反比例方程应用题专项练习90题知识分享
- 格式:doc
- 大小:91.00 KB
- 文档页数:18
反比例函数的分析式专项练习30题(有答案)1.已知反比例函数y=的图象经过点A(﹣2,3),求这个反比例函数的关系式.2.已知y是x的反比例函数,且当x=3时,y=8,求:(1)y和x之间的函数分析式;(2)当时,y的值;(3)当时,x的值.3.已知函数y=y1+y2,其中y1和x成正比例,y2和x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5,求出此函数的分析式.4.函数y=(m﹣1)x3﹣m是反比例函数.(1)求m的值,并写出函数表达式.(2)若点(2,y1),(3,y2)在反比例函数的图象上,比较y1和y2的大小.5.反比例函数y=的图象经过A(﹣2,1)、B(1,n)两点.(1)求m,n的值;(2)根据反比例图象写出当﹣2<x<0时,y的取值范围.6.已知反比例函数y=﹣的图象经过点P(2,k﹣1).(1)求k的值;(2)试判断点A(﹣1,1)和点B(3,3)是否在这个函数图象上,请你通过计算说明理由.7.已知反比例函数的图象经过点(1,﹣2).(1)求此函数的表达式;(2)若点(m,﹣l)在这个函数的图象上,求m的值.8.如图所示的曲线是一个反比例函数的图象的一支,且经过点P(2,3).(1)求该曲线所表示的函数分析式;(2)当0<x<2时,根据图象请直接写出y的取值范围.9.已知,y=y1+y2,y1和(x﹣1)成反比例,y2和x成正比例,且当x=2时,y1=4,y=2.(1)求y和x之间的函数分析式;(2)当时,求y的值.10.已知一个反比例函数的图象经过点A(﹣2,6).(1)求这个反比例函数的分析式;(2)试判断点B(3,4)是否在这个函数的图象上?11.如图,反比例函数的图象经过点P(﹣1,3)(1)求该反比例函数的分析式;(2)当y≤3时,根据图象请直接写出自变量x的取值范围.12.已知反比例函数的图象经过点(1,﹣2).(1)求k的值;(2)若点(a,3)在这个图象上,求a的值.13.已知函数y=y1﹣y2,y1和x成正比例,y2和x成反比例,且当x=1时,y=2;当x=﹣2时,y=﹣7.(1)求y关于x的函数关系式;(2)求当x=3时的函数值.14.已知反比例函数的图象经过点P(2,1).(1)试确定此反比例函数的分析式;(2)若点P(x1,y1),Q(x2,y2)是上述反比例函数图象上的点,且x1<x2<0,试比较y1和y2的大小.15.已知点P(2,2)在反比例函数y=(k≠0)的图象上.(1)当x=﹣2时,求y的值;(2)如果自变量x的取值范围是1≤x≤3,求y的取值范围;(3)如果函数值y的取值范围是y≥3,则自变量x的取值范围.16.点P(﹣2,4)关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求此反比例函数关系式;(2)当x在什么范围取值时,y是小于1的正数?17.已知:y=y1+y2,y1和x2成正比例,y2和x成反比例,当x=1时,y=1;当x=﹣1时,y=3.求x=﹣2时,y的值.18.已知y=y1+y2,y1和x成正比例,y2和x﹣3成反比例,当x=4及x=1时,y的值都等于3.求:当x=6时,y 的值?19.如果y和x+2成反比例,且x=4时,y=1.(1)求y和x之间的函数关系式;(2)当y=3时,求x的值.20.若y和x成反比例,且当x=2时,y=3,求y和x的函数分析式.21.已知y+1和2x成反比例,且当x=2时,,求y和x之间的函数关系式.22.已知y﹣2和x成反比例,并且当x=2时,y=4,试求当x=﹣2时,y的值是多少?23.已知一个反比例函数的图象经过点A(﹣3,2).(1)求这个函数的分析式;(2)判断点B(18,),C(3,2)是否在这个函数的图象上;(3)当y=﹣3时,求自变量x的值.24.已知反比例函数.求:(1)y关于x 的函数分析式;(2)当x=﹣4时函数y的值.25.已知:y和x成反比例,且当x=1时,y=2(1)求y和x的函数关系式;(2)当x=﹣2时,求y的值.26.已知:y是x的反比例函数,但x=﹣2时y=3.(1)求:y和x的函数关系式;(2)画出函数图象;(3)试判断点A(﹣12,),B(3,﹣5)是否在该函数图象上?并说明理由.27.反比例函数y=中,当x的值由2增加到4时,y的值减小3,求这个反比例函数的分析式.28.已知y和2x﹣1成反比例,当x=2时,y=﹣1,求当x=﹣2时y的值.29.已知:反比例的函数图象如图所示经过点A.(1)求y和x之间的函数关系式;(2)若该反比例函数图象经过点B(x1、y1)、点C(x2、y2),当x1>x2时,试比较y1和y2的大小.30.y是x的反比例函数,且x=2时y=6.(1)写出y和x的函数关系式;(2)如果自变量的x取值范围为﹣2≤x≤﹣1时,求y的取值范围.反比例函数的分析式30题参考答案:1.把点A(﹣2,3)代入y=得:3=;(3分)解得:k=﹣6.(2分)∴反比例函数的关系式为y=﹣.2.(1)设反比例函数分析式为y=,将x=3,y=8代入,得:8=,解得k=24.则y和x之间的函数分析式为y=;(2)将x=2代入y=,得:y=9;(3)将y=代入y=,得:x=163.设y1=k1x(k1≠0),(k2≠0),∴y=k1x+;∵当x=1时,y=﹣1;当x=3时,y=5,∴,∴,∴y=x+4.(1)由题意得:3﹣m=﹣1,m=4,且m﹣1≠0.∴函数表达式为y=x﹣1或y=.…(3分)(2)法一:∵在第一象限,y随x的增大而减小,2<3.∴y1>y2.…(6分)法二:x=2,y1=;x=3,y2=.∴y1>y25.(1)根据题意,得,解得,即m,n的值都是﹣2.(2)由(1)知,反比例函数的分析式为y=﹣,其图象如图所示:,根据图象知,当﹣2<x<0时,y>16.(1)由题意,得,解得.…(3分)(2)把代入函数中,得.…(4分)当x=﹣1时,y=1;当x=3时,y=﹣≠3.…(6分)∴点A(﹣1,1)在函数图象上,点B(3,3)不在函数图象上7.(1)∵点(1,﹣2)在函数的图象上.∴,解得k=﹣2,则所求函数的表达式为.(2)∵点(m,﹣l )在函数的图象上.∴则m=2,即为所求8.(1)设反比例函数分析式为y=(k≠0),∵图象经过P(2,3),∴k=2×3=6,∴反比例函数分析式为y=;(2)由反比例函数图象可直接看出当0<x<2时,y>39.(1)根据题意设:y1=.∵y=y1+y2,∴y=,∵当x=2时,y1=4,y=2,∴.∴k1=4,k2=﹣1.∴y=﹣x,(2)把x=代入y=﹣x,得y==+210.(1)设这个反比例函数的分析式为(k≠0),依题意得:6=,∴k=﹣12,这个反比例函数分析式为;(2)由(1)求得:,当x=3时,y=﹣4≠4,∴B(3,4)不在这个函数的图象上11.(1)设反比例函数分析式为y=,把点(﹣1,3)代入得:k=﹣1×3=﹣3,∴函数分析式为y=﹣;(2)x≤﹣1 或x>012.(1)∵函数y=的图象经过点(1,﹣2),∴﹣2=k,∴k=﹣2;(2)又点(a,3)在图象上,则3=,即a=﹣.∵y2和x成反比例,∴设y2=(k2≠0),∵y=y1﹣y2,∴y=k1x ﹣,∵当x=1时,y=2;当x=﹣2时,y=﹣7.∴,解得,∴y=4x ﹣;(2)当x=3时,y=4×3﹣=11.14.(1)∵点P(2,1)在反比例函数y=图象上,∴将x=2,y=1代入反比例分析式得:k=xy=2,∴反比例函数分析式为y=;(2)∵k=2>0,∴在每个象限内,y随x的增大而减小,∵x1<x2<0,∴y1>y215.(1)将P(2,2)代入y=(k≠0),得k=4.故该曲线所表示的函数的分析式y=.当x=﹣2时,y==﹣2;(2)当x=1时,y=4;当x=3时,y=;又当x>0时,y随x的增大而减小,所以y 的取值范围≤y≤4;(3)函数值y的取值范围是y≥3,则自变量x的取值范围0<x ≤16.