高一数学期末试卷附答案
- 格式:doc
- 大小:48.00 KB
- 文档页数:6
高一数学期末试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若角的终边上有一点,则的值是( ). A .B .C .D .2.设向量,,,,,若,则的最小值是( ) A .B .C .D .3.已知集合,则=A .B .C .D .4.已知lg2≈0.3010,且a = 2×8×5的位数是M ,则M 为( ). A .20 B .19 C .21 D .225.在中,已知向量,则的面积等于( ) A . B .C .D .6.已知,若不等式对任意恒成立,则实数的取值范围是( )A .B .C .D .7.若函数在区间上是减函数,则实数的取值范围是( ) A .B .C .D .8.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取数名学生进行问卷调查.如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9C.8D.79.在△ABC中,三边长AB=7,BC=5,AC=6,则的值为()A.19 B.-14 C.-18 D.-1910.已知函数的一部分图象如图所示,如果,则()A. B. C. D.11.已知函数设表示中的较大值,表示中的较小值,记的最小值为的最大值为,则( )A. B. C.16 D.-1612.若,则下列不等式成立的是()A. B. C. D.13.已知下列说法正确的是(A.B.C.D.14.设f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},则A满足()A.A={1,2,4,8,16}B.A={0,1,2,log23}C.A{0,1,2,log23}D.不存在满足条件的集合15.已知函数,且,则等于()A. B. C. D.16.已知数列满足()A. B. C. D.17.已知满足,则直线必过定点( ) A .B .C .D .18.满足M {a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .419.一名射击运动员射击10次,命中环数如下,则该运动员命中环数的标准差为( )10 10 10 9 10 8 8 10 10 8 A .B .C .D .20.下列函数中,既是偶函数又在单调递增的函数是( ) A .B .C .D .二、填空题 21.已知都是定义域内的非奇非偶函数,而是偶函数,写出满足条件的一组函数,______________;________________; 22.求满足>的x 的取值集合是 .23.已知幂函数满足,则24.25.函数的定义域是 .26.二面角α﹣l ﹣β的平面角为120°,在面α内,AB ⊥l 于B ,AB=2在平面β内,CD ⊥l 于D ,CD=3,BD=1,M 是棱l 上的一个动点,则AM+CM 的最小值为 .27.根据任意角的三角函数定义,将正弦、余弦、正切函数在弧度制下的值在各象限的符号(用“+”或“-”)填入括号(填错任何一个将不给分)。
高一数学期末试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.F(x)=(1+是偶函数,且f(x)不恒等于零,则f(x)( )A.是奇函数B.可能是奇函数,也可能是偶函数C.是偶函数D.不是奇函数,也不是偶函数2.函数y=的值域是()A.[-1,1] B.[-1,1) C.(-1,1] D.(-1,1)3.△ABC的内角A、B、C的对边分别为、、,若=,且=2,则等于()A、 B、 C、 D、4.1. 下列函数中,与函数的定义域相同的函数是()A. B. C. D.5.已知数列满足,若,则=( )A. B. C. D.6.求值()A. B. C. D.7.8.已知函数是定义在的增函数,则满足<的取值范围是()A.(,) B.[,) C.(,) D.[,)9.已知函数为奇函数,且当x>0时,,则()A.2 B.-2 C.0 D.110.若角α,β满足-<α<0<β<,则α-β的取值范围是()A.B.C.D.11.函数的定义域是()A.(3,+∞) B.[3,+∞) C.(4,+∞) D.[4,+∞)12.则的夹角为120º,则的值为()A.-5 B.5 C.- D.13.用二分法研究函数f(x)=x5+8x3-1的零点时,第一次经过计算得f(0)<0,f(0.5)>0,则其中一个零点所在的区间和第二次应计算的函数值分别为()A.(0,0.5),f(0.125)B.(0.5,1),f(0.875)C.(0.5,1),f(0.75)D.(0,0.5),f(0.25)14.设,,则有()A. B. C. D.15.函数的最小正周期是( )....16.某工厂生产某种产品的月产量和月份满足关系.现已知该厂1月份、2月份生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为( )A.2万件 B.1.8万件 C.1.75万件 D.1.7万件17.已知,且是第二象限角,那么等于()A.- B.- C. D.18.若函数的反函数(),则A. 1B. -1C. 1和-1D. 519.广告费用与销售额的统计数据如下表:根据上表可得回归方程的约等于3,据此模型预估广告费用为6万元时,销售额为()A.55万元 B.53万元 C.57万元 D.59万元20.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b二、填空题}中,=1,=3,则的值是 .21.在等比数列{an22.若关于的函数y=的定义域是R,则k的取值范围是____________23.已知幂函数的图像经过点,则函数的解析式为.24.已知函数f(x)=(x∈N),若f(f(2))=4a,则实数a等于.+25.函数,则 .26.如图是某学校抽取的个学生体重的频率分布直方图,已知图中从左到右的前个小组的频率之比为,第小组的频数为,则的值是.27.设方程的根为,方程的根为,则28.如图,扇形的面积是,它的弧长是,则扇形的圆心角的弧度数为;弦的长为.29.函数的单调递减区间为30.某校举行2012年元旦汇演,七位评委为某班的小品打出的分数如下茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是和.三、解答题31.△ABC的三个顶点分别为A(0,4)、B(﹣2,6)、C(﹣8,0)(1)求边AC和AB所在直线的方程(2)求边AC上的中线BD所在的直线的方程.32.在△ABC中,若A=120°,AB=5,BC=,(1)求AC边长及sinB;(2)求△ABC的面积S.33.求值34.已知函数.()给定的直角坐标系内画出的图象.()写出的单调递增区间(不需要证明)及最小值(不需要证明).()设,若有个零点,求得取值范围.35.如图,四棱锥中,底面为正方形,侧棱底面,且,过棱的中点作交于点,连接,,,.(1)求证:平面平面;(2)求三棱锥的体积.参考答案1 .A【解析】设是减函数,则是减函数。
高一数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知在△ABC 中,sinA ∶sinB ∶sinC =3∶5∶7,那么这个三角形的最大角是( ) A .135° B .90° C .120° D .150°2.以下关于几何体的三视图的论述中,正确的是 A .球的三视图总是三个全等的圆 B .正方体的三视图总是三个全等的正方形 C .水平放置的正四面体的三视图都是正三角形D .水平放置的圆台的俯视图是一个圆 3.若关于x 的方程有且只有两个不同的实数根,则实数k 的取值范围是 A .B .C .D .4.已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图像上的两点,那么的解集的补集为 ( )A .(-1,)B .(-5,1)C .[,D .5.下列关系式中正确的是( ) A . B .C.D.6.函数y=的图象大致是()A. B. C. D.7.三个数..的大小顺序为( )A. B. C. D.8.下列每组函数是同一函数的是()A.B.C.D.9.等于()A. B. C. D.10.设集合,则()A. B. C. D.11.(2012•佛山一模)某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁 C.33.6岁 D.36.6岁12.(2013•宁德模拟)若直线l1:x+my+3=0与直线l2:(m﹣1)x+2y+6m=0平行,则m=()A. B.2 C.﹣1 D.2或﹣113.设函数,区间,集合,则使M=N成立的实数对有()A.0个 B.1个 C.2个 D.无数多个14.已知函数,则函数在区间[-1,1)上()A.最大值为0,最小值为B.最大值为0,最小值为-2C.最大值为0,无最小值D.无最大值,最小值为15.下列分别为集合A到集合B的对应:其中,是从A到B的映射的是()A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4)16.在等比数列中,则()A.16 B.16或-16 C.32 D.32或-3217.设等比数列{an}的前n项为Sn,若则数列{ an}的公比为q为()A.2 B.3 C.4 D.518.(08·江西)函数y=tan x+sin x-|tan x-sin x|在区间(,)内的图象大致是()19.若直线被圆截得弦长为,则实数的值为()20.已知,,那么的值为().A. B. C. D.二、填空题21.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于___________.22.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案,若某用户每月预计上网时间为66小时,则选择________方案最合算。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。
2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。
一、选择题1. 选择题答案:C解析:根据题意,需要找到一个数x,使得x^2 + 2x + 1 = 0。
这是一个完全平方公式,即(x + 1)^2 = 0。
解得x = -1。
2. 选择题答案:B解析:题目要求计算sin(60°)的值。
根据特殊角的三角函数值,sin(60°) =√3/2。
3. 选择题答案:A解析:题目要求判断函数f(x) = x^3 - 3x在区间[0, 2]上的单调性。
求导得f'(x) = 3x^2 - 3。
令f'(x) = 0,解得x = 1。
当x < 1时,f'(x) < 0;当x > 1时,f'(x) > 0。
因此,f(x)在[0, 1]上单调递减,在[1, 2]上单调递增。
4. 选择题答案:D解析:题目要求计算极限lim(x→0) (sinx/x)^2。
根据洛必达法则,分子分母同时求导得lim(x→0) (cosx)^2/(2x) = lim(x→0) 1/(2x) = ∞。
5. 选择题答案:B解析:题目要求判断方程x^3 - 2x + 1 = 0的根的个数。
设f(x) = x^3 - 2x + 1,求导得f'(x) = 3x^2 - 2。
令f'(x) = 0,解得x = ±√2/3。
根据导数的正负,可以判断出f(x)在(-∞, -√2/3)和(√2/3, +∞)上单调递增,在(-√2/3,√2/3)上单调递减。
因此,f(x)在(-∞, +∞)上有3个根。
二、填空题6. 填空题答案:x = -2解析:根据题意,需要解方程x^2 - 4x + 4 = 0。
这是一个完全平方公式,即(x- 2)^2 = 0。
解得x = 2。
7. 填空题答案:y = 3x + 2解析:根据题意,需要找到函数y = kx + b的图像经过点(1, 3)。
将点(1, 3)代入方程得3 = k + b。
高一必修一数学期末试卷及答案第一部分:选择题(共80分)1.解下列各方程:5x+8=3x+12. A. x=3B. x=2C. x=−3D. x=13.若x+3=2x−1,则x= A. 2B. 4C. -4D. -24.已知a=2,当x=3时,y=ax2的值是: A. 18B. 54C. 36D. 125.若f(x)=3x+4,则f(−2)= A. -2B. -6C. -2D. -10第二部分:填空题(共20分)1.已知直线y=2x+3与y=−x+1的交点坐标为(a,b),则a=(填入具体数字)2.设x是保证2x+5>3x成立的x的取值范围,x的范围是(m,n),则m=(填入具体数字),n=(填入具体数字)第三部分:计算题(共60分)1.已知a+b=5,a−b=1,求a与b的值。
2.计算$\\frac{3}{5} \\div \\frac{4}{9}$的结果。
3.若y=x2−3x+2,求当x=2时,y=?第四部分:简答题(共40分)1.简述解一元一次方程的基本步骤。
2.什么是函数?函数的概念及符号表示是什么?高一必修一数学期末试卷参考答案第一部分:选择题答案1. A. x=32. B. 43. C. 364. B. -2第二部分:填空题答案1.$(\\frac{2}{3}, \\frac{7}{3})$2.$(5, \\infty)$第三部分:计算题答案1.a=3,b=22.$\\frac{27}{20}$3.y=0第四部分:简答题答案1.解一元一次方程的基本步骤包括化简方程、移项、合并同类项、求解等。
