA (B)∠AOB=2∠BOC(C)∠AOC+∠COB=∠AOB (D)∠AOC=∠BOC12.如图4,射线OC,OD把∠AOB三等分,且∠AOC=10°,•则图中所有角的度数和是()(A)30°(B)90°(C)130°(D)100°(4) (5) (6)13.如图5,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF=60°,则∠DAE=()(A)15°(B)30°(C)45°(D)60°14.若∠AOB=50°,∠BOC=40°,则∠AOC=_____.15.如图6,已知∠AOB=∠BOC=∠COD=∠DOE=30°,图中相加得180•°的两个角共有_________对.16.如图,∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°.试问图中哪条射线是哪一个角的角平分线?17.如图,∠AOB ,∠COD 都是直角.(1)图中共有______个角,其中锐角有______个,钝角有______个;(2)比较∠AOC 与∠BOD 的大小.18.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,且∠AOB=130°.(1)求∠COE 是多少度;(2)如果∠COD=20°,求∠BOE 的度数.课外练习A 组1.一条射线绕它的端点先按逆时针旋转75.5°,再按顺序时针方向旋转15•°30′,则射线后来位置与原来位置所成角的度数是( )(A )90.8° (B )90°35′ (C )60° (D )60.2°2.已知∠AOB=150°,OC 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD=( )(A )15° (B )25° (C )35° (D )45°3.点P 在∠MAN 的平面上,现有等式∠PAM=12∠MAN ,∠PAN=12∠MAN ,∠PAM=∠PAN ,•∠MAN=2∠NAP ,其中能表示AP 是角平分线的等式有( )(A )1个 (B )2个 (C )3个 (D )4个4.如图7,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ; ②∠AOD=3∠BOC ; ③∠AOD+∠BOC=∠AOC+∠BOD(A )0个 (B )1个 (C )2个 (D )3个(7) (8) (9)5.若∠AOB=75°,∠BOC=60°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON=_______.6.如图8,在2×2的方格中,连结AB ,AC ,AD ,则∠2=______;∠1+•∠2+•∠3=________. B 组7.已知∠AOB=80°,过O 作射线OC (不同于OA ,OB ),满足∠AOC=35∠BOC ,求∠AOC•的大小.8.如图9所示,将书页斜折过去,使顶角A 落在A ′处,BC 为折痕,然后把BE 边折过去,使之与A ′B 边重合,折痕为BD ,那么两折痕BC ,BD 间的夹角是多少度?9.(1)利用一副三角尺的拼合,分别画出75°,120°,135°,150°的角;(2)利用一副三角形,你能画出几个不同的角(小于180°)?分别是几度的角?•用一副三角尺所画的这些角的大小有什么规律?7.5 角的大小比较答案:课内练习:1.C 2.D 3.B4.(1)∠DOC ∠AOD ∠DOC ∠AOD ∠DOC • •∠COB ∠AOB ∠DOC (2)120°5.180° 6.10° 30° 20° 7.图略,•∠AOC=150°8.∠BOE=50°,∠AOC=50°9.90°或170°图略 10.C 11.C 12.D 13.A 14.90°或10° 15.4 16.OB平分∠AOC,OD平分∠EOC,OC平分∠AOE和∠DOB •17.(1)6,3,1 (2)相等 18.(1)65°(2)45°课外练习:1.C 2.B 3.A 4.C 5.7.5°或67.5°6.45°,135° 7.30°或120° 8.90°9.(1)画图略(2)11个,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°规律:15°的倍数.。
Dszxrj专用题库学生姓名:一、选择题1. 下列说法正确的是()A.两个锐角的和一定是锐角B.用一个放大倍率3倍的放大镜看一个10∘的角为30∘C.钝角是大于90∘而小于180∘的角D.周角是一条射线2. 一条船沿北偏东50∘方向航行到某地,然后沿原航线返回,返回时正确的航行方向是()A.南偏西50∘B.南偏东50∘C.北偏西50∘D.北偏东50∘3. 如图,在灯塔O处观测到轮船A位于东北方向,同时轮船B在南偏东55∘方向,那么∠AOB的大小为()A.80∘B.90∘C.100∘D.85∘4. 已知∠MON=30∘,∠NOP=15∘,则∠MOP=( )A.45∘B.15∘C.45∘或15∘D.无法确定5. 8点30分的时候,时针与分针所夹的锐角度数是()A.60∘B.70∘C.75∘D.80∘6. 10点30分,钟面上的时针和分针的夹角是()度.A.120∘B.135∘C.150∘D.180∘7. 38.33∘可化为()A.38∘30ˊ3″B.38∘20ˊ3″C.38∘19ˊ8″D.38∘19ˊ48″8. 22∘20′×8等于()A.178∘20′B.178∘40′C.176∘16′D.178∘30′9. 将一副三角板按如图方式摆放在一起,若∠2=30∘10′,则∠1的度数等于()A.30∘10′B.60∘10′C.59∘50′D.60∘50′10. 在△ABC中,若∠A的补角是85∘,∠B的余角是65∘,则∠C的度数为()A.60∘B.65∘C.80∘D.85∘11. 利用一副三角尺不能画出的角的度数是()A.67∘B.75∘C.90∘D.105∘12. 如图,下列说法正确的是()A.∠1就是∠ABCB.∠2就是∠ADBC.以B为顶点的角有三个,它们是∠1,∠2,∠ABCD.∠ADB也可表示为∠D13. 如图所示:若∠DEC=50∘17′,则∠AED=( )A.129∘43′B.129∘83′C.130∘43′D.128∘43′二、填空题14. 35∘42′30″+24∘17′30″=________.15. 一个角的余角比它的补角的1还少20∘,则这个角的大小是________.316. 钟表的时间为3点半时的时针与分针成的角是________.17. 如图,已知∠AOB是直角,COD是一条直线,∠AOC=30∘,则∠BOD=________度.17题 19题 20题18. 观察站测得一轮船在北偏东35∘方向,则在轮船上看观察站的方向是________.19. (1)当图中的∠1和∠2满足________时,能使OA⊥OB.(只需填上一个条件即可)(2)若一个角的余角是67∘41′,则这个角的大小是________.20. 如图,将两块直角三角板的直角顶点重合,若∠AOD=144∘42′,则∠BOC=________度.三、解答题21. 如图,AOB为一条直线,∠1+∠2=90∘,∠COD是直角.(1)请写出图中相等的角,并说明理由;(2)请分别写出图中互余的角和互补的角.22. 一个角等于它的余角的8倍,求这个角的补角.23. (1)180∘−(34∘55′+21∘33′);(2)(180∘−91∘31′24″)÷2.24. 如图,学校、工厂、电视塔在平面图上的标点分别是A、B、C,工厂在学校的北偏西30∘,电视塔在学校的南偏东15∘,则平面图上的∠BAC应是少度?25. 探究同一个锐角的余角与这个角的补角之问的关系.26. 在∠AOB的内部以O为端点画出一条射线,那么图中一共有多少个角?如果画出2条射线,图中共有多少个角?画n条呢?27. 如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21,求∠AOB的度数.28. 如图,已知∠AOB内部有顺次的四条射线:OE,OC,OD,OF,OE平分∠AOC,OF平分∠BOD.(1)若∠AOB160,∠COD40,则∠EOF的度数为________;(2)若∠AOBα,∠CODβ,求∠EOF的度数.29. 如图O为直线AB上一点,∠AOC=50∘,OD平分∠AOC,∠DOE=90∘.(1)求∠BOD的度数;(2)试判断OE是否平分∠BOC,并说明理由.30. 如图所示,OA丄OB,OC丄OD,OE为∠BOD的平分线,∠BOE=22∘,求∠AOC的度数.参考答案与试题解析2019年7月5日初中数学一、选择题(本题共计 13 小题,每题 3 分,共计39分)1.【解答】故选C.2.【解答】故选:A.3.【解答】故选A.4.【解答】故选C.5.【解答】故选:C.6.【解答】故选:B.7.【解答】故选D.8.【解答】故选B.9.【解答】故选C.10.【解答】故选A.11.【解答】故选:A.12.【解答】故选C.13.【解答】故选A.二、填空题14.【解答】故答案为:60∘.15.【解答】故答案为75∘.16.【解答】故答案为:75∘.17.【解答】故答案为:120∘.18.【解答】故答案为:南偏西35∘.19.【解答】故当图中的∠1和∠2满足∠1+∠2=90∘时,能使OA⊥OB;(2)90∘−67∘41′=22∘19′.故这个角的大小是22∘19′.20.【解答】故答案为:35.3.三、解答题21.【解答】解:(1)①∠AOC=∠1.理由是:因为∠COD是直角,所以∠AOC+∠2=90∘,又∠1+∠2= 90∘,根据同角的余角相等,可得∠AOC=∠1.②∠EOB=∠COB.理由是:因为∠1+∠EOB=180∘,∠AOC+∠COB=180∘,而∠AOC=∠1,根据等角的补角相等,可得∠EOB=∠COB;(2)互余的角:∠1与∠2,∠AOC与∠2;互补的角:∠1与∠EOB,∠AOC与∠EOB,∠AOC与∠COB,∠1与∠COB,∠2与∠AOD.22.【解答】解:设这个角的度数为x,根据题意得x=8(90∘−x),解得x=80∘,则180∘−x=100∘,所以这个角的补角为100∘.23.