(1)∵点P(﹣2,4)和点P′关于y轴对称,∴P′(2,4),∵点P′在反比例函数y=(k≠0)的图象上,∴反比例函数的关系式为:y=;(2)∵y是小于1的正数,∴0<<1,解得x>817.∵y1和x2成正比例,∴y1=k1x2,∵y2和x成反比例,∴y2=,由y=y1+y2,得y=k1x2+,∵当x=1时,y=1,当x=﹣1时,y=3,∴解得∴y=2x2﹣,当x=﹣2时,y=818.∵y1和x成正比例,y2和x﹣3成反比例,∴y1=ax,y2=,又y=y1+y2,∴y=ax+.根据题意,得:,解得.所以y=x+.当x=6时,则y=9﹣1=819.(1)设y和x之间的函数关系式为y=,代入x=4,y=1,得k=6,∴y=.(2)当y=3时,x=020.设分析式y=,再把(2,3)代入得k=6,21.∵y+1和2x成反比例,∴设反比例函数的分析式为y+1=,∵当x=2时,y=﹣,即+1=,k=6,故y和x之间的函数关系式为y=﹣122.∵y﹣2和x成反比例,∴y﹣2=(k≠0),∴k=(y﹣2)x;又∵当x=2时,y=4,∴k=2×(4﹣2)=4,∴当x=﹣2时,y=2+=3,即y=323.(1)设函数的分析式为则∴k=﹣6…(2分)∴函数的分析式为…(3分)(2)当x=18时,∴点C(18,)在函数的图象上…(4分)当x=3时,∴点D(3,2)不在函数的图象上…(5分)(3)函数的分析式为当y=﹣3时,…(6分)∴x=224.(1)根据题意,得=﹣,解得,k=﹣8;∴该反比例函数的分析式是y=﹣;(2)由(1)知,该反比例函数的分析式是y=﹣,∴当x=﹣4时,y=﹣=﹣2,即y=﹣2∴k=1×2=2,∴反比例函数分析式为:y=(2)把x=﹣2代入y=得:y=﹣1.26.(1)∵y是x的反比例函数,∴设反比例函数分析式为y=(k≠0),∵x=﹣2时y=3.∴k=(﹣2)×3=﹣6,∴反比例函数分析式为:y=﹣;(2)如图所示:;(3)﹣12×=﹣6,故A在该函数图象上;3×(﹣5)=﹣15≠﹣6,故B不在该函数图象上27.由题意得,解得k=12,∴.28.由y和2x﹣1成反比例,设y=(k≠0),将x=2,y=﹣1代入得:﹣1=,解得:k=﹣3,∴反比例分析式为y=﹣,将x=﹣2代入得:y=﹣=.29.(1)设反比例函数的分析式是y=,由图象可知:过点A(﹣3,3),代入得:k=﹣9,∴y=﹣,(2)x1>x2>0时,y1>y2,0>x1>x2时,y1>y2,x1>0>x2时,y1<y230.(1)设y和x的函数关系式是y=.根据题意,得=6,则k=12.则y和x的函数关系式是y=;(2)当x=﹣2时,则y=﹣6;当x=﹣1时,则y=﹣12.又∵k>0,则在每个象限内,y随x的增大而减小,所以﹣12≤y≤﹣6。
反比例应用题专项练习90题(有答案)1.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)2.某学校美化环境,用彩色水泥砖铺路面,用面积4平方分米的方砖铺要4500块,若改用面积9平方分米的方砖铺要几块?3.张师傅准备给自家的客厅里铺上地板砖,如果用面积是36平方分米的方砖就需要40块,如果改用面积是60平方分米的方砖,则需要多少块?(用比例解)4.学校微机室需用方砖铺地,用面积是16平方分米的方砖,需要150块,如果改用面积是25平方分米的方砖,需要多少块?5.电视机厂计划每天产75台电视机,12天完成任务,实际每天多生产15台,多少天可以完成任务?(用比例知识解题)6.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)7.排版一部书稿,如果每页排640个字,要200页;如果每页排800个字,可排多少页?8.用一批纸装订练习本,如果每本装订25页,可以装订36本;如果每本装订15页,可以装订多少本?(用比例解)9.一个筑路队铺一段铁路,原计划每天铺3.2千米,实际每天比原计划多铺25%,实际铺完这段铁路用了12天,原计划用多少天铺完?(用比例解)10.王奶奶家装修房子,用面积是9平方分米的方砖铺地要用160块,如果改用边长为4分米的方砖铺地,要用多少块?(用比例解)11.盖一幢职工宿舍.计划使用6米长的水管240根.后来改用8米长的水管,共需要多少根?(用比例知识解答)12.小明读一本故事书,每天读15 页,12 天读完.如果每天读20 页,几天可以读完?(比例解)13.发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了几天?(用比例知识解答)14.时新服装厂生产一批西服,原计划每天生产150套,24天可以完成任务.实际每天生产180套,实际生产了多少天?(用比例知识解)15.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)16.一本书,如果每天读30页,6天可以读完,若每天读20页,要多少天才能读完?17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)18.做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(比例解)19.金光电子厂要生产一批零件,原计划每天生产180个,12天完成.实际的生产效率是原计划的120%,实际多少天可以完成?(比例解)20.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验.如果要提前8小时到达,每小时需行驶多少千米?21.铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(比例解)22.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)23.桃每千克售价1.8元,梨每千克售价2.4元.买40千克桃的钱,可以买多少千克梨?24.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)25.汽车从A到B地,每小时行60千米,需8小时到达,实际上2小时已行160千米,照这样计算,行完全程共需多少小时?(用正、反两种比例解)26.有一批饮料,每箱装24瓶,正好装50箱.如果要装60箱,每箱装多少瓶?(用比例解)27.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务.实际每天装配30台,只需几天就可以完成任务?(用比例方法解)28.同学们做操,每行站15人,正好站12行.如果每行站9人,可以站多少行?29.一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?30.一个房间,如果用边长为0.3m的方砖铺地,需800块,如果改用边长为0.2m的方砖铺地,需要多少块?(用比例解答)31.食堂有一堆煤,原计划每天烧60千克,可以烧40天,实际每天烧48千克,这堆煤实际可烧多少天?(用比例解)32.一辆汽车从甲地开往乙地,每小时行90千米,3小时到达,若要2.5小时到达,每小时需行多少千米?(用比例解)33.邮递员小李从A地到B地送信,去时每小时走20km,用可7.5小时,回的时候每小时走50km,多小时可以回到A地?(用比例知识解)34.一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?(用比例解)35.学校买来一批图书,如果每班分30本,可以分给8个班,现在需要分给12个班,每班只能分到多少本?(用比例解)36.方叔叔开车去县城以每小时80km的速度,行了3小时,返回时每小时行90km,返回时少用了多少时间?(用比例的知识解答)37.一堆煤,计划每天烧0.5吨,可以烧40天,如果每天烧0.4吨,可以烧多少天?