2.函数是自变量和因变量之间的对应关系,通常用f(x)表示。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
高一数学上学期期末试卷含答案一、选择题1.设全集{0,1,2,3,4}U =,集合{21}A x U x =∈-≥‖∣则UA( )A .{13}xx <<∣ B .{13}xx ≤≤∣ C .{2}D .{}1,2,3-2.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],3.若角β满足条件sin cos 0ββ<,且cos sin 0ββ-<,则β是第( )象限角 A .一B .二C .三D .四4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P --,则2sin sin 2αα+=( )A .58B .85C D5.已知函数()ln 3f x x x =+-,则()f x 的零点所在的大致区间为( ) A .()0,1B .()1,2C .()2,3D .()3,46.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +==( )A .2B .4C .D .7.若()f x 是奇函数,且在区间(0,)+∞上是增函数,(2)0f =,则2()0xf x ->的解集是( )A .(2,0)(0,2)-B .(,2)(0,2)-∞-⋃C .(,2)(2,)-∞-+∞D .(2,0)(2,)-+∞8.已知函数3cos 2y x ππ⎛⎫=+⎪⎝⎭,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭既有最小值也有最大值,则实数t 的取值范围是( )A .31326t <≤ B .32t >C .31326t <≤或52t > D .52t >二、填空题9.已知函数()f x 满足(3)()f x f x +=,且(1)2f =,则下列结论正确的是( ) A .()11f -= B .(0)0f = C .(4)2f = D .(10)2f = 10.21x ≤的一个充分不必要条件是( )A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+ 12.记函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象为曲线F ,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增C .曲线F 关于直线12x π=-对称D .将函数sin 2y x =的图象向右平移3π个单位长度,得到曲线F 三、多选题13.设集合{}260,M xx mx x R =-+=∈∣,且{2,3}M M =,则实数m 的取值范围是____.14.已知实数x 、y ,正数a 、b 满足2x y a b ==,且213x y +=-,则1a b-的最小值为_________.15.已知函数f (x )=2x ,1()()()g x f x f x =-,若1()(2)()(2)h x f x tg x f x =++(t 为实数)在(0,+∞)上有两个不同的零点x 1、x 2,则x 1+x 2的取值范围为_______16.如图,直线l 是函数y x =的图象,曲线C 是函数12log y x =图象,1P 为曲线C 上纵坐标为1的点.过1P 作y 轴的平行线交l 于2,Q 过2Q 作y 轴的垂线交曲线C 于2P ;再过2P 作y 轴的平行线交l 于点Q 3,过Q 3作y 轴的垂线交曲线C 于3P ;…设点123,,,,P P P n P 的横坐标分别为123,,,,.n x x x x 若201812log ,x a =则2020x =_____(用a 表示)四、解答题17.在“①A B =∅,②A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤. (Ⅰ)若0a =,求A B ;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答记分.18.设函数()y f x =的表达式为()()2cos cos 3244f x x x x ππωωω⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,其中常数0>ω.(1)求函数()y f x =的值域; (2)设实数1x ,2x 满足122x x ππω-=<,若对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,求ω的值以及方程1f x 在闭区间[]0,π上的解.19.已知函数3()1f x x =-. (1)画出函数的草图,并用定义证明函数的单调性; (2)若[]2,7x ∈,求函数的最大值和最小值. 20.如图,现有一块半径为2m ,圆心角为3π的扇形木板,按如下方式切割一平行四边形:在弧AB 上任取一点P (异于A 、B ),过点P 分别作PC 、PD 平行于OB 、OA ,交OA 、OB 分别于C 、D 两点,记AOP α∠=.(1)当点P 位于何处时,使得平行四边形OCPD 的周长最大?求出最大值;(2)试问平行四边形OCPD 的面积是否存在最大值?若存在,求出最大值以及相应的α的值;若不存在,请说明理由.21.已知函数()xf x a =(0a >,且1a ≠).(1)证明:()()()1212222f x f x f x x +≥+;(2)若()12f x =,()23f x =,()128f x x =,求a 的值; (3)x ∀∈R ,()212xx f x -+≤恒成立,求a 的取值范围.22.已知{0M x R x =∈≠且}1x ≠,()(1,2)n f x n =是定义在M 上的一系列函数,满足:1()f x x =,()11()i i x f x f i N x ++-⎛⎫=∈ ⎪⎝⎭.(1)求()3f x ,()4f x 的解析式;(2)若()g x 为定义在M 上的函数,且1()1x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()22(21)2(1)()318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.【参考答案】一、选择题 1.C 【分析】先求出集合A ,再根据补集定义即可求出. 【详解】{0,1,2,3,4}U =,{}21={1A x U x x U x ∴=∈-≥∈≤或}{}30,1,3,4x ≥=,{}2U A ∴=.故选:C. 2.A 【分析】先根据函数(1)f x +的定义域为[0 1],,求出112x ≤+≤,再令1lg 2x ≤≤即可求求解. 【详解】因为函数(1)f x +的定义域为[0 1],, 所以112x ≤+≤, 所以1lg 2x ≤≤, 解得:10100x ≤≤,所以(lg )f x 的定义域为[10 100],, 故选:A. 3.B 【分析】由sin cos 0ββ<可知sin ,cos ββ的值异号,再由cos sin 0ββ-<可知sin 0,cos 0ββ><,从而可判断其所在的象限 【详解】解:因为sin cos 0ββ<,所以sin ,cos ββ异号, 因为cos sin 0ββ-<,即cos sin ββ<, 所以sin 0,cos 0ββ><, 所以β是第二象限的角, 故选:B 4.B 【分析】先由正弦、余弦函数的定义得到sinαα==,再求值即可. 【详解】由正弦、余弦函数的定义有sin α==,cos α==, 所以2248sin sin 2sin 2sin cos 2((55ααααα+=+=+⨯⨯=. 故选:B.5.C 【分析】首先判断函数的单调性,再根据零点存在性定理判断. 【详解】ln y x =和3y x =-都是增函数,所以()ln 3f x x x =+-是增函数,()120f =-<,()2ln 2230f =+-<,()3ln3330f =+->,()()230f f <,所以函数()f x 的零点在区间()2,3内. 故选:C 6.C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C 7.A 【分析】由题意,可知2()0xf x ->等价于2()0xf x <,然后结合函数的单调性与奇偶性分别讨论0x >与0x <的两种情况.【详解】由题意,()f x 是奇函数,所以2()0xf x ->等价于2()0xf x <,当0x >时,()0f x <,此时()f x 在(0,)+∞上是增函数,且(2)0f =,所以解得02x <<;当0x <时,()0f x >,因为()f x 是奇函数,所以解得20x -<<,所以2()0xf x ->的解集为(2,0)(0,2)-.故选:A 8.C 【分析】根据题意得到31326t πππ<≤或52t ππ<,计算得到答案. 【详解】3cos sin 2y x x πππ⎛⎫=+= ⎪⎝⎭,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭则55,66x t t πππ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭函数有最小值也有最大值 则3133132626t t πππ<≤∴<≤或5522t t ππ<∴< 故选:C 【点睛】本题考查了三角函数的最值问题,漏解是容易发生的错误.二、填空题9.CD 【分析】根据函数的周期,计算求值. 【详解】由条件()()3f x f x +=,可知函数的周期3T =, 因为()12f =,则()()4102f f ==. 故选:CD 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.AD 【分析】根据不等式的性质及作差法判断即可. 【详解】解:对于A ,()()()()111111b a a b b b b aa a a a a a +-++--==+++0a b >>,所以0a b ->,所以()01b aa a -<+,所以11b b a a +<+,故选项A 一定不成立;对于B ,不妨取2a =,1b =,则11a b a b +>+,故选项B 可能成立; 对于C ,不妨取2a =,1b =,则11a b b a+>+,故选项C 可能成立; 对于D ,222(2)(2)02(2)(2)a b a a b b a a b b a a b b b a b b a b ++-+--==<+++,故22a b aa b b+<+,故选项D 一定不成立; 故选:AD . 12.ABC 【分析】求出周期即可判断A ;由222232k x k πππππ-+≤-≤+求出单调性可判断B ;求出12f π⎛⎫- ⎪⎝⎭即可判断C ;求出sin 2y x =平移后的解析式即可判断D. 【详解】函数()f x 的最小正周期为22ππ=,故A 选项正确; 由222232k x k πππππ-+≤-≤+,解得()51212k x k k ππππ-+≤≤+∈Z ,所以函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 选项正确; 由于sin 2sin 1121232f ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以直线12x π=-是曲线F 的一条对称轴,故C 选项正确:sin 2y x =向右平移3π个单位长度得到2sin 2sin 233y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 选项错误. 故选:ABC.三、多选题13.({}5m ∈-【分析】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,按集合M 中元素的个数,结合根与系数之间的关系,分类讨论即可求解. 【详解】由题意{}2,3MM =,可得M 是集合{}2,3的子集,又{}260,M x x mx x R =-+=∈,当M 是空集时,即方程260x mx -+=无解,则满足()2460m ∆=--⨯<,解得m -<<(m ∈-,此时显然符合题意;当M 中只有一个元素时,即方程260x mx -+=只有一个实数根,此时()2460m ∆=--⨯=,解得m =±x =x ={}2,3的子集中的元素,不符合题意,舍去; 当M 中有两个元素时,则2,3M,此时方程260x mx -+=的解为12x =,23x =,由根与系数之间的关系,可得两根之和为5,故235m =+=;当5m =时,可解得2,3M ,符合题意.综上m 的取值范围为({}5m ∈-.故答案为:({}5m ∈-【点睛】方法点睛:根据集合的运算求参数问题的方法:1、要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;2、若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;3、若集合表示的不等式的解集,常依据数轴转化为不等式(组)求解,此时需要注意端点值是否取到.14.132-【分析】利用指数与对数的互化,换底公式以及对数的运算得出218a b =,可得出218a a a b-=-,利用二次函数的基本性质可求得1a b-的最小值.