【解答】解:(1)原式=180∘−55∘88′=179∘60′−56∘28′=123∘32′;(2)原式=(179∘59′60″−91∘31′24″)÷2=88∘28′36″÷2=44∘14′18″.24.【解答】解:∵工厂在学校的北偏西30∘,电视塔在学校的南偏东15∘,∴∠1=30∘,∠3=15∘,∴∠2=90∘−∠1=60∘,∴∠BAC=∠3+90∘+∠2=15∘+90∘+60∘=165∘.25.【解答】解:设这个锐角的度数为x,则它的余角为90∘−x,它的补角为180∘−x,所以180∘−x−(90∘−x)=90∘,所以同一个锐角的补角比这个角的余角大90∘.26.【解答】解:画1条,共有角:3个;画2条,共有角:6个,个.画n条,共有角:(n+1)(n+2)227.【解答】解:(1)∵AO⊥CO,∴∠AOC=90∘,∴∠BOC=45∘,∴∠AOB=∠AOC+∠BOC=135∘,又OD为∠AOB的平分线,∴∠BOD=67.5∘.(2)∵∠AOC=2∠BOC,∠COD=21∘,∠AOD=∠BOD,∴∠AOC−21∘=∠BOC+21∘,即2∠BOC−21∘=∠BOC+21∘,∴∠BOC=42∘,∴∠AOB=∠AOC+∠BOC=3∠BOC=126∘.28.【解答】解:(1)∵OE平分∠AOC,OF平分∠BOD,又∵∠AOB=160,∠COD=40,∴∠AOC+∠BOD=160−40=120,即2∠AOE+2∠BOF=120,∴∠AOE+∠BOF=60,∴∠EOF=∠AOB−(∠AOE+∠BOF)=160−60=100,∴∠EOF的度数为100.故答案为:100.(2)∵OE平分∠AOC,OF平分∠BOD,又∵∠AOB=α,∠COD=β,∴∠AOC+∠BOD=α−β,即2∠AOE+2∠BOF=α−β,∴∠AOE+∠BOF=α−β2,∴∠EOF=∠AOB−(∠AOE+∠BOF)=α−α−β2=α2+β2=α+β2.∴∠EOF的度数为α+β2.29.【解答】解:(1)因为∠AOC=50∘,OD平分∠AOC,所以∠DOC=12∠AOC=25∘,∠BOC=180∘−∠AOC=130∘,所以∠BOD=∠DOC+∠BOC=155∘;(2)OE平分∠BOC.理由如下:因为∠DOE=90∘,∠DOC=25∘,所以∠COE=∠DOE−∠DOC=90∘−25∘=65∘.又因为∠BOE=∠BOD−∠DOE=155∘−90∘=65∘,所以∠COE=∠BOE,所以OE平分∠BOC.30.【解答】解:∵OA丄OB,OC丄OD,∴∠AOB=∠COD=90∘,∵OE为∠BOD的平分线,∴∠BOD=44∘,∴∠AOC=360∘−(∠AOB+∠COD+∠BOD),=360∘−(90∘+90∘+44∘),=136∘.。
一、选择题1. 下面()的时针和分针形成的角同样大。
A.1:00和2:00 B.3:00和3:30 C.4:00和8:002. 角的大小与()有关。
A.角的两边长短B.角的两边叉开的大小C.角的顶点D.量角器3. 下图中∠1与∠2的关系是:()。
A.∠1等于∠2B.∠1小于∠2C.∠1大于∠24. 角的大小是由()决定的。
A.一边的长度B.两条边张开的大小C.两边的长度D.两条边的长度和张开的大小5. 下面拼成的四个角中,最大的是()。
A.B.C.D.二、填空题6. 观察下图,数一数,填一填。
图中的直角有()个锐角有()个,钝角有()个。
在图中选择两个角组成一个平角,分别标上∠1和∠2,并比较两个角的大小:∠1○∠2。
7. 用一个10倍的放大镜来看一个30度的角,所看到的角是( )度。
8. 楼梯有的比较平缓,有的比较陡,这是怎么回事呢?(1)量一量:∠1=( ) ∠2=( )(2)下面是3 个同学得出的结论,请你判断他们说的是否正确。
( ) ( ) ( )9. 在括号里填上“>”“<”或“=”。
平角( )钝角 2平方千米( )200公顷582340( )582430 360÷12( )2010. 下图中每个钟面上时针和分针组成的角各是什么角?( )角 ( )角( )角 ( )角我发现:( )角>( )角>( )角>( )角。
三、解答题11. 风筝比赛时,选手们所用的风筝线一样长,假如他们都把风筝线放到最长。
(1)量一量,甲的风筝线与地面的夹角是(),乙的风筝线与地面的夹角是()。
(2)风筝的高度和风筝线与地面的夹角有什么关系?(3)如果丙的风筝线与地面的夹角为35°,他的风筝飞得比甲、乙高吗?12. 如图,把一张正方形的纸对折两次,打开后再沿着两条对角的线对折,再打开。
你能直接从图中找出45°、135°和225°的角吗?并在图中标出来。
13. 延长一个角的两条边这个角会变得更大吗?为什么?请用画图或文字的方法说明理由。
角的比较练习题角的比较练习题角是几何学中常见的概念,它是由两条线段或射线所夹成的部分。
在几何学中,我们经常需要比较不同角的大小。
下面是一些角的比较练习题,帮助我们更好地理解和掌握角的性质。
题目一:比较角的大小1. 请比较以下两个角的大小:∠ABC 和∠DEF。
2. 请比较以下两个角的大小:∠XYZ 和∠WVU。
3. 如果∠PQR 的度数是60°,∠STU 的度数是120°,那么这两个角的大小如何比较?解答:1. 要比较角的大小,我们可以通过度数来判断。
如果∠ABC 的度数小于∠DEF的度数,那么∠ABC 就比∠DEF 小;反之,如果∠ABC 的度数大于∠DEF 的度数,那么∠ABC 就比∠DEF 大。
如果两个角的度数相等,那么它们的大小就相等。
2. 同样地,我们可以通过度数来比较角的大小。
比较∠XYZ 和∠WVU 的度数,如果∠XYZ 的度数小于∠WVU 的度数,那么∠XYZ 就比∠WVU 小;反之,如果∠XYZ 的度数大于∠WVU 的度数,那么∠XYZ 就比∠WVU 大。
如果两个角的度数相等,那么它们的大小就相等。
3. ∠PQR 的度数是60°,∠STU 的度数是120°。
由于120°大于60°,所以∠STU 比∠PQR 大。
题目二:角的比较练习1. 已知∠ABC 是一个锐角,∠DEF 是一个钝角,那么这两个角的大小如何比较?2. 如果∠XYZ 是一个直角,∠WVU 是一个钝角,那么这两个角的大小如何比较?3. 如果∠PQR 是一个直角,∠STU 是一个锐角,那么这两个角的大小如何比较?解答:1. 锐角的度数小于90°,钝角的度数大于90°。
所以∠ABC 比∠DEF 小。
2. 直角的度数是90°,钝角的度数大于90°。
所以∠XYZ 比∠WVU 大。
3. 直角的度数是90°,锐角的度数小于90°。
4.4 角的比拟和运算5分钟训练 (预习类训练,可用于课前)∠1与∠2互补,那么∠1+∠2=_______,假设∠1与∠2互余,那么∠1+∠°角的余角为______,补角为_____,70°39′角的余角为_____,补角为______.假设一个角的度数为x(x <90°),那么它的余角是______,假设一个角的度数为x(x<180°),那么它的补角是______.思路解析:利用两角互余即两角相加等于90°,两角互补即两角相加等于180°求解.答案:180° 90° 60° 150° 19°21′ 109° 21′ 90°-x 180°-x4-4-1:O是直线AB上的一点,OC是∠AOB的平分线,①∠AOD的补角是______;②∠AOD的余角是______;③∠DOB的补角是______.思路解析:由图可知∠AOB=180°,∠AOC=∠COB =90°,根据补角、余角的概念可求解. 答案:①∠DOB ②∠DOC ③∠AOD4-4-2:〔1〕∠AOC=∠〔〕+∠〔〕;〔2〕∠AOB=∠〔〕-〔〕=∠〔〕-∠〔〕;〔3〕假设∠AOB=∠COD,那么∠AOC=〔〕.图4-4-1 图4-4-2思路解析:仔细观察图中各个角的关系是解决此题的关键.答案:〔1〕AOB BOC 〔2〕AOC BOC AOD BOD 〔3〕BOD10分钟训练(强化类训练,可用于课中)4-4-3:如果OC,OD把∠AOB三等份,那么∠COD=〔〕∠AOB,∠AOD=〔〕∠AOB,∠AOB=〔〕∠AOD.图4-4-3思路解析:由条件知∠AOC=∠COD=∠BOD.答案:1323322.填空:(1)77°42′+34°45′=______;(2)108°18′—56°23′=_______;(3)180°—(34°54′+21°33′)=______.思路解析:度、分、秒之间的进率为60,按照小学竖式计算(单位对齐). 答案:〔1〕112°27′〔2〕51°55′〔3〕123°33′∠AOB内部任取一点C,作射线OC,那么一定有( )A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOBD.∠AOC=∠BOC思路解析:作出图形,通过观察即可得出答案.答案:A4.判断:(1)一个角的余角一定是锐角;( )(2)一个角的补角一定是钝角;( )(3)一个角的补角不能是直角;( )(4)∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.( )思路解析:因为两角相加等于90°,那么这两个角互余,所以互余的两个角必都是锐角,所以(1)对,(4)错;而两个角互补是指两角相加等于180°,所以锐角、直角、钝角都有补角,所以(2),(3)都错.答案:〔1〕√〔2〕×〔3〕×〔4〕×4-4-4,射线OC为∠AOB的平分线,∠AOC=35°,那么∠AOB是多少?图4-4-4解:因为OC为∠AOB的平分线,所以∠AOC=∠BOC=35°.∴∠AOB=70°.4-4-5,如果∠1=65°15′,∠2=78°30′,∠3是多少度?图4-4-5思路解析:充分利用三角和为一个平角来解决问题.解:因为∠1,∠2,∠3组成一个平角,所以∠3=180°-∠1-∠2=36°15′.快乐时光水果摊一位挑剔的顾客来到一个小食品店,看到新送来的一批新鲜水果,他对售货员说:“给我两公斤橙子,并用纸把每个橙子分别包起来。