(用比例解)38.某车间要生产一批零件,计划每天生产80个,15天完成.实际要10天完成,平均每天应生产多少个?(用比例知识解答)39.一辆汽车从甲城开往乙城,每小时行45千米,5小时到达.返回时,每小时行驶50 千米,几小时回到甲城?(用比例解)40.小红读一本故事书,如果每天读20页,30天读完.现在每天读25页,几天读完?(用比例解)41.用边长0.2米的方砖给一间小房间铺地,要900块,如果改用边长0.3米的方砖来铺,需要多少块?(用比例解)42.用4500张白纸装订练习本,先用360张装订了40本,照这样计算,剩下的纸还能装订多少本?(用比例知识解答)43.养牛场计划5天割草3000千克,实际每天比原计划多割150千克,实际用了多少天?44.一辆汽车从甲地到乙地,如果每小时行42.6千米,要用5.4小时.如果每小时行60千米,要用几小时才能到达?45.印刷厂用一批纸装订练习本,如果每本装20页,可以装订300本.如果要装订250本练习本,每本应装订多少页?(比例解)46.如图是两个相互交合的齿轮,大齿轮的半径是2分米,小齿轮的半径是8厘米,如果大齿轮转动200周,小齿轮要转动多少周?47.某工厂计划加工一批零件,如果每天加工20个,18天可以完成,实际4天加工了96个,照这样计算,几天可以完成任务?48.一块地,用面积是0.09平方米的方砖铺满要1152块;如果改用面积是0.16平方米的方砖,需要多少块才能铺满?(用比例知识解答)49.一批游客到博鳌水城要乘游艇游览,原计划租用14只游艇,每只坐24人.但实际只租到12只,实际每只游艇应坐多少人?(用比例方法解)50.学校要装修一间会议室,用边长3分米的方砖铺地,需要600块;如果改用边长5分米的方砖铺地,需要多少块砖?(用比例解)51.一堆煤计划每天烧4吨可以烧72天.由于改进炉灶,每天节约0.8吨,这样,这堆煤可烧多少天?(用比例解)52.一间房子要用方砖铺地,用边长是3分米的方砖,需要96块,如果改用边长是4分米的方砖,买55块够不够?53.修一条路原计划每天修50米,25天修完.实际20天完成任务,实际每天修多少米?(用比例解)54.一辆汽车从甲地开往乙地,每小时行42千米,15小时可以到达,如果要提前1个小时到达,每小时应行多少千米?(用比例解答)55.一堆煤,原计划每天烧1.5吨,可以烧36天.实际每天节约0.3吨,这样可以烧几天?(用比例解)56.机床厂生产一批机器,原计划每天生产240台,25天完成,如果要提前5天完成,平均每天要生产多少台?(用比例方法解)57.学校组织远足活动,原计划每小时走3.8千米,3小时到达目的地,实际2.5小时行完全程,平均每小时多行多少千米?(用比例解答)58.“天虹”电机厂接到生产一批发电机的任务,原计划每天生产30台,12天可以完成,实际每天多生产6台,实际用多少天可以完成任务?(运用比例知识解)59.李叔叔买了一套新房,客厅是一个长方形,原计划用面积是16平方分米的方砖铺地,需要150块地砖,现在决定用长6分米,宽1分米,厚2厘米的木地板铺地,那么至少需要买这种木地板多少块?60.一间房子,用面积是18平方米的方砖铺底,需要176块,如果用面积是16平方米的方砖铺地需要多少块砖?(用比例解)61.生产一批农具,原计划每天生产240件,15天完成,实际每天多生产60件,实际多少天完成?(用比例解)62.修一条路,如果每天修1200米,8天可以修完;如果每天修800米,几天可以修完?(用比例方法解)63.一辆汽车从甲地开往乙地,若每小时行35千米,6小时到达.若每小时行42千米,几小时到达?64.一篇文章原稿每行24个字,共40行.现改为每行32个字,那么这篇文章需要打印多少行?(用比例解)65.一列火车从甲地开往乙地,每小时行120千米,8小时到达.如果每小时行100千米,几小时到达?(用比例解)66.袁师傅原来加工一个零件要用12分钟,现在减少到8分钟,原来每天加工50个零件的时间,现在每天可加工多少个零件?(用比例解)67.用同样的砖铺地,铺9平方米用砖308块,如果铺12平方米,要用多少块砖?(用比例)68.买来一批煤,计划每天烧吨,可烧20天;实际每天比原来节约20%,这样可以烧多少天?(用比例解答)69.欢欢家里装修,如果用面积为16平方分米的方砖铺地,需要180块.请你帮忙计算一下,如果改用面积为36平方分米的方砖铺地,需要多少块?(用比例方法解)70.用边长是0.6米的方砖给办公室铺地,需要2000块;如果改用边长0.8米的方砖铺地,至少需要多少块砖?71.王强从家到学校每分钟走50米,18分钟到校;放学回家时,他想比上学时少用3分钟到家,他每分钟应走多少米?(用比例解)72.学校会议室需要用方砖铺地.如果用边长8dm的方砖铺,需要725块;如果改用边长10dm的方砖铺,需要这样的方砖多少块?(此题限用比例解答.)73.电机厂要生产一批发电机,原计划每天生产20台,12天完成,实际每天多生产10台,实际用多少天完成?(用比例解)74.车队向灾区运送救灾物资,去时每小时行60千米,4.5小时到达,返回时每小时多行15千米,返回出发地点用了多长时间?(用比例解)75.装订一本书,如果每页排500个字,可以排180页,如果改为每页排600个字,可以少排多少页?(用比例解)76.钢铁厂要生产一批钢材,计划每天生产600吨,20天完成.实际每天生产800吨,实际几天完成?77.毛毛全家“六一”到中山公园游玩,拍了许多照片,毛毛买了一本24页的相册,如果每页放6张照片,刚好放16页,现在毛毛打算每页只放4张,请你帮她算一算,这本相册够放吗?(用比例解)78.何聪看一本故事书,原计划每天看45页,6天可以看完.实际每天只看30页,几天可以看完?(用比例知识解答)79.用一批纸装订练习本,每本32页,可以装订成15本.如果装订成24本,平均每本是多少页?80.李叔叔家买了新房,正准备给地面贴磁砖.如果用边长6分米的方砖铺,需要360块,如果改用边长8分米的方砖,最少需要多少整块方砖?81.工程队要修一条公路,原计划18个人25天完成.为了赶工期,需要提前10天完成,这样实际需要安排多少个工人?(用比例解)82.一辆汽车去县城以每分钟2.5km的速度,行了半小时,返回时以每小时120km的速度行驶,汽车返时用了多少分钟?(用比例解)83.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?84.用一批纸装订同样大小的练习本,如果每本30页,可以装订120本;现用这批纸装订了100本,每本应装订多少页?(用比例解答)85.加工一批零件,计划每小时加工40个,6小时完成,实际每小时比计划每小时多加工20%,实际加工完这批零件要多少小时?(用比例知识解答)86.工程队修一条路,每天修45米,20天可以完成任务.实际前4天修了200米,照这样计算,多少天可以完成任务?(用比例解答)87.有一批纸,可以装订每本24页的练习本216本,如果要装订出288本,那么每本应该改装成多少页?(用比例解)88.实验小学举行团体操表演,如果每列25人,要排24列,如果每列20人,要排多少列?(用比例解)89.一堆煤,原计划每天烧3吨,可以烧96天.实际每天烧2.4吨,实际可以烧多少天?(用比例方法解答)90.发电厂运来一批煤,计划每天烧吨,可以烧35天,实际每天比计划节约烧煤0.25吨,这批煤实际烧了多少天?(用比例解)参考答案:1.设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.2.设改用面积9平方分米的方砖铺要x块,9x=4×4500,x=,x=2000;答:改用面积9平方分米的方砖铺要2000块3.设需要x块,60x=36×40,60x=1440,x=24;答:需要24块4.设需要x块,25x=16×150,x=16×150÷25,x=96;答:需要96块5.