【详解】已知实数x 、y ,正数a 、b 满足2x y a b ==,则log 2a x =,log 2b y =,由换底公式可得()2222212log log log 3a b a b x y +=+==-,可得218a b =,则218a b=,因为0a >,则22111188163232a a a a b ⎛⎫-=-=--≥- ⎪⎝⎭,当且仅当116a =时,等号成立,因此,1a b -的最小值为132-.故答案为:132-. 【点睛】关键点点睛:本题考查代数式最值的求解,解题的关键就是利用指数与对数的互化、换底公式以及对数的运算得出a 、b 所满足的关系式,再结合函数的基本性质来求解.15.(()2log 2,+∞【分析】通过换元将方程转化为一元二次方程的问题,利用韦达定理建立两根的等量关系,再利用基本不等式建立不等式关系求范围. 【详解】令()0h x =,则221122022xx x xt ⎛⎫++-= ⎪⎝⎭,即211222022x x x x t ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,令122x x m =-,则220m tm ++=,因为函数122x x y =-在()0,∞+单调递增,所以m 与x 一一对应,所以220m tm ++=有两个不相等的实数根12,m m ,由韦达定理知122m m =,所以12121122222x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得1212122112222222x x x x x x x x ++⎛⎫+-+= ⎪⎝⎭,因为12x x ≠,所以122122222x x x x +>,所以121212222x x x x +++->,令1220x x n +=>,则2410n n -+>,解得2n >1222x x +>(122log 2x x +>.故答案为:(()2log 2,+∞. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 16.12a⎛⎫⎪⎝⎭【分析】设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,,所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭,由201812log ,x a =则21log 201912ax a ⎛⎫== ⎪⎝⎭,从而可得答案.【详解】1P 为曲线C 上纵坐标为1的点,则11,12P ⎛⎫⎪⎝⎭ 过1P 作y 轴的平行线交l 于2,Q 则21122Q ⎛⎫⎪⎝⎭,过2Q 作y 轴的垂线交曲线C 于2P ,设2212P x ⎛⎫ ⎪⎝⎭,,则1221log 2x =,则12212x ⎛⎫= ⎪⎝⎭,所以1221122P ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭, 过2P 作y 轴的平行线交l 于3,Q 则112231122Q ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 过3Q 作y 轴的垂线交曲线C 于3P ,设123312P x ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,则121321log 2x ⎛⎫= ⎪⎝⎭,即1212312x ⎛⎫ ⎪⎝⎭⎛⎫= ⎪⎝⎭ 设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,, 所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭由201812log ,x a =则21log 201912ax a ⎛⎫== ⎪⎝⎭所以201920201122a ax ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:12a⎛⎫⎪⎝⎭【点睛】关键点睛:本题考查数列的递推公式的推导,解答本题的关键是先计算出点123,,,P P P 的坐标得出一般的处理方法,再设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,,所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭,属于中档题.四、解答题17.(1){|31}x x -<≤;(2)若选①,(,1][2,)-∞-+∞;若选②,()1,2- 【分析】(1)由0a =得到{|31}A x x =-<<,然后利用并集运算求解.(2)若选A B =∅,分A =∅和A ≠∅两种情况讨论求解; 若选A B ⋂≠∅,则由23123110a a a a -<+⎧⎪-<⎨⎪+>⎩求解. 【详解】(1)当0a =时,{|31}A x x =-<<,{|01}B x x =<≤; 所以{|31}A B x x =-<≤ (2)若选①,A B =∅,当A =∅时,231a a -≥+,解得4a ≥, 当A ≠∅时,4231a a <⎧⎨-≥⎩或410a a <⎧⎨+≤⎩,解得:24a ≤<或1a ≤-,综上:实数a 的取值范围(,1][2,)-∞-+∞. 若选②,A B ⋂≠∅,则23123110a a a a -<+⎧⎪-<⎨⎪+>⎩,即421a a a <⎧⎪<⎨⎪>-⎩,解得:1a 2-<<, 所以实数a 的取值范围()1,2-. 【点睛】易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)[]2,2-;(2)1ω=,0x =或 3x π=或x π=.【分析】(1)先利用三角函数恒等变换公式对函数化简得()2sin 26f x x πω⎛⎫=+ ⎪⎝⎭,从而可求出函数的值域;(2)对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,可得()12f x =-,()22f x =,从而可得112262x k ππωπ+=-,222262x k ππωπ+=+,12,k k Z ∈,再由122x x ππω-=<可求出1ω=,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,然后由1sin 262x π⎛⎫+= ⎪⎝⎭解方程使其解在区间[]0,π上即可【详解】 (1)()()()()2sin cos 22cos 22sin 2446f x x x x x x x πππωωωωωω⎛⎫⎛⎫⎛⎫=--+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()[]2sin 22,26f x x πω⎛⎫=+∈- ⎪⎝⎭,所以函数()y f x =的值域[]2,2-;(2)对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,()12f x =-,()22f x = 所以112262x k ππωπ+=-,222262x k ππωπ+=+,12,k k Z ∈ 所以()1212122222222k k k k x x πππππππωωω-----===<,可得12222k k -=,1ω=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭因为[]0,x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦()2sin 216f x x π⎛⎫=+= ⎪⎝⎭,所以1sin 262x π⎛⎫+= ⎪⎝⎭所以266x ππ+=或 5266x ππ+=或 13266x ππ+=,即0x =或 3x π=或x π=所以方程1f x在闭区间[]0,π上的解为0x =或 3x π=或x π=19.(1)图象见解析,证明见解析;(2)最大值为3,最小值为12. 【分析】(1)画出()f x 图象,利用定义法,证明()()120f x f x ->,结合()f x 的定义域,证得()f x 的单调区间.(2)结合()f x 的单调性来求得()f x 在区间[]2,7上的最大值和最小值. 【详解】(1)()f x 的图象如下图所示:()f x 的定义域为{}|1x x ≠,当1x <时,任取121x x <<,()()()()211212123331111x x f x f x x x x x --=-=⨯----,其中21120,10,10x x x x ->-<-<,所以()()120f x f x ->,所以()f x 在区间(),1-∞上递减. 同理可证得()f x 在区间()1,+∞上递减. (2)由(1)得()f x 在区间[]2,7上递减, 所以2x =时,()f x 取得最大值为3321=-, 当7x =时,()f x 取得最小值为31712=-. 20.(1)点P 位于弧AB 的中点时,使得平行四边形OCPD 83;(223【分析】过P 点作OC 的垂线,垂足为H ,从而可得PH =2sin α,OH =2cos α,43sin PC α=23sin CH α=,得出23sin 2cos OC OH CH αα=-=(1)平行四边形OCPD 的周长为f (α) 83sin 33πα⎛⎫=+ ⎪⎝⎭,利用三角函数的性质即可求解. (2)4323()sin 2363S OC PH παα⎛⎫=⋅=+- ⎪⎝⎭,利用三角函数的性质即可求解. 【详解】过P 点作OC 的垂线,垂足为H ,因为OP =2,∠AOP =α,则PH =2sin α,OH =2cos α,2sin 43sin sin3PC ααπ=,123sin 2CH PC α== 所以23sin 2cos OC OH CH αα=-= (1)设平行四边形OCPD 的周长为f (α), 则43sin 83sin 43sin ()2()4cos 4cos f OC PC αααααα=+=833πα⎛⎫+ ⎪⎝⎭, 因为点P 异于A 、B 两点,所以03πα<<,所以当6πα=,即点P 位于弧AB 的中点时,使得平行四边形OCPD 83. (2)设平行四边形OCPD 的面积为S (α),则23sin ()2cos 2sin S OC PH αααα⎛=⋅=⋅ ⎝⎭243sin 4sin cos ααα=23(1cos 2)2sin 2αα-=432326πα⎛⎫+ ⎪⎝⎭, 由(1)得,03πα<<,所以52666πππα<+<, 所以当262ππα+=,即6πα=,也就是点P 位于弧AB 的中点时,使得平行四边形OCPD21.(1)见详解;(23)(]1,11,28⎡⎫⎪⎢⎣⎭【分析】(1)根据函数解析式,直接作差比较()()1222f x f x +与()122f x x +的大小,即可证明结论成立;(2)根据题中条件,由指数幂运算性质,直接计算,即可得出结果; (3)先由不等式恒成立,得到x ∀∈R ,212x xx a -+≤恒成立;不等式两边同时取对数,得到x ∀∈R ,22log 1x a x x ≤-+恒成立,讨论0x =,0x >,0x <三种情况,分别求出对应的a 的范围,再求交集,即可得出结果.【详解】(1)因为()xf x a =,所以()()()()111222222121222220x x x x x x f x f x f x x a a a a a ++-+=+-=-≥显然恒成立, 所以()()()1212222f x f x f x x +≥+;(2)由()12f x =,()23f x =得1223x x a a ⎧=⎨=⎩,所以()212122x x x x x a a ==,又()1221228x x xf x x a ===,所以23x =,则233x a a ==,因此a =(3)若x ∀∈R ,()212xx f x -+≤恒成立,即x ∀∈R ,212x xx a -+≤恒成立;则x ∀∈R ,2122log log 2x xx a -+≤恒成立,即x ∀∈R ,22log 1x a x x ≤-+恒成立,当0x =时,不等式可化为01<,显然恒成立;所以0a >,且1a ≠;当0x >时,不等式可化为21log 1a x x ≤+-,而1111y x x =+-≥=在0x >上恒成立,当且仅当1x =时,取等号;所以只需2log 1a ≤,解得12a <≤或01a <<; 当0x <时,不等式可化为21log 1a x x≥+-,而()111113y x x x x ⎡⎤⎛⎫=+-=--+--≤-=- ⎪⎢⎥⎝⎭⎣⎦在0x <上恒成立,当且仅当1x =-时,取等号;所以只需2log 3a ≥-,解得118a ≤<或1a >,综上,118a ≤<或12a <≤,即a 的取值范围是(]1,11,28⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:求解本题第三问的关键在于将不等式两边同时取对数,化为22log 1x a x x ≤-+恒成立,再对x 分段讨论,求解a 的范围,即可得解.22.(1)23411),1()(()f x f x x xx x f -=-==。
高一数学必修一期末试卷一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2 ⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是( )A 、 70。
3,0.37,,㏑0.3B 、70。
3,,㏑0.3, 0.37C 、 0.37, , 70。
3,㏑0.3D 、㏑0.3, 70。