2019年12月04日初中数学组卷参考答案与试题解析一.选择题(共36小题)1.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.以上都不对【分析】首先同一单位,利用1°=60′,把∠α=40.4°=40°24′,再进一步与∠β比较得出答案即可.【解答】解:∵∠1=40.4°=40°24′,∠2=40°4′,∴∠1>∠2.故选:B.【点评】此题考查角的大小比较和度分秒之间的换算,在比较角的大小时有时可把度化为分来进行比较.2.如图,在此图中小于平角的角的个数是()A.9 B.10 C.11 D.12【分析】根据角的定义,找出图中小于平角的角.【解答】解:由图可知:∠CAB、∠CAE、∠BAE、∠AEB、∠CED、∠D、∠DCE、∠DCA、∠ECA、∠EBA、∠ABC小于平角,共11个.故选C.【点评】除了注意角要小于平角外,还要注意同一顶点处的角要全部找出来.3.用一个放大镜去考查一个角的大小,正确的说法是()A.角的度数扩大了 B.角的度数缩小了C.角的度数没有变化D.以上都不对【分析】角的大小只与两边叉开的大小有关,放大镜不能改变角的大小.【解答】解:用放大镜看一个角的大小时,角的度数不会发生变化,故选C.【点评】本题主要考查角的大小,明确角的大小只与两边叉开的大小有关,与其他无关是解决此类问题的关键.4.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,已知A,B,D,E四点共圆,同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角“大于圆周角,“圆外角“小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.5.若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3 B.∠2>∠1>∠3 C.∠1>∠3>∠2 D.∠3>∠1>∠2【分析】∠1、∠2已经是度、分、秒的形式,只要将∠3化为度、分、秒的形式,即可比较大小.【解答】解:∵∠1=20°18′,∠2=20°15′30′′,∠3=20.25°=20°15′,∴∠1>∠2>∠3.故选A.【点评】主要考查了两个角比较大小.在比较时要注意统一单位后再比较.6.若∠A=20°18′,∠B=20°16″,∠C=20.25°,则有()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【解答】解:∵∠A=20°18′,∠B=20°16″,∴∠A>∠B,∵∠C=20.25°=20°15′,∴∠B<∠C∴∠A>∠C>∠B.故选:C.【点评】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.7.如图,AOE是一条直线,图中小于平角的角共有()A.4个 B.8个 C.9个 D.10个【分析】根据角的定义分别表示出各角即可.【解答】解:图中小于平角的角共有:∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠DOE,∠COE,共9个.故选:C.【点评】此题主要考查了角的定义,熟练掌握角定义是解题关键.8.若∠A=20°18′,∠B=1212′,∠C=20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】先把∠B和∠C用度、分、秒表示,再比较即可.【解答】解:∵∠A=20°18′,∠B=1212′=20°12′,∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选C.【点评】本题考查了度、分、秒之间的换算,角的大小比较的应用,能理解度、分、秒之间的关系是解此题的关键.9.如图,射线OB、OC将∠AOD分成三部分,下列判断错误的是()A.如果∠AOB=∠COD,那么∠AOC=∠BODB.如果∠AOB>∠COD,那么∠AOC>∠BODC.如果∠AOB<∠COD,那么∠AOC<∠BODD.如果∠AOB=∠BOC,那么∠AOC=∠BOD【分析】利用图中角与角的关系选择即可得出D为错误选项.【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOC,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC=∠BOD,本选项错误.故选:D.【点评】本题主要考查了角的大小比较,解题的关键是正确找出各角的关系式.10.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠3【分析】根据1°=60′把∠1=17°18′化成度数再进行解答即可.【解答】解:∵1°=60′,∴18′=()°=0.3°,∴∠1=17°18′=17.3°,∴B正确.故选B.【点评】此题比较简单,解答此题的关键是熟知1°=60′.11.已知∠α,如图,则∠α的度数约为()A.75°B.60°C.45°D.30°【分析】根据图形和各个角度的大小得出即可.【解答】解:根据图形可以估计∠α约等于45°,故选C.【点评】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.12.已知α=76°5′,β=76.5°,则α与β的大小关系是()A.α>βB.α=βC.α<βD.以上都不对【分析】根据度分秒转化得出76.5°=76°30′,进而得出α与β的大小关系.【解答】解:∵α=76°5′,β=76.5°=76°30′,∴α<β.故选:C.【点评】此题主要考查了角的比较以及度分秒的转化,正确进行度分秒转化是解题关键.13.已知∠A=40°18′,∠B=40°17′30″,∠C=40.18°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠C>∠A>∠B D.∠A>∠C>∠B【分析】先统一单位,再根据角的大小比较的方法进行比较即可求解.【解答】解:∵∠C=40.18°=40°10′48″,40°18′>40°17′30″>40°10′48″,∴∠A>∠B>∠C.故选:A.【点评】考查了度分秒的换算和角的大小比较,度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.注意要统一单位.14.如果∠α=55.5°,∠β=55°5′,那么∠α与∠β之间的大小关系是()A.∠α>∠βB.∠α<∠βC.∠α=∠β D.无法确定【分析】首先根据1°=60′,将∠α转化为55°30′,再比较即可.【解答】解:∵∠α=55.5°=55°30′,∠β=55°5′,∴∠α>∠β.故选A.【点评】此题考查角的大小比较及度分秒的换算,注意统一单位,掌握1°=60′,1′=60″.15.如图,如果∠CAE>∠BAD,那么下列说法中一定正确的是()A.∠BAC>∠CAD B.∠DAE>∠CADC.∠CAE<∠BAC+∠DAE D.∠BAC<∠DAE【分析】先由∠CAE>∠BAD,根据角的和差可得∠CAD+∠DAE>∠BAC+∠CAD,再利用不等式的性质得出∠DAE>∠BAC,即∠BAC<∠DAE.【解答】解:∵∠CAE>∠BAD,∴∠CAD+∠DAE>∠BAC+∠CAD,∴∠DAE>∠BAC,即∠BAC<∠DAE.故选D.【点评】本题考查了角的大小比较,角的和差,不等式的性质,根据角的和差结合图形得出∠CAE=∠CAD+∠DAE,∠BAD=∠BAC+∠CAD是解题的关键.16.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断【分析】如果两个角的顶点重合,且有一边重合,两角的另一边均落在重合边的同旁:如果这两边也重合,说明两角相等;如果两边不重合,另一条边在里面的小,在外面的大;由此方法求解即可.【解答】解:将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选C.【点评】此题考查利用叠合法比较两个角的大小,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.17.若∠A=62.58°,∠B=62°48′.则∠A与∠B的大小关系是()A.∠A<∠B B.∠A=∠B C.∠A>∠B D.无法确定【分析】首先将62°48′,转化成62.8°,进而比较得出即可.【解答】解:∵∠A=62.58°,∠B=62°48′=62.8°,∴∠A<∠B,故选:A.【点评】此题主要考查了度分秒的转化以及角的比较大小,正确进行度分秒转化是解题关键.18.若∠A=45°18′,∠B=45°15′30″,∠C=45.15°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】根据度分秒间的关系,可把不到一度的化成分,根据度分秒的大小比较,可得答案.【解答】解;∠C=45.15°=45°9′,∵45°18′>45°15′30″>45°9′,故选:A.【点评】本题考查了角的大小比较,利用了角的度数大小的比较,先化成相同的单位.19.下列角度中,比20°小的是()A.19°38′B.20°50′C.36.2°D.56°【分析】根据角的大小比较方法分别与20°进行比较,即可得出答案.【解答】解:∵19°38′<20°,20°50′>20°,36.2°>20°,56°>20°,∴比20°小的是19°38,故选A.【点评】此题考查了角的大小比较,根据角的比较方法进行比较,是一道基础题,比较简单.20.在∠AOB的内部任取一点C,作射线OC,则一定存在()A.∠AOB>∠AOC B.∠AOB<∠BOC C.∠BOC>∠AOC D.∠AOC>∠BOC 【分析】利用角的大小进行比较.【解答】解:射线OC在∠AOB的内部,那么∠AOC在∠AOB的内部,且有一公共边;则一定存在∠AOB>∠AOC.故选A.【点评】本题考查角的大小比较,比较简单.21.∠α和∠β的顶点和一边都重合,另一边都在公共边的同侧,且∠α>∠β,那么∠α的另一边落在∠β的()A.另一边上B.内部C.