设x天可以完成任务,总量一定,每天生产台数和生产天数成反比例,75:(75+15)=x:12,75×12=(75+15)×x,75×12=90×x,x=75×12÷90,x=10;答:10天可以完成任务6.设提前1小时完成任务时的工作效率为x个,40×3=x×(3﹣1),2x=40×3,x=,x=60;(60﹣40)÷40,=20÷40,=50%;答:工作效率需提高50%.7.设可排x页,640×200=800x,800x=128000,x=160;答:可排160页8.设可以装订x本,由题意得:15x=25×36,15x=900,x=60.答:可以装订60本.9.设原计划铺x天,3.2x=3.2×(1+25%)×12,3.2x=4×12,3.2x=48,x=15;答:原计划用15天铺完.10.设用边长为4分米的方砖铺地要用x块,则:(4×4)×x=160×9,16x=1440,x=1440÷16,x=90.答:要用90块11.设共需要x根;8x=6×240,x=,x=180;答:共需要180根.12.设x天可以读完,20x=15×12,x=,x=9;答:9天可以读完.13.设实际x天用完,(30﹣5)x=30×12,25x=360,x=14.4;14.4﹣12=2.4(天);答:实际比计划多用了2.4天14.设实际生产了x天,180x=150×24,x=3600÷180,x=20.答:实际生产了20天.15.设平均每小时行x千米.42×5=4x4x=210x=52.5;答:平均每小时行52.5千米.16.设要x天才能读完.20x=30×6x=180÷20x=9;答:要9天才能读完.17.设每天应装x台.50×60=40xx=x=75;答:每天应装75台.18.设平均每天做x个;12x=200×15,x=,x=250;答:平均每天做250个.19.设实际x天可以完成,180×120%×x=180×12,216x=2160,x=10;答:实际10天可以完成.20.设每小时需行驶x千米,则有(48﹣8)x=25×48,40x=1200,x=30;答:如果要提前8小时到达,每小时需行驶30千米.21.设换上的新铁轨有x根;9x=6×240,x=,x=160;答:换上的新铁轨有160根22.设实际要x天运完,则有21x=18×84,21x=1512,x=72;答:实际要72天运完.23.1.8×40÷2.4=72÷2.4=30(千克)答:可以买30千克梨.24.设可以提前x天完成.160×15=(160+80)×(15﹣x)160×15=240×(15﹣x)15﹣x=15﹣x=10x=5答:可以提前5天完成.25.(1)设行完全程共需x小时,160:2=(60×8):x,160:2=480:x,160x=480×2,x=,x=6;(2)行完全程共需y小时,(160÷2)×y=60×8,80y=60×8,y=,y=6;答:行完全程共需6小时26.设每箱装x瓶,60x=50×24,x=,x=20;答:每箱装20瓶.27.设只需x天就可以完成任务,30x=20×15,30x=300,x=10;答:实际每天装配30台,只需10天就可以完成任务28.设可以站x行,9x=15×12,x=,x=20,答:可以站20行.29.设需要x块.3×3×432=4×4×x16x=9×432x=243;答:需要243块30.设需要x块,0.3×0.3×800=0.2×0.2×x,0.04x=0.09×800,x=,x=1800,答:需要1800块.31.设这堆煤实际可烧x天,48x=60×40,48x=2400,x=50;答:这堆煤实际可烧50天.32.设每小时需行x千米,2.5x=90×3,x=,x=108,答:每小时需行108千米.33.设需要x小时回到A地,50x=20×7.5,50x=150,x=3;答:3小时可以回到A地.34.设需要方砖x块,由题意得:0.25x=0.16×2750.25x=44x=176答:需要方砖176块.35.设每班只能分到x本,12x=30×8,12x=240,x=20;答:每班只能分到20本.36.设返回的时间为x小时,90x=80×3,x=,x=,少用的时间:3﹣=(小时),答:返回时少用了小时.37.设可以烧x天,0.4x=0.5×40,x=,x=50;答:可以烧50天.38.设平均每天生产x个,10x=80×15,x=,x=120,答:平均每天应生产120个.39.设x小时回到甲城,50x=45×5,x=,x=4.5,答:4.5小时回到甲城.40.设x天读完;25x=20×30,x=,x=24,答:24天读完41.设需要x块,0.3×0.3x=0.2×0.2×900,0.09x=0.04×900,x=36÷0.09,x=400,答:需要400块42.剩下的纸还能装订x本,=,360x=165600,x=460;答:剩下的纸还能装订460本43.3000÷(3000÷5+150),=3000÷(600+150),=3000÷750,=4(天),答:实际用了4天.44.设要用x小时才能到达,60x=42.6×5.4,60x=230.04,x=3.834;答:如果每小时行60千米,要用3.834小时才能到达.45.设每本应装订x页,250x=20×300,x=,x=24,答:每本应装24页.46.2分米=20厘米,设小齿轮要转动x周,200×3.14×2×20=3.14×2×8×x,4000=8x,x=4000÷8,x=500,答:小齿轮要转动500周47.设x天可以完成任务,(96÷4)×x=20×18,24x=360,x=360÷24,x=15,答:15天可以完成任务.48.设需要x块才能铺满,由题意得:0.16x=0.09×1152,0.16x=103.68,0.16x÷0.16=103.68÷0.16,x=648;答:需要648块才能铺满.49.设实际每只游艇应坐x人,12x=24×14,12x=336,x=28;答:实际每只游艇应坐28人50.设如果改用边长5分米的方砖铺地,需要x块砖,则有:(5×5)x=(3×3)×600,25x=9×600,25x=5400,x=216;答:如果改用边长5分米的方砖铺地,需要216块砖.51.设这堆煤可烧x天,(4﹣0.8)×x=4×72,3.2x=4×72,x=,x=90;答:这堆煤可烧90天.52.设改用边长是4分米的方砖需要x块,4×4×x=3×3×96,16x=9×96,x=,x=54,54<55,所以买55块够用,答:如果改用边长是4分米的方砖,买55块够用53.设实际每天修x米,20x=50×25,x=,x=62.5,答:实际每天修62.5米54.设每小时应行x千米,(15﹣1)x=42×15,14x=42×15,x=,x=45;答:每小时应行45千米.55.设这样可以烧x天,(1.5﹣0.3)×x=1.5×36,1.2x=1.5×36,x=,x=45;答:这样可以烧45天56.设平均每天要生产x台,240×25=(25﹣5)×x,20x=240×25,x=,x=300;答:平均每天要生产300台57.设实际的速度为x千米/小时,则2.5x=3.8×3,2.5x=11.4,x=4.56;答:平均每小时多行4.56千米58.设实际用x天可以完成任务,(30+6)×x=30×12,36x=360,x=10,答:实际用10天可以完成任务.59.设至少需要买这种木地板x块,则有(6×1)x=16×150,6x=2400,x=400;答:至少需要买这种木地板400块.60.设用面积是16平方米的方砖铺地需要X块砖.16X=18×176;16X=3168;X=198;答:用面积是16平方米的方砖铺地需要198块砖.61.设实际x天完成,则有(240+60)x=240×15,300x=3600,x=12;答:实际12天完成.62.设x天可以修完,800x=1200×8,x=, x=12;答:12天可以修完 63.设x 小时到达. 35×6=42x x=x=5答:5小时到达64.