3,0.376、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( )A 、1.2B 、1.3C 、1.4D 、1.57、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )8、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y) 9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定10、某企业近几年的年产值如图,则年增长率最高的是( )(年增长率=年增长值/年产值)A 、97年B 、98年C 、99年D 、00年二、填空题(共4题,每题4分) 11、f(x)的图像如下图,则f(x)的值域为 ;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;②定义域为{|0}x R x ∈≠;③在(0,)+∞上为增函数. 老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
新教材高一数学期末复习测试卷考试时间:120分钟满分:150分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()ln(2)2f x x x m =++-的一个零点附近的函数值的参考数据如下表:x 00.50.531250.56250.6250.751()f x 1.307-0.084-0.009-0.0660.2150.5121.099由二分法,方程ln(2)20x x m ++-=的近似解(精确度为0.05)可能是()A .0.625B .0.009-C .0.5625D .0.0662.函数12x y -=的图像可看作是把函数2x y =经过以下哪种变换得到()A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变3.若偶函数()f x 在(],1∞--上是增函数,则()A .()()3122f f f ⎛⎫-<-< ⎪⎝⎭B .()()3212f f f ⎛⎫<-<- ⎪⎝⎭C .()()3212f f f ⎛⎫<-<- ⎪⎝⎭D .()()3122f f f ⎛⎫-<-< ⎪⎝⎭4.已知函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是()A .[]3,2--B .[)3,0-C .(],2-∞-D .(],0-∞5.以下给出了四组函数:(1)y =2y =(2)y x =与=m (3)211x y x -=-与1y x =+(4)=u 与=m 其中有()组函数是同一个函数A .4B .3C .2D .16.已知22x -<<,13y <<,则2x y -的取值范围是()A .()8,0-B .()8,2-C .()4,2-D .()10,2--7.若关于x 的不等式20x bx c ++<(a ,b ,c 为常数)的解集为{}16x x -<<,则不等式20cx bx a +->(a ,b ,c 为常数)的解集为()A .1123x x ⎧⎫-<<-⎨⎬⎩⎭B .1{|3x x -<或1}2x <-C .{}32x x -<<-D .{|2x x -<或3}x <-8.使得不等式210x ax -+>对R x ∀∈恒成立的一个充分不必要条件是()A .02a <<B .02a <≤C .2a <D .2a >-二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的为前4个编号中的是()322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345A .328B .457C .253D .00710.已知函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩若方程()0f x a -=有三个不同的实数根,则实数a 的取值可能是()A .0B .12C .13D .111.在一个质地均匀的正四面体木块的四个面上分别标有数字1,2,3,4连续抛掷这个正四面体木块两次,并记录每次正四面体木块朝下的面上的数字,记事件A 为“两次记录的数字之和为偶数”,事件B 为“第一次记录的数字为偶数”;事件C 为“第二次记录的数字为偶数”,则下列结论正确的是()A .事件B 与事件C 是互斥事件B .事件A 与事件B 是相互独立事件C .事件B 与事件C 是相互独立事件D .1()4P ABC =12.已知函数)()ln2f x x =+,则()A .()f x 的定义域为()0,∞+B .()f x 在()0,∞+上是减函数C .当0x >时,()(]0,2f x ∈D .1(lg 3)lg 43f f ⎛⎫+= ⎪⎝⎭三、填空题(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.函数()4=-f x x 的定义域为________________.14.若任意[]1,2x ∈,不等式240x mx -+≥恒成立,则实数m 的范围为_________.15.已知x 、y 为正实数,且满足4312x y +=,则xy 的最大值为_____.16.如图,一个电路中有三个元件A ,B ,C 及灯泡D ,每个元件能正常工作的概率都是0.5,且能否正常工作不相互影响,电路的不同连接方式对灯泡D 发光的概率会产生影响,在图①所示的电路中灯泡D 发光的概率为__________;在图②所示的电路中灯泡D 发光的概率为__________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}2128,340x A xB x x x =≤<=+->∣∣.(1)求集合A 与集合B ;(2)求A B ⋃及()R A B ⋃ð(3)若集合{1}C xa x a =<<+∣,且A C C ⋂=,求实数a 的取值范围.18.计算下列各式的值(1)(130.02716-;(2)21log 325log 5log 4ln(ln e)2+⋅-+;(3)已知13a a -+=,求3322a a -+的值.19.已知函数()()3312log ,log x x f x g x =-=.(1)求函数()()263y f x g x ⎡⎤=-+⎣⎦的零点;(2)讨论函数()()()2h x g x f x k ⎡⎤=---⎣⎦在[]1,27上的零点个数.20.已知甲的投篮命中率为0.6,乙的投篮命中率为0.7,丙的投篮命中率为0.5,求:(1)甲,乙,丙各投篮一次,三人都命中的概率;(2)甲,乙,丙各投篮一次,恰有两人命中的概率;(3)甲,乙,丙各投篮一次,至少有一人命中的概率.21.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)40,50[)50,60,…,[]90,100,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在[)50,60的平均成绩是54,方差是7,落在[)60,70的平均成绩为66,方差是4,求两组成绩的总平均数z 和总方差2s .22.设函数()()1(0x xf x k a a a -=-+>且1)a ≠是定义域为R 的偶函数,()512f =(1)求a 的值并用定义法证明()f x 在()0,∞+上的单调性;(2)若()()240f m f m +-->,求实数m 的取值范围;(3)若()()()2221x xg x a a m f x -=+-+在[)1,+∞上的最小值为3-,求m 的值.参考答案:1.C【分析】按照二分法的方法流程进行计算,根据()()0f a f b ⋅<的符号确定根所在的区间,当区间长度小于或等于0.05时,只需从该区间上任取一个数即可.【详解】由题意得()ln(2)2f x x x m =++-在区间(0,)+∞上单调递增,设方程ln(2)20x x m ++-=的解的近似值为0x ,由表格得(0.53125)(0.5625)0f f ⋅<,所以0(0.53125,0.5625)x ∈,因为|0.531250.5625|0.031250.05-=<,所以方程的近似解可取为0.5625.故选:C.2.D【分析】利用函数图像的平移变换法则求解即可.【详解】选项A :函数2x y =向右平移一个单位得到12x y -=;选项B :先把函数2x y =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2x y =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2x y =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x x y --=⨯=;故选:D 3.B【分析】根据()f x 在(],1∞--上是增函数,且3212-<-<-,可得()2f -,32f ⎛⎫- ⎪⎝⎭,()1f -的大小关系,再根据偶函数的性质可得()2f ,32f ⎛⎫- ⎪⎝⎭,()1f -的大小关系.【详解】因为()f x 在(],1∞--上是增函数,且3212-<-<-,所以()()3212f f f ⎛⎫-<-<- ⎪⎝⎭,又()f x 为偶函数,所以()()22f f -=,则()()3212f f f ⎛⎫<-<- ⎪⎝⎭,故选:B .4.A【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】由于函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 在R 上单调递增,所以22220241121a a a a -⎧-≥⎪-⎪<⎨⎪⎪---≤-⎩,解得32a --≤≤,所以a 的取值范围是[]3,2--.故选:A 5.D【分析】根据函数的定义域及对应关系逐项分析即得.【详解】对于(1),函数y =R,函数2y =的定义域为[)0,∞+,故不是同一函数;对于(2),y x =定义域为R,m n ==的定义域为R ,故y x =与=m 对应关系都相同,故为同一函数;对于(3),211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,故不是同一函数;对于(4),=u 的定义域为[)1,+∞,=m (][),11,-∞-⋃+∞,故不是同一函数.所以有1组函数是同一个函数.故选:D.6.A【分析】由条件,结合不等式的性质求出3x y -的取值范围即可.【详解】因为13y <<,所以622y -<-<-又22x -<<,所以820x y -<-<,所以2x y -的取值范围是()8,0-,故选:A.7.A【分析】根据不等式的解集可得-1,6为对应方程的根,将b 和c 均用a 表示,代入所求不等式解出即可.【详解】一元二次不等式20ax bx c ++<的解集为{}16x x -<<,所以0a >,且-1,6是一元二次方程20ax bx c ++=的两个实数根,所以165b a -=-+=,166ca=-⨯=-,所以5b a =-,6c a =-,且0a >;所以不等式20cx bx a +->化为2650ax ax a --->,即26510x x +<+,解得11.23x -<<-因此不等式的解集为11{|}.23x x -<<-故选:A.8.A【分析】先由不等式210x ax -+>对R x ∀∈恒成立得()2,2a ∈-,再由充分不必要条件的概念即可求解【详解】由不等式210x ax -+>对R x ∀∈恒成立,得Δ0<,即()240a --<,解得22a -<<,从选项可知02a <<是22a -<<的充分不必要条件,故选:A.9.BCD【分析】根据给定条件,利用随机数表法按要求每3位一读,求出前4个编号即可判断作答.【详解】依题意,从表中第5行第6列开始向右每3位一读取数据,记录下不超过700的号码,重复号码记第一次的,所以前4个编号是:253,313,457,007,选项A 不满足,B ,C ,D 满足.故选:BCD 10.BC【分析】作函数()f x 的图象,数形结合即可解决.【详解】由题知,函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩的图象如下,方程()0f x a -=可以看成()y f x =与y a =的交点,所以由图知方程()0f x a -=有三个不同的实数根时,01a <<,故选:BC 11.BCD【分析】根据对立事件,独立事件的概念及古典概型概率公式逐项分析即得.【详解】解:对于A ,事件B 与事件C 是相互独立事件,但不是对立事件,故A 错误;对于B ,事件A 与事件B ,1()2P A =,1()2P B =,1()4P AB =,事件A 与事件B 是相互独立事件,故B 正确;对于C ,事件B 与事件C ,1()2P B =,1()2P C =,1()4P BC =,事件B 与事件C 是相互独立事件,故C 正确;对于D ,事件ABC 表示第一次记录的数字为偶数,第二次记录的数字为偶数,故221()444P ABC ⨯==⨯,故D 正确.故选:BCD.12.BD【分析】首先求出函数的定义域,即可判断A ,再根据复合函数的单调性判断BC ,最后由()()4f x f x -+=,即可判断D.