外部D.以上结论都不对【分析】根据题意画出图形,利用数形结合即可得出结论.【解答】解:如图所示:.故选C.【点评】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.22.若∠1=75°24′,∠2=75.3°,∠3=75.12°,则()A.∠1=∠2 B.∠2=∠3 C.∠1>∠3 D.以上都不对【分析】根据1°=60′把∠1=75°24′化成度数再进行解答即可.【解答】解:∵1°=60′,∴24′=()°=0.4°,∴∠1=75°24′=75.4°,∴A、B均错误,C正确.故选C.【点评】此题比较简单,解答此题的关键是熟知1°=60′.23.如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOB B.∠AOC<∠DOBC.∠AOC=∠DOB D.∠AOC与∠DOB无法比较大小【分析】先根据∠AOB=∠COD得出∠AOB+∠BOC=∠COD+∠BOC,故可得出结论.【解答】解:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠DOB.故选C.【点评】本题考查的是角的大小比较,熟知角比较大小的法则是解答此题的关键.24.下列各式不正确的是()A.18000″<360′B.2°30′>2.4°C.36000″<8°D.1°10′20″>4219″【分析】1°=60′,1′=60″,根据以上内容进行变换,再比较即可.【解答】解:A、18000″=(18000÷60)′=300′<360′,故本选项错误;B、2°30′=2.5°>2.4°,故本选项错误;C、36000=10°>8°,故本选项正确;D、4219″=1°13′39″>1°10′20″,故本选项错误.故选C.【点评】本题考查了度、分、秒之间的换算的应用,能进行度、分、秒之间的换算是解此题的关键.25.已知O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC的关系是()A.∠AOC一定大于∠BOCB.∠AOC一定小于∠BOCC.∠AOC一定等于∠BOCD.∠AOC可能大于、等于或小于∠BOC【分析】根据题意发现,此题没有图形,那么我们应该通过分类讨论的方法,画出图形,由OC不同的位置,即可判断.【解答】解:如图所示,∴∠AOC可能会大于、小于、等于∠BOC.【点评】本题主要考查角的比较大小,当题目中没有给出图形时,要考虑全面,分情况去讨论.26.如图,若∠AOB=∠COD,那么()A.∠1>∠2 B.∠1<∠2C.∠1=∠2 D.∠1、∠2的大小不确定【分析】根据图形可知∠1+∠COB=∠AOB,∠COB+∠2=∠COD,由∠AOB=∠COD,从而可以判断∠1与∠2的关系.【解答】解:由图可知:∠1+∠COB=∠AOB,∠COB+∠2=∠COD,∵∠AOB=∠COD,∴∠1+∠COB=∠COB+∠2.∴∠1=∠2.故选C.【点评】本题考查角的大小的比较,解题的关键是数形结合,找出其中相等的量.27.如图,小于平角的角共有()A.10个B.9个 C.8个 D.4个【分析】小于平角的角有∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA.【解答】解:小于平角的角有∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA,共9个.【点评】本题考查了角的大小比较的应用,注意:应沿一个方向数,只有这样才能做到不重不漏.28.如图所示,小于平角的角有()A.9个 B.8个 C.7个 D.6个【分析】分别根据以A,B,C,D,E为顶点得出角的个数即可.【解答】解:符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,故有1+2+1+1+2=7个角.故选C.【点评】此题主要考查了角的定义,根据已知分别得出角的个数是解题关键.29.下列判断正确的是()A.∠1的2倍小于∠1的3倍B.用度量法无法确定两个角的大小C.若∠AOB=2∠BOC,则OC是∠AOB的平分线D.角的大小随边的长度变化而变化【分析】根据∠1>0即可判断A;角的大小比较用度量法和重叠法两种,角的大小不随边的长度的变化而变化,即可判断B、D,举出反例即可判断C.【解答】解:A、∵∠1>0,∴2∠1<3∠1,故本选项正确;B、用度量法能确定两个角的大小,故本选项错误;C、如图,符合条件∠AOB=2∠BOC,但OC不是∠AOB的平分线,故本选项错误;D、角的大小不随边的长度的变化而变化,故本选项错误;故选A.【点评】本题考查了角的有关内容,角平分线定义的应用,主要考查学生的理解能力和辨析能力.30.∠ABC与∠MNP相比较,若顶点B与N重合,且BC与MN重合,BA在∠MNP的内部,则它们的大小关系是()A.∠ABC>∠MNP B.∠ABC=∠MNP C.∠ABC<∠MNP D.不能确定【分析】根据题意画出图形,比较出两角的大小关系即可.【解答】解:如图所示:∵∠MNP=∠ABC+∠PBA,∴∠ABC<∠MNP.故选C.【点评】本题考查的是角的大小,根据题意画出图形,利用数形结合求解是解答此题的关键.31.已知三个点A,B,C在直线L上,点D在直线L外,以其中任意一点为顶点,则小于平角的角有()A.6个 B.7个 C.8个 D.10个【分析】利用图形找出角.【解答】解:先根据题意画出图形,便可找到如图所示的∠1,∠2,∠3,∠4,∠5,∠6,∠7.故选B.【点评】解题时要找到图中三条两两相交直线的交点,作为角的顶点,且找出的角要小于180°.32.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠C B.∠A>∠B=∠C C.∠B>∠C>∠A D.∠B=∠C>∠A 【分析】将∠A、∠B、∠C统一单位后比较即可.【解答】解:∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点评】此类题是进行度、分、秒的转化计算,相对比较简单,注意以60为进制即可.33.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A.∠AOD>∠BOC B.∠AOD<∠BOC C.∠AOD=∠BOC D.无法确定【分析】根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.【解答】解:∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.【点评】本题考查了角的大小比较,解题的关键是根据图得知∠COD为∠AOD 与∠BOC的公共角,再解题就容易了.34.已知∠α=39°18′,∠β=39.18°,∠γ=39.3°,下面结论正确的是()A.∠α<∠γ<∠βB.∠γ>∠α=∠βC.∠α=∠γ>∠βD.∠γ<∠α<∠β【分析】首先把∠α转化为39.3°,然后再来比较它们的大小.【解答】解:∵∠α=39°18′=39.3°,39.18°<39.3°,∴∠α=∠γ>∠β.故选C.【点评】本题考查了角的大小比较、度分秒的换算.度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.35.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是()A.∠α=∠βB.∠α<∠βC.∠α=∠γ D.∠β>∠γ【分析】将∠α、∠β、∠γ统一单位后比较即可.【解答】解:1°=60′,∴18′=()°=0.3°,∴18°18′=18°+0.3°=18.3°,即∠α=∠γ.故选C.【点评】此类题是进行度、分、秒的转化计算,相对比较简单,注意以60为进制即可.36.下列说法中,正确的是()A.角的平分线就是把一个角分成两个角的射线B.若∠AOB=∠AOC,则OA是∠AOC的平分线C.角的大小与它的边的长短无关D.∠CAD与∠BAC的和一定是∠BAD【分析】根据角平分线的性质和角的含义以及角的计算分别进行解答,即可得出答案.【解答】解:A、角的平分线就是把一个角分成两个相等的角的射线,故本选项错误;B、若∠AOB=∠AOC,OA也不是∠AOC的平分线,如图:故本选项错误;C、角的大小与它的边的长短无关,故本选项正确;D、当射线AB在∠CAD的内部时,∠CAD与∠BAC的差是∠BAD,故本选项错误;故选C.【点评】此题考查了角的大小比较、角平分线的性质和角的计算,关键掌握角平分线的性质和角的画法,多数角分两种情况画,在角的内部和角的外部.二.填空题(共3小题)37.如果∠1=∠2,∠2=∠3,则∠1=∠3;如果∠1>∠2,∠2>∠3,则∠1>∠3.【分析】根据等量代换由∠1=∠2,∠2=∠3得到∠1=∠3;根据不等式的性质由∠1>∠2,∠2>∠3得到∠1>∠3.【解答】解:∵∠1=∠2,∠2=∠3,∴∠1=∠3;∵∠1>∠2,∠2>∠3,∴∠1>∠3.故答案为=,>.【点评】本题考查了角的大小比较:角的度数越大,角越大.也考查了等量代换和不等式的性质.38.如图,∠AOB>∠AOC(填>,=,<);若∠AOC=∠AOB,则OC平分∠AOB;若OC是∠AOB的角平分线,则∠AOB=2∠AOC.【分析】利用已知图形,结合角平分线的性质分析得出即可.【解答】解:由图象可得:∠AOB>∠AOC,若∠AOC=∠AOB,则OC平分∠AOB;若OC是∠AOB的角平分线,则∠AOB=2∠AOC故答案为:>,∠AOB,∠AOB.【点评】此题主要考查了角的比较大小以及角平分线的定义,正确把握角的定义是解题关键.39.如图,能用一个字母表示的角是∠A,∠O,图中共有8个小于平角的角,它们分别是∠A、∠O、∠ABO、∠ABC、∠OBC、∠AOC、∠ACB、∠OCB..【分析】利用角的定义及角的表示法解题.【解答】解:以点A、O为顶点的角分别只有一个,故能用一个字母表示为∠A、∠O.图中的角:以A为顶点的角是∠A;以B为顶点的角是∠ABO,∠ABC,∠OBC;以C为顶点的角是∠ACO,∠ACB,∠OCB;以O为顶点的角是∠O.