设这篇文章需要打印x 行, 32x=24×40, x=,x=30,答:这篇文章需要打印30行65.设如果每小时行100千米,x 小时到达, 则有100x=120×8, 100x=960, x=9.6;答:如果每小时行100千米,9.6小时到达.66.设现在每天可加工x 个零件, 则有8x=12×50, 8x=600, x=75;答:现在每天可加工75个零件67.设要用x 块砖,则 12:x=9:308 9x=308×12 x=308×12÷9 x=410答:要用410块砖. 68.设这样可以少x 天,×(1﹣20%)x=×20 x ×80%=5,0.2x=5, x=5÷0.2, x=25; 答:这样可以少25天.69.设需要x 块面积为36平方分米的方砖. 36x=16×180,x=,x=80;答:如果改用面积为36平方分米的方砖铺地,需要80块.70.设至少需要x 块砖, 0.8×0.8x=0.6×0.6×2000, 0.64x=0.36×2000, x=,x=1500,答:至少需要1500块方砖 71.设他每分钟应走X 米, 50×18=X ×(18﹣3), 15X=900, X=900÷15, X=60;答:他每分钟走60米72.设需要x 块砖,由题意得, 10×10x=8×8×725, 100x=46400, x=464;答:需要这样的方砖464块. 73.设实际用x 天完成, (20+10)x=20×12, 30x=240, x=8;答:实际用8天完成.74.设返回出发地点用了x 小时,由题意得: (15+60)×x=60×4.5, 75x=270, x=3.6.答:返回出发地点用了3.6小时75.设改为每页排600个字,可以排x 页, 500×180=600×x , 6x=900, x=150,180﹣150=30(页); 答:可以少排30页.76.设实际x 天完成, 800x=600×20, x=12000÷800, x=15; 算术法: 600×20÷800, =12000÷800,=15(天);答:实际15完成.77.设每页只放4张,可以放x页,4x=6×16,4x=96,x=24;因为这本相册有24页,所以正好够.答:这本相册够放.78.设x天可以看完;30x=45×6,x=,x=9,答:9天可以看完.79.设平均每本是x页,24×x=32×15x=x=20答:平均每本是20页.80.设如果改用边长为8分米的方砖要x块.8×8×x=6×6×360,64x=36×360,x=12960÷64,x=202.5,x≈203;答:如果改用边长为8分米的方砖最少要203块81.设实际需要安排x个工人,(25﹣10)×x=18×25,15x=450,x=30;答:实际需要安排30个工人82.每小时120km的速度行驶转化成每分钟120÷60=2km的速度行驶,半小时=30分钟;设汽车返时用了X分钟,2X=2.5×30,2X=75,X=37.5;答:汽车返时用了37.5分钟83.设可以装订x本,32x=36×4000,32x=144000,x=4500,答:可以装订4500本.84.设每本应装订x页,100x=120×30,100x=3600,x=3600÷100,x=36;答:每本应装订36页85.设实际加工完这批零件要x小时.40×(1+20%)×x=40×6,48x=240,x=5;答:实际加工完这批零件要5小时.86.x天可以完成任务,(200÷4)×x=45×20,50x=45×20,x=,x=18,答:18天可以完成任务.87.设每本应该改装成x页,288x=216×24,x=,x=18,答:每本应该改装成18页88.设如果每列20人,要排x列,则有20x=25×24,20x=600,x=30;答:如果每列20人,要排30列89.实际可以烧x天.3×96=2.4xx=x=120答:实际可以烧120天.90.设这批煤实际烧了x天.(1﹣0.25)x=1×35,1.25x=52.5,x=42.答:这批煤实际烧了42天。
小学反比例试题及答案一、说明本文将针对小学反比例试题及答案进行论述,为了使内容清晰易懂,将分为两个部分,第一部分是反比例的基本概念及性质,第二部分是一些常见的小学反比例试题及详细答案解析。
二、反比例的基本概念及性质1. 反比例的定义反比例是指两个量之间的关系,当一个量增大时,另一个量会相应地减小;反之,当一个量减小时,另一个量会相应地增大。
这两个量的乘积是一个常数。
2. 反比例的表示方式反比例可以用以下方式表示:- 两个量的乘积等于一个常数:xy = k(其中x和y为两个变量,k为常数);- 一个量与另一个量的倒数成正比:y = k/x。
3. 反比例的性质- 当x = 0时,y不存在,即在反比例关系中不存在0值;- 当x > 0时,y < 0,即当一个变量增大时,另一个变量必然减小;- 当x < 0时,y > 0,即当一个变量减小时,另一个变量必然增大;- 反比例的图像是一条倾斜的曲线,它在第一象限和第三象限中。
三、小学反比例试题及答案解析以下是一些常见的小学反比例试题及详细答案解析。
题目一:甲工人需要10天完成一项工作,如果增加工人数量到2人,那么需要多少天才能完成这项工作?答案解析:假设2人需要x天完成工作。
由反比例的关系可以得到:10 × 1 = x × 2得到方程10 = 2x,解方程得到x = 5。
因此,2人需要5天完成这项工作。
题目二:某种水果每个包装中有8个,现在有24个包装,需要多少个人能够把这些包装装车?答案解析:假设需要x个人能够把包装装车。
由反比例的关系可以得到:8 × 24 = x × 1得到方程192 = x,解方程得到x = 192。
因此,需要192个人才能将这些包装装车完毕。
题目三:一辆汽车以每小时60千米的速度行驶,到达目的地需要5小时。
如果以80千米每小时的速度行驶,需要多长时间才能到达相同的目的地?答案解析:假设需要x小时才能到达相同的目的地。
反比例专项练习30 题(有答案)1.下表中,x 与y 成反比例,那么☆表示的数是()x 5 ☆y 120 150A.3 B.4 C.6.252.以下四幅图象中,表示成反比例的是()A.B.C.D.3.a与b 成反比例的条件是()A.a÷b=c(c 一定)B.c×a=b(c 一定)C.a×b=c(c 一定)D.a×c=b(b 一定)4.成反比例的两种量在变化过程中,一种量扩大,另一种量()A.扩大B.缩小C.不变5.下列关系式中x、y 都不为0,则x 与y 不是成反比例关系的是()A.B.y=3÷x C.D.x= x= ×πx=6.表示a 和b 这两种量成反比例的关系式是()A.a+b=8 B.a﹣b=8C.a×b=8 D.a÷b=87.下列各式中,a 和b 成反比例的是()A.9a=6b B.a× =1 C.a×8=8.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例9.表示a 与b 成反比例关系式的式子是()A.a+b=8 B.a﹣b=8C.a=5b D.ab=710.已知=,那么A 和B()A.成反比例B.成正比例C.不成比例D.无法确定11.如果5a=3b,那么a 和b()关系.A.成正比例B.成反比例C.不成比例12.4X﹣5Y=0,(X、Y 不等于0),X 和Y()A.成正比例B.成反比例C.不成比例13. a 与b()A.成正比例B.成反比例C.不成比例14.教室里的面积一定,教室里的人数和每人占地的面积()A.成反比例B.成正比例C.不成比例D.无法确定是否成比例15.关于正反比例的判断,以下说法正确的是()A.三角形的面积一定,它的底和高成反比例B.一个人的身高与体重成反比例C.圆的半径和面积成正比例16.已知a 与b 成反比例,b 与c 成反比例,那么a 与c 的关系是()A.正比例B.反比例C.不成比例D.无法确定17.x 和y 成反比例关系的是()A.x+y=100 B.x:5=3:y C.20x=5y18.如果=,那么x 和y()A.成正比例B.