【详解】因为)()ln2f x x =+0x >x >,所以x ∈R ,故函数的定义域为R ,故A错误;)()ln 2ln 2ln 2xx f x x ⎛⎫⎛⎫=+=+=-+,因为当,()0x ∈+∞,函数y x =单调递增,又ln y x =-在定义域上单调递减,所以)()ln2f x x =+在(0,)+∞上单调递减,故B 正确;又当,()0x ∈+∞时,1y x =>,所以)ln 0y x =-<,所以()(),2f x ∈-∞,故C 错误;因为())ln2f x x-=-+,())ln2f x x =-+,所以()()4f x f x -+=所以()()1(lg 3)lg lg 3lg 343f f f f ⎛⎫+=+-= ⎪⎝⎭,故D 正确.故选:BD13.(][)(),23,44,-∞-⋃⋃+∞【分析】根据函数定义域的求法求得正确答案.【详解】依题意,26040x x x ⎧--≥⎨-≠⎩,解得2x ≤-或3x ≥,且4x ≠,所以()f x 的定义域为(][)(),23,44,-∞-⋃⋃+∞.故答案为:(][)(),23,44,-∞-⋃⋃+∞14.(],4∞-【分析】任意[]1,2x ∈,不等式240x mx -+≥恒成立等价于4m x x≤+在[]1,2上恒成立,参变分离求最值即可.【详解】任意[]1,2x ∈,不等式240x mx -+≥恒成立等价于4m x x≤+在[]1,2上恒成立,又44x x +≥=,当且仅当2x =时,取等号,∴4m ≤,即实数m 的范围为(],4∞-.故答案为:(],4∞-15.3【分析】用基本不等式求得最值,然后化简既可得最大值.【详解】由已知得1243x y =+≥,即12≥解得3xy ≤(当且仅当43x y =时取""=)故答案为:316.1838【分析】根据相互独立事件的概率乘法公式,以及对立事件的概率计算公式,结合题意,即可求解.【详解】由题意,要使得灯泡D 发光,则满足A ,B ,C 三个元件同时正常工作,根据相互独立事件的概率乘法公式,图①中灯泡D 发光的概率为11112228⨯⨯=;在在图②所示的电路中灯泡D 发光,则满足元件A 正常工作,元件B ,C 中至少要有一个正常工作,所以图②的电路中灯泡D 发光的概率为1113[1(1)(1)]2228⨯---=.故答案为:18;38.17.(1)[)0,3A =,(),4(1,)B =-∞-+∞ (2)()[),40,A B =-∞-+∞ ,()[)R 4,0A B ⋃=-ð(3)[]0,2【分析】(1)解指数不等式和一元二次不等式即可;(2)根据集合的交并补运算即可求解;(3)根据集合的包含关系求解.【详解】(1)由128x ≤<解得03x ≤<,所以[)0,3A =,由2340+->x x 解得<4x -或1x >,所以(),4(1,)B =-∞-+∞ ,(2)由(1)得()[),40,A B =-∞-+∞ ,()[)R 4,0A B ⋃=-ð.(3)因为A C C ⋂=,所以C A ⊆,且{1}C xa x a =<<+≠∅∣,所以013a a ≥⎧⎨+≤⎩,解得02x ≤≤,所以a 的取值范围是[]0,2.18.(1)10π3+(2)8(3)【分析】(1)根据指数幂的运算法则直接计算即可.(2)根据对数和指数幂的计算法则直接计算即可.(3)计算1122a a -+=()1133122221a aa a a a ---⎛⎫= ⎪⎝+++-⎭,计算得到答案.【详解】(1)(()113122113321000104100.0273131272323πππ-⎛⎫⎪⎛⎫⎝⎭+=+-++=+-++=+ ⎪⎝⎭(2)221log 3log 32525l 8og 5log 4ln(ln e o 22ln12)2l g 5log 2206+=-+⨯=-+⋅+-=⋅(3)13a a -+=,故0a >,21112225a a a a --⎛⎫+=++= ⎪⎝⎭,故1122a a -+=()()133122221131a aa a a a ---⎛⎫==-= +-⎪⎝⎭++19.(1)9(2)答案见解析.【分析】(1)由题知()2332log 5log 20x x -+=,进而解方程即可得答案;(2)根据题意,将问题转化为函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数,进而数形结合求解即可.【详解】(1)解:由()()2630f x g x ⎡⎤-+=⎣⎦,得()233 12log 6log 30x x --+=,化简为()2332log 5log 20x x -+=,解得3 log 2x =或31log 2x =,所以,9x =或x =所以,()()2 63y f x g x ⎡⎤=-+⎣⎦的零点为9.(2)解:由题意得()()233 log 2log 1h x x x k =-+--,令()0h x =,得()233 log 2log 1x x k -+-=,令3log t x =,[]1,27x ∈,则[]2 0,3,21t t t k ∈-+-=,所以()h x 在[]1,27上的零点个数等于函数()221F t t t =-+-在[]0,3上的图像与直线y k =的交点个数.()2 21F t t t =-+-在[]0,3上的图像如图所示.所以,当0k >或4k <-时,()F t 在[]0,3上的图像与直线y k =无交点,所以,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时()F t 在[]0,3上的图像与直线y k =有1个交点,所以,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()F t 在[]0,3上的图像与直线y k =有2个交点,所以,()h x 在[]1,27上的零点个数为2.综上,当0k >或4k <-时,()h x 在[]1,27上的零点个数为0;当0k =或41k -≤<-时,()h x 在[]1,27上的零点个数为1;当10k -≤<时,()h x 在[]1,27上的零点个数为2.20.(1)0.21;(2)0.44;(3)0.94.【分析】(1)根据概率乘法得三人都命中概率为0.60.70.50.21⨯⨯=;(2)分甲命中,乙,丙未命中,乙命中,甲,丙未命中,丙命中,乙,丙未命中,三种情况讨论,结合概率乘法和加法公式即可得到答案;(3)采取正难则反的原则,求出其对立事件即三人全未命中的概率,再根据对立事件的概率公式求解即可.【详解】(1)设事件A :甲投篮命中;事件B :乙投篮命中;事件C :丙投篮命中.甲,乙,丙各投篮一次,三人都命中的概率()()()()0.60.70.50.21P ABC P A P B P C ==⨯⨯=.所以甲,乙,丙各投篮一次,三人都命中的概率为0.21.(2)设事件D :恰有两人命中.所以()()P D P ABC ABC ABC =++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++0.40.70.50.60.30.50.60.70.50.44=⨯⨯+⨯⨯+⨯⨯=所以甲,乙,丙各投篮一次,恰有两人命中的概率为0.44.(3)设事件E :至少有一人命中.所以()1()10.40.30.510.060.94P E P ABC =-=-⨯⨯=-=所以甲,乙,丙各投篮一次,至少有一人命中的概率为0.94.21.(1)0.030a =(2)84(3)62z =,237s =【分析】(1)根据每组小矩形的面积之和为1即可求解;(2)由频率分布直方图求第百分位数的计算公式即可求解;(3)根据平均数和方差的计算公式即可求解.(1)解:∵每组小矩形的面积之和为1,∴()0.0050.0100.0200.0250.010101a +++++´=,∴0.030a =.(2)解:成绩落在[)40,80内的频率为()0.0050.0100.0200.030100.65+++⨯=,落在[)40,90内的频率为()0.0050.0100.0200.0300.025100.9++++⨯=,设第75百分位数为m ,由()0.65800.0250.75m +-⨯=,得84m =,故第75百分位数为84;(3)解:由图可知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,故10546620621020z ⨯+⨯==+.设成绩在[)50,60中10人的分数分别为1x ,2x ,3x ,…,10x ;成绩在[)60,70中20人的分数分别为1y ,2y ,3y ,…,20y ,则由题意可得2222121054710x x x ++⋅⋅⋅+-=,2222122066420y y y ++⋅⋅⋅+-=,所以222121029230x x x ++⋅⋅⋅+=,222122087200y y y ++⋅⋅⋅+=,所以()()222222222121012201129230872006237102030s x x x y y y z =++⋅⋅⋅++++⋅⋅⋅+-=+-=+,所以两组市民成绩的总平均数是62,总方差是37.22.(1)2a =或者12a =,证明见解析;(2)()1,+∞;(3)1920.【分析】(1)根据偶函数的定义,结合函数单调性的定义、指数函数的单调性进行求解即可;(2)根据偶函数的性质,结合函数的单调性进行求解即可;(3)利用换元法,结合对勾函数和二次函数的性质分类讨论进行求解即可.【详解】(1) 由函数()()1x x f x k a a -=-+是定义域为R 的偶函数,∴满足()()=f x f x -,即()()11x x x xk a a a k a ---+=+-,11k ∴-=,即2k =,()x x f x a a -∴=+,又()512f =,即152a a -+=,化简为:22520a a -+=,解得:2a =或者12a =,()22x x f x -∴=+,设()12,0,x x ∈+∞且12x x <,则()()12f x f x -()11222222x x x x --=+-+1212112222x x x x =-+-21121222222x x x x x x +-=-+()121212212x x x x +⎛⎫=-- ⎪⎝⎭,由12x x <,得12220x x -<120x x << ,12112x x +∴<,即121102x x +->,()()()212112122102x x x x f x f x +⎛⎫∴-=--< ⎪⎝⎭,()f x \在()0,x ∈+∞单调递增;(2)()f x 是R 上的偶函数,()f x \在()0,x ∈+∞单调递增,在(),0x ∈-∞单调递减.()()240f m f m +--> ,即()()24f m f m +>-,24m m ∴+>-,两边平方得:2244168m m m m ++>+-解得:1m >,实数m 的取值范围为:()1,+∞;(3)由(1)知,()()()()()222221222122x x x x x xg x a a m f x m ---=+-+=+-++将()g x 变形得:()()()()()()2222221222221222x x x x x x x x g x m m ----=+-++=+-++-令22x x t -=+,因为[)1,x ∞∈+,由对勾函数的性质得52t ≥.则原函数化为:()25212,2y t m t t =-+-≥,由题知,()2212y t m t =-+-在5,2t ∞⎡⎫∈+⎪⎢⎣⎭上的最小值为3-,函数()2212y t m t =-+-的对称轴为:()21122m t m -+=-=+,①当1522m +>,即m>2时,()211212322min y m m m ⎛⎫⎛⎫=+-++-=- ⎪ ⎪⎝⎭⎝⎭,解得:32m =-或12m =,均不符合题意,舍去,②当1522m+=,即2m=时,25533523224miny⎛⎫=-⨯-=-≠-⎪⎝⎭,不符合题意,③当1522m+<,即2m<时,()2min55212322y m⎛⎫=-+⨯-=-⎪⎝⎭,解得:1920m=符合题意,所以m的值为19 20 .【点睛】关键点睛:利用换元法,结合对勾函数和二次函数的性质分类讨论是解题的关键.。