共8个.故填∠A、∠O;8;∠ABO,∠ABC,∠OBC,∠ACO,∠ACB,∠OCB.【点评】数角时将每个顶点处的角数全,不要遗漏.三.解答题(共11小题)40.如图,AO⊥OC,解答下列问题:①比较∠AOB、∠AOC、∠AOD、∠AOE的大小,并指明其中的锐角、直角、钝角及平角;②写出∠AOB、∠AOC、∠BOC、∠AOE中某些角之间的两个等量关系.【分析】(1)根据垂直得出∠AOC=90°,再根据锐角、直角、钝角及平角的定义求出即可;(2)根据已知得出∠AOB+∠BOC=∠AOC,∠AOB+∠BOC+∠AOC=∠AOE.【解答】解:(1)∠AOB<∠AOC<∠AOD<∠AOE,∵AE⊥OC,∴∠AOC=90°,∴∠AOB是锐角,∠AOC是直角,∠AOD是钝角,∠AOE是平角;(2)∠AOB+∠BOC=∠AOC,∠AOB+∠BOC+∠AOC=∠AOE.【点评】本题考查了角的大小比较和垂直定义的应用,主要考查学生的理解能力.41.如图所示,点O在直线AB上,并且∠AOC=∠BOC=90°,∠EOF=90°,试判断∠AOE和∠COF,∠COE和∠BOF的大小关系.【分析】根据已知得出∠AOE和∠COF都与∠COE互余,进而得出∠AOE=∠COF,即可得出:∠COE=∠BOF.【解答】解:因为∠EOF=∠COF+∠COE=90°,∠AOC=∠AOE+∠COE=90°,即∠AOE和∠COF都与∠COE互余,根据同角的余角相等得:∠AOE=∠COF,同理可得出:∠COE=∠BOF.【点评】此题主要考查了角的比较大小,根据已知得出∠AOE=∠COF是解题关键.42.如图,回答下列问题:(1)比较∠FOD与∠FOE的大小;(2)借助三角板比较∠DOE与∠BOF 的大小;(3)借助量角器比较∠AOE与∠DOF的大小.【分析】(1)根据OD边在∠FOE内部,即可得出∠FOD<∠FOE.(2)用量角器量∠DOE大于45゜,∠DOF小于45゜,即可得出∠DOE>∠DOF.(3)用量角器量出角的度数,再比较大小即可.【解答】解:(1)∵OD在∠FOE的内部,∴FOD<∠FOE.(2)用含有45゜角的三角板比较,可得∠DOE>45゜,∠BOF<45゜,则∠DOE>∠BOF.(3)用量角器度量得∠AOE=30゜,∠DOF=30゜,则∠AOE=∠DOF.【点评】此题考查了角的大小比较,解题的关键是会用量角器估算角的大小,是一道基础题.43.如图,∠BOD=90°,∠COE=90°,解答下列问题:(1)图中有哪些小于平角的角?用适当的方法表示出它们.(2)比较∠AOC、∠AOD、∠AOE、∠AOB的大小,并指出其中的锐角、钝角、直角、平角.(3)找出图中所有相等的角.【分析】根据题中所给条件,结合图形:(1)找出途中锐角、直角、钝角即可;(2)直接比较,并且分类即可;(3)利用直角都相等,等角的余角相等列出即可.【解答】解:(1)图中小于平角的角有∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠DOE、∠DOB、∠EOB;(2)由图可知,∠AOC<∠AOD<∠AOE<∠AOB,其中∠AOC为锐角,∠AOD为直角,∠AOE为钝角,∠AOB为平角;(3)∠AOC=∠DOE,∠COD=∠BOE,∠AOD=∠BOD=∠COE.【点评】此题考查对角的分类以及角的大小比较,注意找角要从一个点出发,按一定的顺序数.44.如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系?【分析】在AB上截取AE=AC,连接DE,证△ACD≌△AED,根据全等三角形的性质和等腰三角形的性质即可得到两角的大小关系.【解答】解:∠B十∠C=180°.理由如下:在AB上截取AE=AC,连接DE.∵AD平分∠BAC,∴∠CAD=∠EAD,在△ACD与△AED中,,∴△ACD≌△AED(SAS),∴∠C=∠AED,CD=DE,又∵CD=BD,∴DE=DB,∴∠B=∠DEB,又∵∠DEB+∠AED=180°,∴∠B+∠C=180°.【点评】本题主要考查全等三角形的性质和等腰三角形的性质和角平分线的定义.45.比较两个角的大小,有以下两种方法(规则)①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.注:构造图形时,作示意图(草图)即可.【分析】①根据量角器的使用方法量出每一个角的度数,根据角的度数即可比较大小;②把∠ABC放在∠DEF上,使B和E重合,边EF和BC重合,DE和BA在EF的同侧,根据图形的包含情况即可得出答案.【解答】①解:用量角器度量∠ABC=50°,∠DEF=70°,即∠DEF>∠ABC.②解:如图:把∠ABC放在∠DEF上,使B和E重合,边EF和BC重合,DE和BA在EF的同侧,从图形可以看出∠DEF包含∠ABC,即∠DEF>∠ABC.【点评】本题主要考查学生的动手操作能力,注意:用量角器测量角的度数的方法,比较两个角的大小由三种方法:①度量法,②重叠法,③观察法,即通过看直接比较两个角的大小.46.李老师到数学王国去散步,刚走到“角”的家门,就听到∠A、∠B、∠C在吵架,∠A说:“我是37°18′,我应该最大!”∠B说:“我是37.2°,我应该最大!”.∠C也不甘示弱:“我是37.18°,我应该和∠A一样大!”听到这里,李老师对它们说:“别吵了,你们谁大谁小,由我来作评判!”,你知道李老师是怎样评判的吗?【分析】根据度、分、秒的换算1度=60分,即1°=60′,1分=60秒,即1′=60″.将37°18′,37.2°,37.18°的单位统一,再进行大小的比较.【解答】解:∵∠A=37°18′,∠B=37.2°=37°12′,∠C=37.18°=37°10.8′,∴∠C<∠B<∠A.【点评】本题考查了度分秒的换算和角的大小比较,关键是统一单位,再进行大小的比较.47.如图,AB垂直CD(即∠AOC=∠AOD=∠BOD=∠BOC=90°)(1)比较∠AOD,∠EOB,∠AOE大小(用“<”连接)(2)如∠EOC=28°,求∠EOB和∠EOD的度数(适当写出解题过程)【分析】(1)根据已知得出∠AOD=90°,∠EOB<90°,∠AOE>90°,即可得出答案;(2)代入∠EOB=∠BOC﹣∠EOC求出即可;代入∠EOD=∠BOD+∠BOE求出即可.【解答】解:(1)∵∠AOC=∠AOD=∠BOD=∠BOC=90°,∴∠AOD=90°,∠EOB<90°,∠AOE>90°,即∠EOB<∠AOD<∠AOE.(2)∵∠EOC=28°,∠BOC=90°,∴∠EOB=90°﹣28°=62°,∵∠BOD=90°,∴∠EOD=∠EOB+∠BOD=62°+90°=152°.【点评】本题考查了角的大小比较和计算的应用,主要考查学生的计算能力.48.如图,已知OE是∠COA的平分线,∠AOE=59°35′,∠AOB=∠COD=16°17′22″.(1)求∠BOC的度数.(2)比较∠AOC与∠BOD的大小.【分析】(1)根据角平分线定义求出∠AOC,根据∠BOC=∠AOC﹣∠AOB代入求出即可;(2)∠AOC=∠BOD,理由是根据∠BOD=∠BOC+∠COD求出∠BOD=119°10′,即可得出答案.【解答】解:(1)∵OE是∠COA的平分线,∠AOE=59°35′,∴∠AOC=2∠AOE=119°10′,∵∠AOB=16°17′22″,∴∠BOC=∠AOC﹣∠AOB=102°52′38″;(2)∠AOC=∠BOD,理由如下:∵∠BOC=102°52′38″,∠COD=16°17′22″,∴∠BOD=∠BOC+∠COD=119°10′,∵∠AOC=119°10′,∴∠AOC=∠BOD.【点评】本题主要考查了角平分线定义和角的有关计算,根据图形求出有关角的度数是解答此题的关键.49.已知∠A=24.1°+6°,∠B=56°﹣26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.【分析】先求出每个角的度数,再比较即可.【解答】解:∵∠A=24.1°+6°=30.1°=30°6′,∠B=56°﹣26°30′=29°30′,∠C=18°12′+11.8°=18°12′+11°48′=29°60′=30°,∴∠A>∠C>∠B.【点评】本题考查了度、分、秒之间的换算的应用,能求出各个角的度数是解此题的关键.50.如图,点D在∠AOB的内部,点E在∠AOB的外部,点F在射线OA上,试比较下列各角的大小.(1)∠AOB>∠BOD;(2)∠AOE>∠AOB;(3)∠BOD<∠FOB;(4)∠AOB=∠FOB;(5)∠DOE>∠BOD.【分析】根据图形,即可比较角的大小.【解答】解:(1)∠AOB>∠BOD;(2)∠AOE>∠AOB;(3)∠BOD<∠FOB;(4)∠AOB=∠FOB;(5)∠DOE>∠BOD.故答案为:(1)>;(2)>;(3)<;(4)=;(5)>.【点评】本题考查了角的大小比较,解决本题的关键是结合图形进行解答.。
小学四年级数学上册角练习题培优在小学四年级数学上册的角练习题中,学生们将会接触到一些基础的角度概念和计算方法。
通过这些练习题的学习,可以帮助学生更好地理解角度的概念和应用,提高他们的数学能力。
下面我们来看一些典型的练习题。
练习题一:角的大小比较1. 比较下列两个角的大小:∠ABC 和∠CBD。
2. 比较下列两个角的大小:∠DEA 和∠DEC。
解答:1. 角∠ABC 和∠CBD的度数分别为120°和60°,因此∠ABC 比∠CBD 大。
2. 角∠DEA 和∠DEC的度数分别为90°和30°,因此∠DEA 比∠DEC 大。
练习题二:角的补角和余角1. 已知角A的度数为30°,求角A的补角和余角。
2. 已知角B的度数为60°,求角B的补角和余角。
解答:1. 角A的补角为90°-30°=60°,角A的余角为180°-30°=150°。
2. 角B的补角为90°-60°=30°,角B的余角为180°-60°=120°。
练习题三:角的平分线1. 在∠EFG 中,作∠EF的平分线,交∠EFG的延长线于点H,连结GH,求∠GHF 和∠HFE的度数。