成反比例C.不成比例19.A÷C=B,当A 一定时,B 与C 成反比例..20.六年级同学排队做广播操,每行人数和排成的行数成比例;出油率一定,花生油的质量和花生比例;3x=y,x 和y 成比例;实际距离一定,图上距离和比例尺成的质量,成比例.21.如果AB=K+2(K 一定),那么A 和B 成反比例..22.一项工程的总量一定,已经完成的工作量与剩下的工作量成反比例..24.用36 米长的篱笆围一个长方形的鸡舍,围成的长和宽成反比例..25.假如ab+13=37,那么a 与b 成反比例..26.直角三角形的两个锐角大小成反比例..27.圆周长计算公式为C=2πr,当C 一定,π和r 成反比例..x 2 40y 5 0.1每天运的吨数300 150 100 75 60 50需要的天数 1 2 3 4 5 6(1)(2)说明这个积表示什么?(3)表中相关联的两个量成反比例吗?为什么?30.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?参考答案:1.150☆=5×120,50☆=600,☆=4;故选:B.2.A、图象表示的两个量的比值一定,不属于反比例的意义;B、图象分成两部分,一部分是一个量随另一个量的增加而增加,而另一部分是一个量随另一个量的增加而减少,不属于反比例的意义,C、图象中两个量对应的数的乘积是600,是一定的,符合反比例的意义,D、两个量对应的数的乘积是不一定的,属于不符合反比例的意义,故选:C.3.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.只有a×b=(定量),a 与b 才成反比例.只有C 选项符合反比例的意义.故选:C4.成反比例的两种量在变化过程中,一种量扩大,另一种量缩小,变化方向应该相反;故选:B.5.A、因为x=,则有xy=4(一定),所以x 和y 成反比例;B、因为y=3÷x,则有xy=3(一定),所以x 和y 成反比例;C、因为x=×π,则有xy=π(一定),所以x 和y 成反比例;D、因为x=,则有=4(一定),所以x 和y 成正比例;故选:D6.A,因为a=b=8(一定),是a、b 的和一定,所以a、b 不成比例;B,a﹣b=8(一定),是a、b 的差一定,所以a、b 不成比例;C,a×b=8(一定),是a、b 的乘积一定,所以a、b 成反比例;D,a÷b=8(一定),是a、b 的比值一定,所以a、b 成正比例;故选:C7.选项A,因为9a=6b,则=,无法确定a 和b 的乘积是否一定,则不成反比例;选项B,因为a×=1,则ab=3(值一定),所以a 和b 成反比例;选项C,因为a×8=,则=40,无法确定a 和b 的乘积是否一定,则不成反比例;故答案为:B根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选 B9.选项A,由a+b=8,不能判定a 和b 成什么比例;选项B,由a﹣b=8,不能判定a 和b 成什么比例;选项C,由a=5b 可得=5(定值),所以a 和b 成正比例;选项D,因为ab=7(定值),则a 和b 成反比例;故答案为:D10.=,AB=3×5=15(一定),所以 A 与 B 成反比例,故选:A 11.5a=3b,那么:a:b= ;是个定值,一个因数一定,积和另一个因数成正比例.故答案选:A12.因为4X﹣5Y=0,则4x=5y,x:y=5:4(一定),所以x 和y 成正比例;故选:A13.,=0,= ,ab=3(一定),故选:B﹣14.人数×每人占地的面积=教室里的面积,教室里的面积一定,也就是这两种量的乘积一定,所以成反比例;故选A.A、因为三角形的面积=底×高÷2,所以底×高=三角形的面积×2(一定),即底和高的乘积一定,符合反比例的意义,所以三角形的面积一定,它的底和高成反比例;B、因为一个人的身高和体重的乘积不是一定的,比值也不是一定的,所以一个人的身高与体重不成比例;C、因为圆的面积=π×半径的平方,即圆的面积÷半径的平方=π(一定),所以圆的面积与半径的平方成正比例,但圆的面积与半径不成比例;故选:A16.因为a和b 成反比例,所以ab=k1(一定),则b=,因为,b 和c 成反比例,所以bc=k2(一定),把b=,代入式子bc=k2(一定),得出:a:c= (一定),是a 和c 对应的比值一定,所以a 和c 成正比例;故选:A17.A、x+y=100,是和一定,既不符合正比例的意义也不符合反比例的意义,所以x 和y 不成反比例;B、x:5=3:y,xy=15(一定),符合反比例的意义,所以x 和y 成反比例;C、20x=5y,x:y=0.25(一定),符合正比例的意义,不符合反比例的意义,所以x 和y 成正比例,不成反比例;故选:B18.因为=;所以4x=4.5y;x:y=4.5:4;x:y=1.125(一定);可以看出,x 和y 是两个相关联的变化的量,它们相对应的比值是1.125,是一定的,所以x 和y 成正比例关系.故选:A19.因为:A÷C=B,所以:B×C=A(一定);可以看出,B 和C 是两种相关联的量,B 随C 的变化而变化,A 是一定的,也就是B 与C 相对应数的乘积一定,所以B 与C 成反比例关系.故答案为:正确20.六年级同学排队做广播操,每行人数和排成的行数成反比例;出油率一定,花生油的质量和花生的质量,成正比例;3x=y,x 和y 成正比例;实际距离一定,图上距离和比例尺成正比例.21.如果AB=K+2(K 一定),k 一定,那么k+2 也是一定的,可以看出,A 和B 是两种相关联的量,A 随B 的变化而变化.k+2 是一定的,也就是A 与B 相对应数的乘积一定,符合反比例的意义.所以A 与B 成反比例关系.故答案为:正确.22.一项工程的总量一定,已经完成的工作量与剩下的工作量成反比例.× .x 15 20 25 30 40 60y 400 300 240 200 150 10024.因为长方形的长+宽=篱笆的总长度× (一定),是长和宽对应的和一定,不是乘积一定,所以围成的长和宽不成比例.故判断为:错误25.因为ab+13=37,则:ab=24(一定),所以a 和b 成反比例;故答案为:正确.26.直角三角形的两个锐角大小成反比例.× .27.圆周长计算公式C=2πr 中,2π是一定的,当C 一定,那么r 也是一定的,这样在这个关系式中,所有的量都是一定的,所以当C 一定,π 和r 不成任何比例,所以“当C 一定,π 和r 成反比例”是错误的.28.因为2×5=10,所以10÷=50,10÷0.1=100,10÷40=0.25,10÷=12,故答案为:50,100,0.25,12 29.(1)300×1=300,150×2=300,100×3=300,75×4=300,60×5=300,50×6=300,因为积都是300,所以积相等;(2)每天运的吨数×需要的天数=这批货物的总吨数,所以这个积表示这批货物的总吨数;(3)因为表中相对应的两个数的乘积一定,符合反比例的意义,所以成反比例关系30. (1)根据题干分析可得,上表左边两种相关联的量是路程与时间;左边表格中两种相关联的量是速度与时间;据此即可解答;(2)左边表格中:路程随着时间的变化而变化,右边表格中:时间随着速度的变化而变化;(3)左边表格:20÷1=40÷2=60÷3=20,所以速度一定时,路程与速度成正比例;右边表格:60×1=30×2=20×3=60,所以路程一定时,速度与时间成反比例。
初三反比例练习题反比例关系是数学中常见的一种关系,变量之间的乘积为常数。
在初三数学练习中,我们经常会遇到涉及反比例关系的题目。
本文将为大家列举一些初三反比例练习题,以便同学们更好地掌握此类问题的解题方法。
1. 甲工人在8个小时内可以完成一项工作,如果只工作6个小时,需要多少人才能完成同样的工作?解析:设完成这项工作所需工人数为x。
根据反比例的关系可得:工人数 ×工作时间 = 常数8 × 1 = x × 6可以得到:x = 4答案是:4人。