高一数学期末考试试卷及答案2023高一上学期数学期末考试试卷及答案考号班级姓名一、选择题(每小题5分,共60分)1.已知a=2,集合A={x|x≤2},则下列表示正确的是( ).A.a∈AB.a/∈ AC.{a}∈AD.a⊆A2.集合S={a,b},含有元素a的S的子集共有( ).A.1个B.2个C.3个D.4个3.已知集合M={x|x3},N={x|log2x1},则M∩N=( ).A. B.{x|04.函数y=4-x的定义域是( ).A.[4,+∞)B.(4,+∞)C.-∞,4]D.(-∞,4)5.国内快递1000g以内的包裹的邮资标准如下表:运送距离x (km) 0邮资y (元) 5.00 6.00 7.00 8.00 …如果某人在南京要快递800g的包裹到距南京1200km的某地,那么他应付的邮资是( ).A.5.00元B.6.00元C.7.00元D.8.00元6.幂函数y=x(是常数)的图象( ).A.一定经过点(0,0)B.一定经过点(1,-1)C.一定经过点(-1,D.一定经过点(1,1)7.0.44,1与40.4的大小关系是( ).A.0.4440.41B.0.44140.4C.10.4440.4D.l40.40.448.在同一坐标系中,函数y=2-x与y=log2x的图象是( ).A. B. C. D.9.方程x3=x+1的根所在的区间是( ).A.(0,1)B.(1,2)C.(2,3)D.(3,4)10.下列函数中,在区间(0,+∞)上是减函数的是( ).A.y=-1xB.y=xC.y=x2D.y=1-x11.若函数f (x)=13-x-1 +a是奇函数,则实数a的值为 ( ).A.12B.-12C.2D.-212.设集合A={0,1},B={2,3},定义集合运算:A⊙B={z︳z= xy(x+y),x∈A,y∈B},则集合A⊙B中的所有元素之和为( ).A.0B.6C.12D.18二、填空题(每小题5分,共30分)13.集合S={1,2,3},集合T={2,3,4,5},则S∩T= .14.已知集合U={x|-3≤x≤3},M={x|-115.如果f (x)=x2+1(x≤0),-2x(x0),那么f (f (1))= .16.若函数f(x)=ax3+bx+7,且f(5)=3,则f(-5)=__________.17.已知2x+2-x=5,则4x+4-x的值是 .18.在下列从A到B的对应: (1)A=R,B=R,对应法则f:x→y=x2 ; (2) A=R,B=R,对应法则f:x→y=1x-3; (3)A=(0,+∞),B={y|y≠0},对应法则f:x→y=±x;(4)A=N__,B={-1,1},对应法则f:x→y=(-1)x 其中是函数的有 .(只填写序号)三、解答题(共70分)19.(本题满分10分)计算:2log32-log3329+log38- .20.(本题满分10分)已知U=R,A={x|-1≤x≤3},B={x|x-a0}.(1)若A B,求实数a的取值范围;(2) 若A∩B≠,求实数a的取值范围.21.(本题满分12分)已知二次函数的图象如图所示.(1)写出该函数的零点;(2)写出该函数的解析式.22.(本题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.23.(本题满分12分)销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=35t,Q=15t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;(2)总利润y的最大值.24.(本题满分14分)已知函数f (x)=1x2.(1)判断f (x)在区间(0,+∞)的单调性,并用定义证明;(2)写出函数f (x)=1x2的单调区间.试卷答案一、选择题(每小题5分,共60分)1.A2.B3. D4.C5.C6.D7.B8.A9.B 10.D 11.A 12.D[二、填空题(每小题5分,共30分)13.{2,3}14.[-3,-1]∪[1,3] 15.5 16.11 17.23 18.(1)(4)三、解答题(共70分)19.解原式=log34-log3329+log38-3=log3(4×932×8)-3=log39-3=2-3=-1.20.解(1)B={x|x-a0}={x|xa}.由A B,得a-1,即a的取值范围是{a| a-1};(2)由A∩B≠,则a3,即a的取值范围是{a| a3}.21.(1)函数的零点是-1,3;(2)函数的解析式是y=x2-2x-3.22.解(1)由2+x0,2-x0,得-2(2) ∵h(-x)=lg(2-x)+lg(2+x)=h(x),∴h(x)是偶函数.23.解(1)根据题意,得y=35x+15(3-x),x∈[0,3].(2) y=-15(x-32)2+2120.∵32∈[0,3],∴当x=32时,即x=94时,y最大值=2120.答:总利润的最大值是2120万元.24.解(1) f (x)在区间(0,+∞)为单调减函数.证明如下:设0因为00,x2-x10,x2+x10,即(x2-x1)( x2+x1)x12x220.所以f (x1)-f (x2) 0,即所以f (x1) f (x2),f (x)在区间(0,+∞)为单调减函数.(2) f (x)=1x2的单调减区间(0,+∞);f (x)=1x2的单调增区间(—∞,0).高一数学知识点总结大全一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
新高一数学上期末试卷(带答案)新高一数学上期末试卷(带答案)一、选择题1.已知$f(x)$是偶函数,且在$[0,+\infty)$上是增函数。
若$f(\log x)<f(-1)$,则$x$的取值范围是()A。
$\left(0,\frac{1}{e}\right)$B。
$\left(\frac{1}{e},1\right)$C。
$\left(1,e\right)$D。
$\left(e,+\infty\right)$2.已知函数$f(x)=\begin{cases}frac{1}{x},&x>0\\x-2x^2,&x\leq 0end{cases}$关于$x$的方程$f(x)=m(m\in\mathbb{R})$,有四个不同的实数解$x_1,x_2,x_3,x_4$,则$x_1+x_2+x_3+x_4$的取值范围为()A。
$(0,+\infty)$B。
$\left(0,\frac{3}{2}\right)$C。
$\left[\frac{1}{2},\frac{3}{2}\right]$D。
$(1,+\infty)$3.已知函数$f(x)=\begin{cases}x,&x<2\\frac{1}{2}(x-1),&x\geq 2end{cases}$若对任意实数$x_1\neq x_2$,都有$\left|\frac{f(x_1)-f(x_2)}{x_1-x_2}-1\right|\leq \frac{1}{2}$,则实数$a$的取值范围为()A。
$(-\infty,2]$B。
$(-\infty,2)$C。
$(13/8,2]$D。
$[13/8,2]$4.函数$y=a|x|(a>1)$的图像是()A。
B。
C。
D。
5.已知函数$f(x)=\frac{1}{x}$,若$a=f(2),b=f(3),c=f(5)$,则$a,b,c$的大小关系是()A。
$b<c<a$B。
高一上数学期末考试试卷及答案解析第一部分:选择题1. 已知三角形ABC,其中∠ABC = 90°,斜边AB = 5,BC = 12。
求∠BAC的正弦值。
解析:根据正弦定理,sin(∠BAC) = AB/AC,由勾股定理可得AC= 13,代入计算得sin(∠BAC) = 5/13。
2. 函数y = x^2 + 4x + 3的图像为抛物线,其顶点坐标为(-2,-1),则函数的对称轴方程为_______。
解析:对称轴与抛物线的顶点横坐标一致,所以对称轴方程为x = -2。
3. 若函数y = ax + b在点(4,7)处的切线斜率为3,则a的值为_______。
解析:切线的斜率等于函数在该点的导数值,所以a = 3。
4. 设集合A = {1, 2, 3, 4},集合B = {2, 4, 6},则A与B的交集为_______。
解析:A与B的交集为{2, 4}。
5. 已知函数f(x) = x^2 + 3x + 2,g(x) = 2x + 1,求f(g(3))的值。
解析:首先算出g(3) = 2(3) + 1 = 7,然后带入f(x)计算得f(g(3)) =7^2 + 3(7) + 2 = 72。
第二部分:解答题1. 计算方程2x + 5 = 15的解。
解析:将等式两边减去5,得到2x = 10,再除以2,得到x = 5,所以方程的解为x = 5。
2. 从一副扑克牌中随机抽取一张,求抽到红心或者黑桃的概率。
解析:一副扑克牌共有52张,其中红心和黑桃的数量各为13张,所以红心或者黑桃的概率为(13+13)/52 = 26/52 = 1/2。
3. 已知直线L1的斜率为1/2,过点A(2,3)。
求直线L1的方程。
解析:直线L1的斜率为1/2,过点A(2,3),所以直线L1的方程为y - 3 = 1/2 * (x - 2)。
4. 某商场A店和B店销售同一种电视机,A店售价为原价的80%,B店以原价的1200元售出,若在B店购买该电视可享受一定的折扣,选择购买哪个商场的电视可以获得更大的实惠?解析:设电视的原价为x元。
高一数学期末试卷班级 姓名 学号一、选择题(共20题,每题3)1.设M={x ︱x ≤13 },b=11 ,则下面关系中正确的是 ( )(A )b ⊆M (B)b ∉M (c){b}∈M (D){b}⊆M2.设集合A={x︱-2<x <3},B={x︱x>1},则集合A∩B等于( ) (A){x︱1<x <3} (B){x︱-2<x <3} (C){x︱x>1} (D){x︱x>2}3.函数y=lg(5-2x)的定义域是 ( ) (A)(1,52 ) (B)(0, 52 ) (C)(-∞, 52 ) (D)(-∞, 52]4.已知函数f(x)=x 2+3x+1,则f(x+1)= ( ) (A)x 2+3x+2 (B)X 2+5X+5 (C)X 2+3X+5 (D)X 2+3X+65..设P:α= π6 ;Q :sin α=12 ,则P 是Q 的 ( )(A )充分条件 (B )必要条件 (C )充分必要条件 (D )既不充分又不必要条件 6.sin (-196π)的值是 ( ) (A )12 (B)- 12 (C ) 3 2 (D)- 327.cos α<0且tan α>0,则角α是 ( ) (A )第一象限的角 (B )第二象限的角(C )第三象限的角 (D )第四象限的角8.函数y=tanx-cotx 的奇偶性是 ( ) (A)奇函数 (B )既是奇函数,也是偶函数 (C )偶函数 (D )非奇非偶函数9.函数y=cos(π2 x+2)的周期是 ( )(A)2π (B )π (C )4 (D )4π10.下列函数中,既是增函数又是奇函数的是 ( ) (A)y=3x (B)y=x 3 (c)y=log 3x (D)y=sinx11.函数y=x 2+1(x ≥0)的反函数是 ( ) (A)y=x-1 (B)y=x+1 (C)1-x (x ≤1) (D)x-1 (x ≥1)12.函数f(x)=4-x 的反函数f -1(x)的值域是 ( )(A )[-2,2] (B)(-∞,4] (C)(-∞,+∞) (D)[0,+∞)13.Sin150的值是 ( ) (A )6 - 24(B )2- 3 (C )6 + 24(D )2+ 314.在△ABC 中,若cosAcosB=sinAsinB,则此三角形为 ( ) (A )任意三角形 (B )锐角三角形 (C )钝角三角形 (D )直角三角形15.计算sin π8 cos π8 = ( )(A ) 2 2 (B ) 2 4 (C ) 2 6 (D ) 2816.△ABC 中,已知a=20 2 ,b=20,B=300,则A 角为 ( )(A )π6 (B )π3 (C )π4 (D )π4 或3π417.复数z=cos π6 -isin π6 的模是 ( )(A)34 (B) 3 2 (C)1 (D) 62 18.函数y=cosx+3 sinx(x ∈R)的最小值是 ( )(A)- 12(B)-1 (C)-2 (D)-1- 319.已知x >0.y >0,xy=9,则x+y 的最小值为 ( ) (A)6 (B)8 (C)18 (D)320.当为奇数时,(1+i 1-i )2n +(1-i1+i )2n = ( )(A)2 (B)-2 (C)2或-2 (D)0二、填空(共10题,每题2分)21.函数y=4-2x 的定义域是_________________________22.已知圆心角2000所对的圆弧长为50cm ,求圆的半径(精确到0.1cm )_________ 23.y=sin3x 的图像向_____平移_____个单位可得到y=sin(3x+π6 )的图像24.终边落在y 轴上的角的集合______________________25.设函数y=sin(x+π4 )+1,当x=_____________时,y max =____________;当x=________________时,y min =_________26.已知P 为第IV 象限α终边上的一点,其横坐标x= 3 ,︱OP ︱=2, 则角α的正弦_______余弦_______正切_______27.3 -tan1501+ 3 tan150=________________28.在△ABC中,a=7,b=4 3 ,c=13 ,则最小角为___________________29.arctan(3π4)=_______________30.已知z1=-3-i,z2=2i+1,z1+z=z2,z=_____________三、解答题(共4题,每题5分)31.求函数1-x2+12x+1的定义域32.解方程72x-6·7x+5=0(完整word版)高一数学期末试卷附答案33.计算1+i1-i+1-i1+i34.证明:sin(4π-α)cos(3π-α)-1+1+cos(-α)sin(3π-α)=2cscα(完整word版)高一数学期末试卷附答案试题、参考答案及评分标准如下一、选择题(3’×20=60’)1—5DACBA 6—10ACACB 11—15DBADB 16—20DCCAB二、填空题(2’×10)21.{x︱x≤2} 22.14.3cm 23.左,π1824.{α︱α=kπ+π2,k∈Z}25. π4+2kπ(k∈Z),2,-3π4+2kπ(k∈Z),026.-12,32, -3327.1 28.30029.- π430.4+3i三、解答题(5’×4=20’)31.解:(完整word 版)高一数学期末试卷附答案1-x 2≥02x+1≠0 (2’)(x+1)(x-1)≤0 (2’) X ≠-12[-1, -12 )∪(-12 ,1] (1’)32.解:(7x )2-6·7x +5=0(7x -1)(7x -5)=0 (3’) 7x =1,7x =5X=0,x=log 75 (2’)33.解:原式=(1+i)2(1-i)(1+i) +(1-i)2(1+i)(1-i) (2’)=2i 2 +-2i2 (2’)=0 (1’) 34.证明:左边=-sin α-cos α-1 +1+cos αsin α (2’)=sin α1+cos α +1+cos αsin α=sin 2α+(1+cos α)2sin α(1+cos α)=2+2cos αsin α(1+cos α)(2’)(完整word版)高一数学期末试卷附答案=2sinα=2cscα=右边(1’)。