2. 在∠IJK 中,作∠KJ的平分线,交∠IJK的延长线于点L,连结KL,求∠KLI 和∠KIL的度数。
解答:1. ∠EF的平分线将∠EFG 分成两个相等的角,即∠GHF 和∠HFE 的度数相等。
2. ∠KJ的平分线将∠IJK 分成两个相等的角,即∠KLI 和∠KIL的度数相等。
通过这些练习题,学生们可以巩固角的概念和计算方法,并学会应用到实际问题中。
希望同学们认真思考和解答这些题目,提高数学能力。
这里给出了一些小学四年级数学上册角练习题的例子。
同学们可以根据这些题目的要求来进行解答,通过不断地练习和思考,提高自己的数学水平。
角的大小比较(解答题)1、把一副三角尺如图所示拼在一起,试确定图中∠A、∠B、∠AEB、∠ACD的度数,并用“<”将它们连起来.2、把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.3、如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系?4、如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?5、请估计下面角的大小,然后再用量角器测量.6、如图,已知AB∥CD.(1)判断∠FAB与∠C的大小关系,并说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.答案与评分标准1、把一副三角尺如图所示拼在一起,试确定图中∠A、∠B、∠AEB、∠ACD的度数,并用“<”将它们连起来.考点:角的大小比较。
分析:答题时首先要知道一副三角板的各角度数,然后求出∠AEB,最后比较大小.解答:解:∠A=30°,∠B=45°,∠AEB=135°,∠ACD=90°∴∠A<∠B<∠ACD<∠AEB.点评:本题主要考查角的比较与运算,要知道一副三角板各角的度数,比较简单.2、把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.考点:角的大小比较。
分析:(1)一副三角尺一个是等腰直角三角形,另一个是一个角为30°的直角三角形,看图写出各个角的度数,(2)按角的大小顺序连接.解答:解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.点评:本题主要考查角的比较与运算,比较简单.3、如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系?考点:角的大小比较。
七年级数学上册几角的比较与运算练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.用度、分、秒表示91.34︒为( )A .9120'24''︒B .9134'︒C .9120'4''︒D .913'4''︒2.如图,下列各式中错误的是( )A .∠AOC =∠1+∠2B .∠AOC =∠AOD -∠3 C .∠1+∠2=∠3 D .∠AOD -∠1-∠3=∠23.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4.若110AOC ∠=︒,OB 在AOC ∠内部,OM 、ON 分别平分AOC ∠和AOB ∠,若23MON ∠=︒,则AOB ∠度数为( ).A .43.5︒B .46︒C .64︒D .87︒5.如图,D 、E 分别为ABC 的边AB 、AC 的中点,连接DE ,过点B 作BF 平分ABC ∠,交DE 于点F ,若4EF =,7AD =,则BC 的长为( )A .22B .20C .18D .166.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A .120°B .60°C .90°D .150°7.如图,在22⨯的正方格中,连接AB 、AC 、AD ,则图中1∠、2∠、3∠的和( ).A .必为锐角B .必为直角C .必为钝角D .可能是锐角、直角或钝角 8.已知∠A =20°18′,∠B =20°15′30″,∠C =20.25°,则度数最大的是( )A .∠AB .∠BC .∠CD .无法确定9.下列说法正确的个数是( )(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB ,则点C 是AB 的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A >∠C >∠B .A .1个B .2个C .3个D .4个10.已知2,AOB BOC ∠=∠若30,BOC ∠=则AOC ∠等于( )A .90B .120或60C .30D .30或9011.把一副三角板ABC 与BDE 按如图所示的方式拼接在一起,其中A 、D 、B 三点在同一条直线上,BM 为∠ABC 的角平分线,BN 为∠CBE 的角平分线.下列结论∠∠MBN =45o ,∠∠BNE =∠BMC ,∠∠EBN =65o ,∠2∠NBD =∠CBM ,其中结论正确的个数是( )A .1个B .2个C .3个D .4个12.如图,已知BM 平分∠ABC ,且BM //AD ,若∠ABC =70°,则∠A 的度数是()A .30°B .35°C .40°D .70°二、填空题13.3242'︒=______°.14.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)15.如图,OC 是AOB ∠的平分线,13BOD COD ∠=∠,15BOD ∠=︒,则COD ∠=_____,BOC ∠=______,AOB ∠=______.16.如图,正方形ABCD 的对角线相交于点O ,正三角形OEF 绕点O 旋转.在旋转过程中,当AE =BF 时,∠AOE 的大小是__________.三、解答题17.如图,O 是直线AB 上一点,OC 是AOB ∠的平分线,3128COD '∠=︒,求AOD ∠的度数.18.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.19.如图1,四边形ABCD 中,点E 在边AB 上,∠BCE 与∠BEC 互余,过点E 作EF CD ,交AD 于点F .(1)若EF ∠CE ,求证:∠AEF =∠BCE ;(2)如图2,EG 平分∠BEC 交DC 延长线于点G ,∠BCD +∠ECD =180°.点H 在FD 上,连接EH ,CH ,∠AHE +∠BCH =90°.当∠D +∠AEF =2∠G 时,判断线段CH 与CE 的大小关系,并说明理由.20.已知OC 是AOB ∠内部的一条射线,M ,N 分别为OA ,OC 上的点,线段OM ,ON 同时分别以30/s ︒,10/s ︒的速度绕点O 逆时针转动,设转动时间为s t .(1)如图(1),若120AOB ∠=︒,OM ,ON 逆时针转动到OM ',ON '处.∠若OM ,ON 的转动时间t 为2,则BON COM ''∠+∠=________;∠若OM '平分AOC ∠,ON '平分BOC ∠,求M ON ''∠的值.(2)如图(2),若4AOB BOC ∠=∠,当OM ,ON 分别在AOC ∠,BOC ∠内部转动时,请猜想COM ∠与BON ∠的数量关系,并说明理由.参考答案:1.A【分析】根据度分秒的进率''"160,160︒==把度可化为分和秒的形式即得.【详解】由度分秒的进率可得''"'"91.34910.346091200.460912024︒=︒+⨯=︒+⨯=︒故选:A.【点睛】考查了度分秒的进率关系式,注意相邻两个单位的进率是60,熟记进率关系式是解题的关键. 2.C【分析】结合图形根据角的和差关系逐项作出判断即可求解.【详解】解:A. ∠AOC =∠1+∠2,判断正确,不合题意;B. ∠AOC =∠AOD -∠3,判断正确,不合题意;C. ∠1+∠2=∠AOC ,∠AOC 与∠3不一定相等,判断错误,符合题意;D. ∠AOD -∠1-∠3=∠2判断正确,不合题意.故选:C .【点睛】本题考查了根据图形确定角的和差关系,理解题意并结合图形作出判断是解题关键.3.B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∠//CD AB ,60D ∠=︒∠60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∠OE 平分∠AOD , ∠1120602DOE ∠=⨯︒=︒, ∠806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∠602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.4.C【分析】首先根据AOC ∠的度数和OM 平分AOC ∠求出AOM ∠的度数,然后可求出AON ∠的度数,最后根据ON 平分AOB ∠即可求出AOB ∠的度数.【详解】如图所示,∠110AOC ∠=︒,OM 平分AOC ∠, ∠1552AOM AOC ∠=∠=︒,∠=552332AON AOM MON ∠∠-∠=︒-︒=︒,∠ON 平分AOB ∠,∠264AOB AON ∠=∠=︒.故选:C .【点睛】此题考查了角平分线的概念和求角度问题,解题的关键是根据角平分线的概念求出AOM ∠的度数.5.A【分析】根据角平分线,平行线和等腰三角形的性质可求出线段DE 的长度,进一步根据中位线的性质即可求出BC 的长.【详解】解:D ,E 为AB ,AC 中点,AD =7, //DE BC ∴,且12DE BC =,AD =BD=7 DFB FBC ∴∠=∠, 又BF 平分ABC ∠,DBF FBC ∴∠=∠,即DFB DBF ∠=∠,7DF BD ∴==,则7411DE DF FE =+=+=,222BC DE ∴==.故选:A .【点睛】此题考查了角平分线,平行线,等腰三角形,三角形中位线的性质,熟练运用角平分线,平行线,等腰三角形,三角形中位线的性质是解题的关键.6.C【分析】根据平角的概念结合角平分线的定义列式求解.