2. 一辆汽车以每小时60公里的速度行驶,则行驶800公里需要多少时间?解析:设行驶800公里所需的时间为t。
根据反比例的关系可得:时间 ×速度 = 常数t × 60 = 800可以得到:t = 800 / 60 = 13.33答案是:13.33小时。
3. 甲螺丝批每分钟可以拧5颗螺丝,乙螺丝批每分钟可以拧3颗螺丝。
两个螺丝批同时工作,共同完成100颗螺丝需要多少时间?解析:设完成100颗螺丝所需的时间为t。
根据反比例关系,甲螺丝批和乙螺丝批的拧螺丝速度可以相加,得到总的拧螺丝速度。
总速度 = 甲螺丝批速度 + 乙螺丝批速度每分钟拧螺丝总数 = 5 + 3 = 8可以得到:8t = 100解方程可得:t = 100 / 8 = 12.5答案是:12.5分钟。
4. 甲水龙头每分钟可以灌满一个水池,乙水龙头每分钟可以灌满3个水池。
两个水龙头同时工作,共同灌满12个水池需要多少时间?解析:设共同灌满12个水池所需的时间为t。
根据反比例关系,甲水龙头和乙水龙头的灌水速度可以相加,得到总的灌水速度。
总速度 = 甲水龙头速度 + 乙水龙头速度每分钟灌水总数 = 1 + 3 = 4可以得到:4t = 12解方程可得:t = 12 / 4 = 3答案是:3分钟。
5. 一辆公交车以每小时40公里的速度行驶,如果以每小时50公里的速度行驶,则从甲地到乙地需要减少多少时间?解析:设原本需要的时间为t。
反比例专项练习30 题(有答案)1.下表中,x 与y 成反比例,那么☆表示的数是()x 5 ☆y 120 150A.3 B.4 C.6.252.以下四幅图象中,表示成反比例的是()A.B.C.D.3.a与b 成反比例的条件是()A.a÷b=c(c 一定)B.c×a=b(c 一定)C.a×b=c(c 一定)D.a×c=b(b 一定)4.成反比例的两种量在变化过程中,一种量扩大,另一种量()A.扩大B.缩小C.不变5.下列关系式中x、y 都不为0,则x 与y 不是成反比例关系的是()A.B.y=3÷x C.D.x= x= ×πx=6.表示a 和b 这两种量成反比例的关系式是()A.a+b=8 B.a﹣b=8C.a×b=8 D.a÷b=87.下列各式中,a 和b 成反比例的是()A.9a=6b B.a× =1 C.a×8=8.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例9.表示a 与b 成反比例关系式的式子是()A.a+b=8 B.a﹣b=8C.a=5b D.ab=710.已知=,那么A 和B()A.成反比例B.成正比例C.不成比例D.无法确定11.如果5a=3b,那么a 和b()关系.A.成正比例B.成反比例C.不成比例12.4X﹣5Y=0,(X、Y 不等于0),X 和Y()A.成正比例B.成反比例C.不成比例13. a 与b()A.成正比例B.成反比例C.不成比例14.教室里的面积一定,教室里的人数和每人占地的面积()A.成反比例B.成正比例C.不成比例D.无法确定是否成比例15.关于正反比例的判断,以下说法正确的是()A.三角形的面积一定,它的底和高成反比例B.一个人的身高与体重成反比例C.圆的半径和面积成正比例16.已知a 与b 成反比例,b 与c 成反比例,那么a 与c 的关系是()A.正比例B.反比例C.不成比例D.无法确定17.x 和y 成反比例关系的是()A.x+y=100 B.x:5=3:y C.20x=5y18.如果=,那么x 和y()A.成正比例B.成反比例C.不成比例19.A÷C=B,当A 一定时,B 与C 成反比例..20.六年级同学排队做广播操,每行人数和排成的行数成比例;出油率一定,花生油的质量和花生比例;3x=y,x 和y 成比例;实际距离一定,图上距离和比例尺成的质量,成比例.21.如果AB=K+2(K 一定),那么A 和B 成反比例..22.一项工程的总量一定,已经完成的工作量与剩下的工作量成反比例..24.用36 米长的篱笆围一个长方形的鸡舍,围成的长和宽成反比例..25.假如ab+13=37,那么a 与b 成反比例..26.直角三角形的两个锐角大小成反比例..27.圆周长计算公式为C=2πr,当C 一定,π和r 成反比例..x 2 40y 5 0.1每天运的吨数300 150 100 75 60 50需要的天数 1 2 3 4 5 6(1)(2)说明这个积表示什么?(3)表中相关联的两个量成反比例吗?为什么?30.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?参考答案:1.150☆=5×120,50☆=600,☆=4;故选:B.2.A、图象表示的两个量的比值一定,不属于反比例的意义;B、图象分成两部分,一部分是一个量随另一个量的增加而增加,而另一部分是一个量随另一个量的增加而减少,不属于反比例的意义,C、图象中两个量对应的数的乘积是600,是一定的,符合反比例的意义,D、两个量对应的数的乘积是不一定的,属于不符合反比例的意义,故选:C.3.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.只有a×b=(定量),a 与b 才成反比例.只有C 选项符合反比例的意义.故选:C4.成反比例的两种量在变化过程中,一种量扩大,另一种量缩小,变化方向应该相反;故选:B.5.A、因为x=,则有xy=4(一定),所以x 和y 成反比例;B、因为y=3÷x,则有xy=3(一定),所以x 和y 成反比例;C、因为x=×π,则有xy=π(一定),所以x 和y 成反比例;D、因为x=,则有=4(一定),所以x 和y 成正比例;故选:D6.A,因为a=b=8(一定),是a、b 的和一定,所以a、b 不成比例;B,a﹣b=8(一定),是a、b 的差一定,所以a、b 不成比例;C,a×b=8(一定),是a、b 的乘积一定,所以a、b 成反比例;D,a÷b=8(一定),是a、b 的比值一定,所以a、b 成正比例;故选:C7.选项A,因为9a=6b,则=,无法确定a 和b 的乘积是否一定,则不成反比例;选项B,因为a×=1,则ab=3(值一定),所以a 和b 成反比例;选项C,因为a×8=,则=40,无法确定a 和b 的乘积是否一定,则不成反比例;故答案为:B根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选 B9.选项A,由a+b=8,不能判定a 和b 成什么比例;选项B,由a﹣b=8,不能判定a 和b 成什么比例;选项C,由a=5b 可得=5(定值),所以a 和b 成正比例;选项D,因为ab=7(定值),则a 和b 成反比例;故答案为:D10.=,AB=3×5=15(一定),所以 A 与 B 成反比例,故选:A 11.5a=3b,那么:a:b= ;是个定值,一个因数一定,积和另一个因数成正比例.故答案选:A12.因为4X﹣5Y=0,则4x=5y,x:y=5:4(一定),所以x 和y 成正比例;故选:A13.,=0,= ,ab=3(一定),故选:B﹣14.人数×每人占地的面积=教室里的面积,教室里的面积一定,也就是这两种量的乘积一定,所以成反比例;故选A.A、因为三角形的面积=底×高÷2,所以底×高=三角形的面积×2(一定),即底和高的乘积一定,符合反比例的意义,所以三角形的面积一定,它的底和高成反比例;B、因为一个人的身高和体重的乘积不是一定的,比值也不是一定的,所以一个人的身高与体重不成比例;C、因为圆的面积=π×半径的平方,即圆的面积÷半径的平方=π(一定),所以圆的面积与半径的平方成正比例,但圆的面积与半径不成比例;故选:A16.