2023学年高一数学期末试卷(含答案)第一部分:选择题1. A2. C3. B4. D5. A6. B7. C8. D第二部分:填空题9. 1210. 3611. 36012. 2第三部分:解答题13. 证明勾股定理根据勾股定理,对于直角三角形,直角边的平方等于其他两条边的平方之和。
设直角边分别为$a$和$b$,斜边为$c$,则有$a^2+b^2=c^2$。
下面进行证明:证明方法一:使用几何方法进行证明。
[此处填写证明过程]证明方法二:使用代数方法进行证明。
[此处填写证明过程]14. 求解方程解方程$2x - 5 = 7$,即$2x = 12$,解得$x = 6$。
15. 求解不等式求解不等式$3x - 4 > 10$,首先将不等式转化为等价的形式:$3x > 14$,然后解得$x > \frac{14}{3}$。
16. 计算三角函数值计算$\sin(\frac{\pi}{4})$,首先将$\frac{\pi}{4}$转换为度数形式,即$45^\circ$。
根据正弦函数的定义,$\sin(\frac{\pi}{4}) =\sin(45^\circ) = \frac{1}{\sqrt{2}}$。
17. 求解三角方程求解方程$\sin^2(x) - \cos(x) = 0$。
根据三角恒等式$\sin^2(x) + \cos^2(x) = 1$,将方程改写为$\sin^2(x) = 1 - \cos(x)$。
然后,我们可以进行代换,将$\sin^2(x)$用$1 - \cos(x)$代替,得到$1 - \cos(x) - \cos(x) = 0$,简化后得$2\cos(x) - 1 = 0$,解得$\cos(x) =\frac{1}{2}$,即$x = \frac{\pi}{3} + 2n\pi$,其中$n$为整数。
第四部分:解析几何18. 计算线段长度已知两点$A(3, -2)$和$B(-1, 4)$,计算线段$AB$的长度。
一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.设函数3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞3.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-4.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2= 5.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .5137658026.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤7.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,48.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .39.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,312.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩,若函数()()g x f x m =-与x 轴有3个交点,则实数m 的取值范围是_________.14.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.15.方程()()122log 44log 23xx x ++=+-的解为____;16.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.17.关于函数()11f x x =+-的性质描述,正确的是_________.①()f x 的定义域为[-1,0)∪(0,1]; ②()f x 的值域为R ; ③在定义域上是减函数; ④()f x 的图象关于原点对称.18.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.19.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.20.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.23.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.24.已知函数()f x ()()4log 41xkx k R =++∈的图象关于y 轴对称.(1)求实数k 的值(2)设函数()g x 12421f x xx m +=+⋅-(),[]20log 3x ∈,,是否存在实数m , 使得()g x 的最小值为0?若存在, 求出m 的值,若不存在说明理由.25.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由;(2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围26.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a ⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.3.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.4.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 5.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.6.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.7.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意;当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】先将函数与轴有个交点转化成与的交点问题再作出分段函数的图像利用数形结合求得范围即可【详解】依题意函数与轴有个交点即与有3个交点作分段函数的图像如下由图可知的取值范围为故答案为:【点睛】方法点 解析:()0,1【分析】先将函数()()g x f x m =-与x 轴有3个交点,转化成()y f x =与y m =的交点问题,再作出分段函数()y f x =的图像,利用数形结合求得m 范围即可. 【详解】依题意,函数()()g x f x m =-与x 轴有3个交点, 即()y f x =与y m =有3个交点,作分段函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩的图像如下,由图可知,m 的取值范围为()0,1. 故答案为:()0,1. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.14.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象 解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果. 【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立,函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立,若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;17.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()11f x x x==+-,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.19.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.20.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大.【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值.22.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.23.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 24.(1)12-;(2)1-. 【分析】(1)根据()()()4log 41xf x kx k R =++∈的图象关于y 轴对称.得到()()f x f x -=,再利用待定系数法法求解.(2)由(1)知()42=+⋅xx g x m ,[]20log 3x ∈,,令2x t =,[]13t ∈,得到2=+⋅y t m t ,然后利用二次函数的图象和性质求解.【详解】 (1)()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.∴函数()f x 是偶函数.()()f x f x ∴-=,即()()44log 41log 41xx kx kx -+-=++,即()()()44log 411log 41xxk x kx +-+=++,即210k +=,12k ∴=-;(2)()1242142()+=+⋅-=+⋅f x xx x x g x m m ,[]20log 3x ∈,,设2x t =,则[]13t ∈,, 2∴=+⋅y t m t 在[]13t ∈,上最小值为0,又22()24m m y t =+-,[]13t ∈,,当12m-≤ 即2m ≥-时,1t =时10min y m =+=, 1m ∴=-,符合,当132m -<-< 即62m -<<-时,2m t =-时,204min m y =-=,0m ∴= 不符合,当32m-≥ 即6m ≤-时,3t =时,930min y m =+=, 3m ∴=-,不符合, 综上所述m 的值为1-. 【点睛】本题主要考查偶函数的应用,对数运算以及二次函数的图象和性质的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题. 25.(1)是;答案见解析;(2)1m -. 【分析】(1)特殊值验证使得()()f x f x -=-即可;(2)因为函数满足新定义,则问题由存在问题转化为求函数值域问题,进而可以求解.【详解】解:(1)因为()2cos()2cos()2(22323f πππππ-=--=+=⨯=()2cos()2223f πππ=-==()()22f f ππ-=-, 所以存在02=x π使得函数()f x 为“M 类函数”;(2)由已知函数1()423x x f x m +=--满足:()()f x f x -=-,则化简可得:442(22)60x x x x m --+-+-=⋯①令222x x t -=+,则2442x x t -+=-,所以①可化为:2280t mt --=在区间[2,)+∞上有解可使得函数()f x 为“M 类函数”, 即18()2m t t=-在[2,)+∞有解, 而函数18()2t t -在[2,)+∞上单调递增,所以当2t =时,有最小值为18(2)122-=-, 所以1m -,故实数m 的取值范围为:[1-,)+∞.【点睛】本题考查了新定义的函数问题以及函数的有解问题,涉及到求函数的值域问题. 求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 26.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂=(2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。
高一数学期末考试试题及答案高一期末考试试题一、选择题1.已知集合M={x∈N/x=8-m,m∈N},则集合M中的元素的个数为()A.7 B.8 C.9 D.10答案:B。
解析:当m=1时,x=7;当m=2时,x=6;当m=3时,x=5;当m=4时,x=4;当m=5时,x=3;当m=6时,x=2;当m=7时,x=1;当m=8时,x=0.因此,集合M中的元素的个数为8.2.已知点A(x,1,2)和点B(2,3,4),且AB=26,则实数x的值是()A.−3或4 B.6或2 C.3或−4 D.6或−2答案:C。
解析:根据勾股定理,AB=√[(x-2)²+(1-3)²+(2-4)²]=√[(x-2)²+4]。
因为AB=26,所以√[(x-2)²+4]=26,解得x=3或-7.但是题目中说了点A的横坐标为实数,所以x=3.3.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3 B.1:3 C.1:9 D.1:81答案:B。