【详解】解:∠O 是直线AD 上一点∠180AOD ∠=︒∠射线,OC OE 分别平分,AOB BOD ∠∠ ∠12COB AOB ∠=∠,12EOB BOD ∠=∠ ∠1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒ 故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键.7.C【分析】标注字母如图所示,正方格,将正方格沿AC 对折,可得∠1=∠HDA ,可求∠3+∠1=90°,可得1∠+2∠+3∠>90°即可.【详解】解:标注字母如图所示,∠正方格,将正方格沿AC 对折,∠∠1=∠HDA ,∠∠3+∠1=∠3+∠HDA =90°,∠1∠+2∠+3∠>90°∠图中1∠、2∠、3∠的和是钝角.故选择C .【点睛】本题考查网格中的角度问题,掌握正方形网格的边有平行,将角转化∠1=∠HDA ,求出∠3+∠1=90°是解题关键.8.A【分析】将∠A 、∠B 、∠C 统一单位后比较即可.【详解】∠∠A =20°18′,∠B =20°15′30″,∠∠A >∠B ,∠∠C =20.25°=20°15′,∠∠A >∠C ,则度数最大的是∠A .故选A .【点睛】本题考查了度、分、秒的转化计算,解决这类题目的基本思路是把各个角的度数统一单位后再比较大小.9.A【分析】根据两点之间的距离的定义,线段的中点的定义以及角的比较即可作出判断.【详解】(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C 在线段AB 上,且AB=2CB 时,点C 是AB 的中点,当C 不在线段AB 上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A >∠C >∠B ,正确;所以有1个正确.故选A .【点睛】考查了两点之间的距离、线段中点的定义、以及角的大小的比较,正确理解定义是关键. 10.D【分析】可分两种情况讨论:当射线OB 在AOC ∠中时,当射线OC 在AOB ∠中时,分别求出结果即可.【详解】解:如图1,当射线OB 在AOC ∠中时,2AOB BOC ,30BOC ∠=︒,60AOB ∴∠=︒,90AOC AOB BOC ∴∠=∠+∠=︒,如图2,当射线OC 在AOB ∠中时,2AOB BOC ,30BOC ∠=︒,60AOB ∴∠=︒,30AOC AOB BOC .故选:D .【点睛】本题是角的加减运算,能分两种情况讨论是解题的关键.11.C【分析】根据三角板中角的度数及角平分线的概念逐个进行分析判断.【详解】解:由题意可得:90EBD ∠=︒,60ABC ∠=︒,∠150EBC EBD ABC ∠=∠+∠=︒,∠BM 为∠ABC 的角平分线,BN 为∠CBE 的角平分线, ∠1302CBM ABC ∠=∠=︒,1752NBC EBN EBC ∠=∠=∠=︒,故∠错误; ∠∠MBN =NBC CBM ∠-∠=45o ,故∠正确;∠BNE =180°-E EBN ∠-∠=60°,∠BMC =90°-CBM ∠=60°,∠∠BNE =∠BMC ,故∠正确;9015NBD EBN ∠=︒-∠=︒,∠2∠NBD =∠CBM ,故∠正确;正确的是∠∠∠,共3个,故选:C .【点睛】本题主要考查了角平分线的定义,利用角平分线的定义计算角的度数是解答此题的关键. 12.B【分析】先根据角平分线的性质,求出∠ABC 的度数,再由平行线的性质得到∠A 的度数.【详解】解:∠BM 平分∠ABC ,∠∠MBA =12∠ABC =35°.∠BM ∠AD ,∠∠A =∠MBA =35°.故选:B .【点睛】本题考查的是角平分线的性质,平行线的性质,掌握以上知识是解题的关键.13.32.7 【分析】根据42324232+()60'︒=︒︒解答. 【详解】解:42324232+()32+0.732.760'︒=︒︒=︒︒=︒ 故答案为:32.7.【点睛】本题考查角、度的换算,是基础考点,掌握相关知识是解题关键.14.>【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∠45FAG BAC ∠=∠=︒,∠BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.15. 45︒ 30 60︒【分析】根据13BOD COD ∠=∠,15BOD ∠=︒可求出COD ∠的度数,COD BOD ∠-∠即可求BOC ∠的度数,然后根据OC 是AOB ∠的平分线即可求出AOB ∠的度数.【详解】∠13BOD COD ∠=∠,15BOD ∠=︒, ∠345COD BOD ∠=∠=︒;∠451530BOC COD BOD ∠=∠-∠=︒-︒=︒;∠OC 是AOB ∠的平分线,∠260AOB BOC ∠=∠=︒.故答案为:45︒;30;60︒.【点睛】此题考查了角平分线的概念,角度之间的数量关系,解题的关键是熟练掌握角平分线的概念,角度之间的数量关系.16.15°或165°【详解】分情况讨论:(1)如图(1),连接AE 、BF .∠四边形ABCD 为正方形,∠OA =OB ,∠AOB =90°. ∠∠OEF 为等边三角形,∠OE =OF ,∠EOF =60°.∠在∠OAE 和∠OBF 中,,{,,OA OB OE OF AE BF ===∠∠OAE∠∠OBF (SSS ), ∠1(9060)152AOE BOF ∠=∠=⨯︒-︒=︒. (2)如图(2),连接AE 、BF .∠在∠AOE 和∠BOF 中,,{,,OA OB OE OF AE BF ===∠∠AOE∠∠BOF (SSS ),∠∠AOE =∠BOF ,∠∠DOF =∠COE , ∠1(9060)152COE ∠=⨯︒-︒=︒,∠∠AOE =180°-15°=165°. 综上,∠AOE 的大小为15°或165°.17.5832'︒.【分析】首先根据O 是直线AB 上一点,OC 是AOB ∠的平分线,求出AOC ∠的度数是90°;然后根据AOD AOC COD ∠=∠-∠即可求出AOD ∠的度数.【详解】解:∠O 是直线AB 上一点,OC 是AOB ∠的平分线,∠180290AOC ∠=÷=,∠3128COD '∠=,∠9031285832AOD AOC COD ''∠=∠-∠=-=.【点睛】此题主要考查了角平分线的定义和角度的计算,要熟练掌握,解答此题的关键是清楚角平分线的定义.18.(1)20°;(2)60°【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∠∠AOE=40°,∠∠AOF=180°-∠AOE=140°,∠OC平分∠AOF,∠∠AOC=1∠AOF=70°,2∠OA∠OB,∠∠AOB=90°,∠∠BOD=180°-∠AOB-∠AOC=20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC 平分∠AOF ,∠∠AOC =12∠AOF =60°,∠∠COE =∠AOE +∠AOC =60°+60°=120°,∠∠DOE =180°-∠COE =60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.19.(1)见解析(2)∠D =∠BCG ,理由见解析【分析】(1)根据EF CE ⊥得出90FEC ∠=︒,进而根据已知得出90BCE BEC ∠+∠=︒,从而求解;(2)先证明ECD BCG ∠=∠,然后设ECD BCG x ∠=∠=,表示出1802BCE x ∠=︒-,290BEC x ∠=-︒,进而表示出180180FEC ECD x ∠=︒-∠=︒-,18090AEF FEC BEC x ∠=︒-∠-∠=︒-,求出135FEG ∠=︒,45G ∠=︒,进而求出D x ∠=,得出D BCG ∠=∠. (1)证明:∠EF ∠CE ,∠∠FEC =90°,∠∠AEF +∠BEC =90°.∠∠BCE 与∠BEC 互余,∠∠BCE +∠BEC =90°,∠∠AEF =∠BCE ;(2)解:∠∠BCD +∠ECD =180°,∠BCD +∠BEG =180°,∠∠ECD =∠BCG .设∠ECD =∠BCG =x ,∠∠BCE =180°﹣2x ,∠BEC =2x ﹣90°.∠EG 平分∠BEC ,∠∠BEG =∠GEC =x ﹣45°.∠EF CD ,∠∠FEC =180°﹣∠ECD =180°﹣x ,∠∠AEF =180°﹣∠FEC ﹣∠BEC =90°﹣x ,∠FEG =∠FEC +∠GEC =180°﹣x +x ﹣45°=135°,∠∠G =180°﹣CFEG =45°.∠∠D +∠AEF =2∠G ,∠∠D =2∠G ﹣∠AEF =90°﹣(90°﹣x )=x ,∠∠D =∠BCG .【点睛】本题考查了多边形的内角和外角以及平行线的性质,解题的关键是熟练运用平行线的性质. 20.(1)∠40゜;∠60゜;(2)3COM BON ∠=∠,理由见解析.【分析】(1)∠先求出∠AOM′、CON′,再表示出∠BON′、∠COM′,然后相加并根据∠AOB=120°计算即可得解;∠先由角平分线求出∠AOM′=∠COM′=12∠AOC ,∠BON′=∠CON′=12∠BOC ,再求出∠COM′+∠CON′=12∠AOB=12×120°=60°,即∠M′ON′=60°; (2)设旋转时间为t ,表示出∠CON 、∠AOM ,然后列方程求解得到∠BON 、∠COM 的关系,再整理即可得解.【详解】(1)∠线段OM 、ON 分别以30°/s 、10°/s 的速度绕点O 逆时针旋转2s ,∠∠AOM′=2×30°=60°,∠CON′=2×10°=20°,∠∠BON′=∠BOC -20°,∠COM′=∠AOC -60°,∠∠BON′+∠COM′=∠BOC -20°+∠AOC -60°=∠AOB -80°,∠∠AOB=120°,∠∠BON′+∠COM′=120°-80°=40°;故答案为:40°;∠∠OM′平分∠AOC ,ON′平分∠BOC , ∠∠AOM′=∠COM′=12∠AOC ,∠BON′=∠CON′=12∠BOC , ∠∠COM′+∠CON′=12∠AOC+12∠BOC=12∠AOB=12×120°=60°, 即∠MON=60°;(2)∠COM=3∠BON ,理由如下:设∠BOC=x ,则∠AOB=4x ,∠AOC=3x ,∠旋转t 秒后,∠AOM=30t ,∠CON=10t ,∠∠COM=3x-30t=3(x-10t),∠NOB=x-10t,∠∠COM=3∠BON.【点睛】本题考查了角的计算,读懂题目信息,准确识图并表示出相关的角度,然后列出方程是解题的关键.。