解析:设两个球的半径分别为r1和r2,则它们的表面积之比为4πr1²:4πr2²=1:9,化简得.4.圆x+y=1上的动点P到直线3x−4y−10=0的距离的最小值为()A.2 B.1 C.3 D.4答案:A。
解析:首先求出直线3x−4y−10=0与圆x+y=1的交点Q,解得Q(2,-1),然后求出点P到直线的距离d,设P(x,y),则d=|(3x-4y-10)/5|,根据点到直线的距离公式。
将P点的坐标代入d中,得到d的表达式为d=|(3x-4y-16)/5|。
将d表示成x和y的函数,即d=f(x,y)=(3x-4y-16)/5,然后求出f(x,y)的最小值。
由于f(x,y)的系数3和-4的比值为3:4,所以f(x,y)的最小值为f(2,-1)=-2/5,即P点到直线的最小距离为2/5,取整后为2.5.直线x−y+4=0被圆x²+y²+4x−4y+6=0截得的弦长等于()A.12B.22C.32D.42答案:B。
高一下学期数学期末试卷(试卷总分:100分,考试时间:100分钟)考生注意:请将正确答案填写在答题卷上规定的位置 ,在本试卷上作答一律无效! 一、 选择题(本大题共18小题,每小题3分,共54分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
在答题卷上的相应题目的答题区域内作答。
1.下列命题为真命题的是( ).A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C.垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行 2.已知数列{}n a 的通项公式是n a=1(2)2n n +,则220是这个数列的( ). A .第20项 B .第19项 C .第21项 D .第22项3.右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ). A. 300 B.450 C. 600 D. 9004.右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( ). A. 300 B.450 C. 600 D. 905. 在△ABC 中,若a = 2 ,23b =,030A = , 则B 等于( ).A .60B .60或 120C .30D .30或1506.已知一个算法,其流程图如右图所示,则输出的结果是( ). A. 3 B. 9 C.27 D.81 7.直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5C.a=-2,b=5;D.a=-2,b=-58.直线2x-y=7与直线3x+2y-7=0的交点是( ).A (3,-1)B (-1,3)C (-3,-1)D (3,1) 9. 在△ABC 中,已知ab c b a 2222+=+,则C=( ).A .300 B. 1500 C. 450 D. 135A BD A ’ B ’ D ’C ’ C图1乙甲751873624795436853432110.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制10 1 2 3 4 5 6 7 8 9 A B C D E F 10进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 那么十六进制下的 1AF 转化为十进制为 ( ). A. 431 B.321 C.248 D. 250 11. 等差数列{}n a 中,73,10,d a =-=,则1a 等于( ). A .-39 B .28 C .39 D .3212.圆x 2+y 2-4x-2y-5=0的圆心坐标是:( ).A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).13.直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ). A. 相离; B. 相交; C. 相切; D. 无法判定14.已知等差数列{}n a 中,22a =,46a =,则前4项的和4S 等于( ). A.12 B.10 C.8 D.1415.当输入a 的值为2,b 的值为3-时,右边程序运行的结果是( )..2A - .1B - .1C .2D16.10名工人某天生产同一个零件的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .c b a >>B .a c b >>C .b a c >>D .a b c >>17.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ).A .9991 B .10001C .1000999D .2118.如图是某赛甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 ( ). A .62 B. 63 C .64 D .65二、填空题:本大题共4小题,每小题4分,共16分。
高一数学必修1期末试卷及答案高中数学必修一期末试卷一、选择题。
(共12小题,每题5分)1、设集合A={x| x>-1},则()A、XXXB、2 ∉AC、2∈AD、2 ∈ { }改写:集合A由所有大于-1的实数x组成。
2.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)=x-1/x-1B.f(x)=log2(x+1),g(x)=2log2(x-1)C.f(x)=x2-1/x2-1,g(x)=x-1D.f(x)=g(x)改写:哪一组函数表示同一个函数?3、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}改写:如果A和B的交集是{2},那么A和B的并集是什么?4、函数f(x)=(x-1)/(x-2)的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)改写:函数f(x)=(x-1)/(x-2)的x的取值范围是什么?5、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()删除:题目中的图形6、三个数7.3,0.3,㏑0.3,的大小顺序是()A、7>0.3>㏑0.3B、7>0.3>㏑0.3C、0.3>7>㏑0.3D、㏑0.3>7>0.3>3改写:将三个数按照从大到小的顺序排列。
7、若函数f(x)=x+x-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.25)=-0.984f(1.438)=0.165f(1.5)=0.625f(1.375)=-0.260f(1.4065)=-0.052那么方程x+x-2x-2=0的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5改写:使用二分法逐次计算函数f(x)=x+x-2x-2的一个正数零点附近的函数值,给出下表:x。
高一数学必修一期末试卷及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
高一数学期末试卷
一、选择题(共20题,每题3)
1.设M={x ︱x ≤
13 },b=
11 ,则下面关系中正确的是 ( )
(A )b ⊆M (B)b ∉M (c){b}∈M (D){b}⊆M
2.设集合A={x︱-2<x <3},B={x︱x>1},则集合A∩B等于( ) (A){x︱1<x <3} (B){x︱-2<x <3} (C){x︱x>1} (D){x︱x>2}
3.函数y=lg(5-2x)的定义域是 ( ) (A)(1,52 ) (B)(0, 52 ) (C)(-∞, 52 ) (D)(-∞, 52
]
4.已知函数f(x)=x 2+3x+1,则f(x+1)= ( ) (A)x 2+3x+2 (B)X 2+5X+5 (C)X 2+3X+5 (D)X 2+3X+6
5..设P:α= π6 ;Q :sin α=1
2 ,则P 是Q 的 ( )
(A )充分条件 (B )必要条件 (C )充分必要条件 (D )既不充分又不必要条件 6.sin (-19
6 π)的值是 ( )
(A )12 (B)- 12 (C ) 3 2 (D)- 3 2
7.cos α<0且tan α>0,则角α是 ( ) (A )第一象限的角 (B )第二象限的角 (C )第三象限的角 (D )第四象限的角
8.函数y=tanx-cotx 的奇偶性是 ( ) (A)奇函数 (B )既是奇函数,也是偶函数 (C )偶函数 (D )非奇非偶函数
9.函数y=cos(π
2 x+2)的周期是 ( )
(A)2π (B )π (C )4 (D )4π
10.下列函数中,既是增函数又是奇函数的是 ( ) (A)y=3x (B)y=x 3 (c)y=log 3x (D)y=sinx
11.函数y=x 2+1(x ≥0)的反函数是 ( ) (A)y=x-1 (B)y=x+1 (C)
1-x (x ≤1) (D)
x-1 (x ≥1)
12.函数f(x)=
4-x 的反函数f -1(x)的值域是 ( )
(A )[-2,2] (B)(-∞,4] (C)(-∞,+∞) (D)[0,+∞)
13.Sin150的值是 ( )
(A ) 6 - 2
4
(B )2- 3 (C ) 6 + 2
4
(D )2+
3
14.在△ABC 中,若cosAcosB=sinAsinB,则此三角形为 ( ) (A )任意三角形 (B )锐角三角形
(C )钝角三角形 (D )直角三角形
15.计算sin π8 cos π
8 = ( )
(A ) 2 2 (B ) 2 4 (C ) 2 6 (D ) 2
8
16.△ABC 中,已知a=20
2 ,b=20,B=300,则A 角为 ( )
(A )π6 (B )π3 (C )π4 (D )π4 或3π
4
17.复数z=cos π6 -isin π
6 的模是 ( )
(A)34 (B) 3 2 (C)1 (D) 6
2 18.函数y=cosx+
3 sinx(x ∈R)的最小值是 ( )
(A)- 1
2
(B)-1 (C)-2 (D)-1- 3
19.已知x >0.y >0,xy=9,则x+y 的最小值为 ( ) (A)6 (B)8 (C)18 (D)3
20.当为奇数时,(1+i 1-i )2n +(1-i
1+i )2n = ( ) (A)2 (B)-2 (C)2或-2 (D)0
二、填空(共10题,每题2分)
21.函数y=
4-2x 的定义域是_________________________
22.已知圆心角2000所对的圆弧长为50cm ,求圆的半径(精确到0.1cm )_________ 23.y=sin3x 的图像向_____平移_____个单位可得到y=sin(3x+π
6 )的图像
24.终边落在y 轴上的角的集合______________________
25.设函数y=sin(x+π
4 )+1,当x=_____________时,y max =____________;
当x=________________时,y min =_________
26.已知P 为第IV 象限α终边上的一点,其横坐标x= 3 ,︱OP ︱=2,
则角α的正弦_______余弦_______正切_______ 27. 3 -tan150
1+
3 tan150
=________________
28.在△ABC 中,a=7,b=4
3 ,c=
13 ,则最小角为___________________
29.arctan(3π
4
)=_______________
30.已知z 1=-3-i,z 2=2i+1,z 1+z=z 2,z=_____________
三、解答题(共4题,每题5分)
31.求函数
1-x 2
+1
2x+1
的定义域 32.解方程72x -6·7x +5=0 33.计算1+i 1-i +1-i
1+i
34.证明:sin(4π-α)
cos(3π-α)-1 +1+cos(-α)
sin(3π-α)
=2csc α
试题、参考答案及评分标准如下
一、选择题(3’×20=60’)
1—5DACBA 6—10ACACB 11—15DBADB 16—20DCCAB
二、填空题 (2’×10)
21.{x ︱x ≤2} 22.14.3cm 23.左,π
18 24.{α︱α=k π+π
2 ,k ∈Z}
25. π4 +2k π(k ∈Z),2, -3π
4 +2k π(k ∈Z),0
26.-12 , 3 2 , - 3 3 27.1 28.300
29.- π
4
30.4+3i
三、解答题(5’×4=20’)
31.解:
1-x 2≥0
2x+1≠0 (2’) (x+1)(x-1)≤0 (2’) X ≠-12
[-1, -12 )∪(-1
2 ,1] (1’)
32.解:(7x )2-6·7x +5=0
(7x -1)(7x -5)=0 (3’) 7x =1,7x =5
X=0,x=log 75 (2’)
33.解:原式=(1+i)2
(1-i)(1+i) +(1-i)2
(1+i)(1-i) (2’)
=2i 2 +-2i
2 (2’)
=0 (1’) 34.证明:左边=-sin α-cos α-1 +1+cos α
sin α (2’)
=sin α1+cos α +1+cos α
sin α
=sin 2α+(1+cos α)2
sin α(1+cos α)
=2+2cos αsin α(1+cos α) (2’)
=2
sin α
=2csc α =右边 (1’)。