四年级数学角比较大小练习题1. 角的概念角是由两条射线共同确定的,其中一个射线称为起始边,另一个射线称为终止边,它们共同形成一个开口。
例如,下图中的∠ABC就是一个角,其中射线AB为起始边,射线BC为终止边。
2. 角的比较在比较角的大小时,我们可以按照以下准则进行判断:- 如果两个角的起始边和终止边重合,那么这两个角是相等的。
- 如果一个角的起始边和另一个角的终止边重合,那么这个角比另一个角大。
- 如果一个角的终止边和另一个角的起始边重合,那么这个角比另一个角小。
3. 练习题现在我们一起来练习一下比较角的大小。
请仔细观察下图,并回答问题。
[图片描述]a) ∠ABC 和∠DEF 哪个更大?b) ∠PQR 和∠STU 哪个更小?c) ∠XYZ 和∠MNO 哪个与∠ABC 相等?请你思考一下,并在脑海中得出答案,然后再继续阅读。
答案:a) ∠ABC 和∠DEF 相等,因为它们的起始边和终止边完全重合。
b) ∠PQR 更小,因为它的起始边与∠STU 的终止边重合。
c) ∠XYZ 与∠ABC 相等,因为它们的起始边和终止边都分别与∠ABC 的起始边和终止边重合。
4. 总结通过观察和比较角的起始边和终止边,我们可以判断它们的大小关系。
对于完全重合的角,它们是相等的;对于一个角的起始边与另一个角的终止边重合的情况,前者比后者大;而对于一个角的终止边与另一个角的起始边重合的情况,前者比后者小。
练习题的目的是帮助你熟悉角的比较规则,通过不断的练习,你会掌握如何准确地判断角的大小关系。
数学是一个需要不断练习的学科,希望你能坚持,并取得更好的成绩。
注意:本文所使用的图片仅为辅助理解,实际练习题需在纸上进行。
二年级数学上册角度的认识专项练习题题一:角的比较1. 请用大小号比较符号来比较下列角的大小:- 45度和60度的角- 直角和锐角- 钝角和平角2. 关于角的大小,回答以下问题:- 锐角是指多大于180度的角?- 平角是指多大于360度的角?题二:角的度数表示将下列角用度数表示出来:1. 45度的角2. 90度的角3. 120度的角4. 180度的角题三:角的类型判断下列各角属于什么类型:1. 30度的角2. 90度的角3. 150度的角4. 270度的角题四:角的三要素回答下列问题:1. 角的三要素是什么?2. 什么是顶点?3. 什么是边?题五:角的构造用直尺和画圆规构造下列角:1. 45度的角2. 90度的角3. 120度的角题六:角的补角和邻补角1. 什么是角的补角?2. 什么是角的邻补角?题七:角的相对位置判断下列各图中的角是否相邻、垂直或互补关系:1. 2. 题八:角的计算计算下列各角的度数:1. 25度和135度的角的和是多少度?2. 90度和270度的角的差是多少度?题九:角的垂直平分线在下列图形中找出角的垂直平分线,并写出它们的度数:1. 2. 题十:角的性质给出下列各角的性质:1. 60度的角是什么角?2. 180度的角是什么角?3. 270度的角是什么角?4. 360度的角是什么角?以上是二年级数学上册角度的认识专项练习题,希望能帮助你加深对角度的理解。
完成这些练习题后,你将更加熟悉角的比较、度数表示、类型、构造、补角和邻补角、相对位置、计算、垂直平分线以及角的性质。
祝你学习顺利!。
4.4《角的比较》练习一、基础过关1.77°42′+69°30′=________; 180°-65°28′=________; 18°18′32″×5=_________; 45°38′14″÷2=______.2.如果射线OC 把∠AOB 分成∠AOC=∠COB,那么OC 叫做∠AOB 的______平分线,并且∠AOB =2∠______=2∠______,∠COB=21∠_______. 3.如图,已知OC 平分∠DOB ,OB 平分∠AOD ,则∠BOC =______∠AOB ,∠AOD =_______∠DOC.OD C BAODC BA︒北西南东45︒65︒30︒ODCBA(3题) (4题) (10题) 4.如图,(1)∠AOC=_____+_____=_____-______;(2)∠AOB=______-______=______-______.5.已知∠α是直角,∠β是钝角,∠γ是锐角,用“>”将这三个角连接起来是__________.6.若从点A 看点B 是北偏东30°,那么从点B 看点A 是_______________.7.用一副三角板不能画出( )A.75°角B.135°角C.160°角D.105°角8.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC 等于( )A.120°B.120°或60°C.30°D.30°或90° 9.两个锐角之和是( )A.一定是锐角B.一定是直角C.一定是钝角D.可能是锐角,可能是直角,可能是钝角 10.如图,下列说法正确的是( )A.OA 的方向是北偏东30°B.OB 的方向是北偏西25°C.OC 的方向是西北方向D.OD 的方向是南偏西25°FEDCBA 4321321COEDBA(11题) (12题) (13题)11.如图,∠1=∠2,,∠3=∠4,则下列结论正确的个数为( )①AD 平分∠BAF ②AF 平分∠DAC ③AE 平分∠DAF ④AF 平分∠BAC A.0个 B.1个 C.2个 D.3个 二、能力提升12.如图,如果∠1=65°15′,∠2=78°30′,求∠3是多少度?13.如图,已知直线AB 、CD 相交于O 点,∠AOE =130°,OC 是∠BOE 的平分线,求∠AOD.14.如图,∠AOB 是平角,OD 、OC 、OE 是三条射线,OD 是∠AOC 的平分线, 请你补充一个条件,使∠DOE=90°,并说明你的理由.EODCBA(14题)15.如图,AOB 为直线,OE 、OD 、OC 为射线,OC 平分∠BOD ,∠AOE ∶∠EOD =1∶3,∠AOD ―∠DOB=40°,求∠EOC 的度数.OE DC BA(15题)16.(1)如图,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分∠BOC, 求∠MON 的度数. (2)如果(1)中的∠AOB=α,其他条件不变,求∠MON 的度数.(3)如果(1)中的∠BOC=β (β为锐角),其他条件不变,求∠MON 的度数. (4)从(1)、(2)、(3)的结果中能得出什么结论?N MOCBA(16题)三、聚沙成塔数学小知识丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?。
积 分 检 测
1.(1分)如果∠1-∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( )
A.∠3>∠4
B.∠3=∠4
C.∠3<∠4
D.不确定
2.(1分)如图,∠1=15°,∠AOC=90°,点B 、O 、D 在一条直线上,则∠2的度数为( )
A.75°
B.85°
C.95°
D.105°
3.(1分)如图,OP 是∠AOB
的平分线,则下列说法错误的是( ) A.∠AOB=2∠AOP B.∠AOP= ∠AOB C.∠AOB= ∠BOP D.∠AOP=∠BOP 4.(3分)如图,∠AOB =900,OM 平分∠AOB ,ON 平分∠AOC ,若∠MON =60º,∠AOM = , ∠AON = ,∠BOC = .
M
N
C
B A O
(第2题) (第3题) (第4题) (变式训练)
变式训练:(1-2题各1分,3题结论2分,理由5分)
1、如图:若∠AOB= 900 ,∠AOC =30o , OM 、 ON 分别平分∠BOC 、∠AOC ,则∠MON=_____.
2、若OM 、 ON 分别平分∠BOC 、 ∠AOC , ∠MOC=25O , ∠MON=45O ,则∠AOB=_____.
3、若∠AOB=a ,OM 、 ON 分别平分∠BOC 、∠AOC ,则∠MON 与∠AOB 的度数有什么关系?说明理由.(写在练习本上)
积 分 检 测
1.(1分)如果∠1-∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( )
A.∠3>∠4
B.∠3=∠4
C.∠3<∠4
D.不确定
2.(1分)如图,∠1=15°,∠AOC=90°,点B 、O 、D 在一条直线上,则∠2的度数为( )
A.75°
B.85°
C.95°
D.105°
3.(1分)如图,OP 是∠AOB 的平分线,则下列说法错误的是( ) A.∠AOB=2∠AOP B.∠AOP= ∠AOB C.∠AOB= ∠BOP D.∠AOP=∠BOP 4.(3分)如图,∠AOB =90º,OM 平分∠AOB ,ON 平分∠AOC ,若∠MON =60º,∠AOM = , ∠AON = ,∠BOC = .
M
N
C
B A O
(第2题) (第3题) (第4题) (变式训练)
变式训练(1-2题各1分,3题结论2分,理由5分)
1、如图:若∠AOB= 900 ,∠AOC =30o , OM 、 ON 分别平分∠BOC 、∠AOC ,则∠MON=_____.
2、若OM 、 ON 分别平分∠BOC 、 ∠AOC , ∠MOC=25O , ∠MON=45O ,则∠AOB=_____.
3、若∠AOB=a ,OM 、 ON 分别平分∠BOC 、∠AOC ,则∠MON 与∠AOB 的度数有什么关系?说明理由.(写在练习本上)
21212121。