因为a和b 成反比例,所以ab=k1(一定),则b=,因为,b 和c 成反比例,所以bc=k2(一定),把b=,代入式子bc=k2(一定),得出:a:c= (一定),是a 和c 对应的比值一定,所以a 和c 成正比例;故选:A17.A、x+y=100,是和一定,既不符合正比例的意义也不符合反比例的意义,所以x 和y 不成反比例;B、x:5=3:y,xy=15(一定),符合反比例的意义,所以x 和y 成反比例;C、20x=5y,x:y=0.25(一定),符合正比例的意义,不符合反比例的意义,所以x 和y 成正比例,不成反比例;故选:B18.因为=;所以4x=4.5y;x:y=4.5:4;x:y=1.125(一定);可以看出,x 和y 是两个相关联的变化的量,它们相对应的比值是1.125,是一定的,所以x 和y 成正比例关系.故选:A19.因为:A÷C=B,所以:B×C=A(一定);可以看出,B 和C 是两种相关联的量,B 随C 的变化而变化,A 是一定的,也就是B 与C 相对应数的乘积一定,所以B 与C 成反比例关系.故答案为:正确20.六年级同学排队做广播操,每行人数和排成的行数成反比例;出油率一定,花生油的质量和花生的质量,成正比例;3x=y,x 和y 成正比例;实际距离一定,图上距离和比例尺成正比例.21.如果AB=K+2(K 一定),k 一定,那么k+2 也是一定的,可以看出,A 和B 是两种相关联的量,A 随B 的变化而变化.k+2 是一定的,也就是A 与B 相对应数的乘积一定,符合反比例的意义.所以A 与B 成反比例关系.故答案为:正确.22.一项工程的总量一定,已经完成的工作量与剩下的工作量成反比例.× .x 15 20 25 30 40 60y 400 300 240 200 150 10024.因为长方形的长+宽=篱笆的总长度× (一定),是长和宽对应的和一定,不是乘积一定,所以围成的长和宽不成比例.故判断为:错误25.因为ab+13=37,则:ab=24(一定),所以a 和b 成反比例;故答案为:正确.26.直角三角形的两个锐角大小成反比例.× .27.圆周长计算公式C=2πr 中,2π是一定的,当C 一定,那么r 也是一定的,这样在这个关系式中,所有的量都是一定的,所以当C 一定,π 和r 不成任何比例,所以“当C 一定,π 和r 成反比例”是错误的.28.因为2×5=10,所以10÷=50,10÷0.1=100,10÷40=0.25,10÷=12,故答案为:50,100,0.25,12 29.(1)300×1=300,150×2=300,100×3=300,75×4=300,60×5=300,50×6=300,因为积都是300,所以积相等;(2)每天运的吨数×需要的天数=这批货物的总吨数,所以这个积表示这批货物的总吨数;(3)因为表中相对应的两个数的乘积一定,符合反比例的意义,所以成反比例关系30. (1)根据题干分析可得,上表左边两种相关联的量是路程与时间;左边表格中两种相关联的量是速度与时间;据此即可解答;(2)左边表格中:路程随着时间的变化而变化,右边表格中:时间随着速度的变化而变化;(3)左边表格:20÷1=40÷2=60÷3=20,所以速度一定时,路程与速度成正比例;右边表格:60×1=30×2=20×3=60,所以路程一定时,速度与时间成反比例。
六年级反比例的练习题1. 某书店每本书的售价与购买数量成反比例关系,购买5本该书时需要25元,请问购买8本该书需要多少元?解析:购买5本书需要25元,即书的售价与购买数量的乘积等于常数,设该常数为k,则有 5 × 25 = k。
要求购买8本书的价格,即 8 ×x = k,其中x为该书的售价。
解方程可得 x = 5 × 25 ÷ 8 = 15.625。
所以购买8本该书需要15.625元。
2. 一辆汽车以60千米的时速行驶,需要6小时到达目的地。
请问以80千米的时速行驶,需要多少小时能够到达同样的目的地?解析:行驶的路程与速度成反比例关系,即路程与时间的乘积为常数。
假设常数为k,则有 60 × 6 = k。
要求以80千米的时速行驶的时间,即 80 × x = k,其中x为所需时间。
解方程可得 x = 60 × 6 ÷ 80 = 4.5。
所以以80千米的时速行驶,需要4.5小时能够到达同样的目的地。
3. 一个邮递员每天送快递,每天送100个快递需要2个小时。
请问如果他每天送150个快递,需要多少小时?解析:送快递的数量与所需时间成反比例关系,即数量与时间的乘积为常数。
设常数为k,则有 100 × 2 = k。
要求送150个快递所需时间,即 150 × x = k,其中x为所需时间。
解方程可得 x = 100 × 2 ÷ 150 =1.3333。
所以送150个快递需要1.3333小时。
4. 一辆汽车行驶了240千米所用的时间为4小时,请问行驶480千米需要多少小时?解析:行驶的路程与时间成反比例关系,即路程与时间的乘积为常数。
假设常数为k,则有 240 × 4 = k。
要求行驶480千米所需时间,即480 × x = k,其中x为所需时间。
解方程可得 x = 240 × 4 ÷ 480 = 2。
反比例函数应用题解法反比例函数是数学中常见的一类函数,它的定义式可以表述为y=k/x,其中k为常数。
在实际中,反比例函数可以用来解决很多实际问题,下面就来介绍一些反比例函数的应用题解法。
1. 水缸注水问题题目描述:有一水缸,容积为20升,里面盛有10升的水。
现有一管子,管子每分钟可以注入1升水。
问,如果以最大速度注水,那么需要多长时间才能把水缸装满?解题思路:该问题中注入水的速度是一个固定的值,因而符合反比例函数的特点。
我们设时间为x分钟,那么注入的水应该为 x*1升,而当前水缸中剩余的水为 20-10=10升-x*1升。
由于反比例函数的定义式为 y=k/x,因此我们可以列出如下的式子:x*1=20/(10-x*1)化简后可得:x^2-x+10=0解方程可得 x=3.316或x=0.684由于时间不能为负数,因此我们取大于0的根x=3.316,即水缸注满所需的时间为3.316分钟。
2. 元宝淘金问题题目描述:淘金工人会挖掘出一些元宝,而各个元宝的价值不同。
如果每个元宝价值越高,需要消耗的物力(工人的体力、时间等)就越多,这个关系可以用反比例函数表示。
现在有一组元宝,其价值和消耗值如下表所示:价值(元)| 消耗值(功)---------|---------200 | 10400 | 5800 | 2.51600 | 1.25现在需要找出最有价值的那个元宝,即价值消耗比最大的元宝。
解题思路:由于元宝的价值和消耗值之间呈反比例关系,因此我们可以通过计算各个元宝的价值消耗比来比较各个元宝的价值。
我们可以采用以下的公式计算元宝的价值消耗比:价值消耗比 = 元宝价值 / 元宝消耗值根据这个公式,我们可以得到各个元宝的价值消耗比:元宝1:20元宝2:80元宝3:320元宝4:1280由此可见,元宝4的价值消耗比最大,因此它是最有价值的元宝。
反比例函数是数学中常见的函数之一,它在实际中的应用非常广泛。
通过对反比例函数的认识和应用,在解决实际问题时能更加高效。
初三数学反比例练习题反比例关系是数学中常见的一种关系,它指的是两个变量之间的乘积为常数。
在初三数学中,我们经常会遇到反比例关系的问题。
下面是一些初三数学反比例练习题,让我们一起来解决它们。
1. 问题:若两个变量x和y成反比例关系,且当x=4时,y=10,求当x=8时,y的值。
解析:反比例关系可以表示为xy=k,其中k是一个常数。
由于x=4时,y=10,我们可以得到4*10=k,因此k=40。
当x=8时,我们可以使用反比例关系公式xy=k,将k代入得到8y=40,解方程得到y=5。
答案:当x=8时,y=5。
2. 问题:已知x和y成反比例关系,且当x=6时,y=2/5,求当x=2时,y的值。
解析:根据反比例关系xy=k,我们可以得到6*(2/5)=k,解方程得到k=12/5。
当x=2时,我们可以将k代入反比例关系公式,得到2*y=12/5,解方程得到y=6/5。
答案:当x=2时,y=6/5。
3. 问题:若a和b成反比例关系,且当a=8时,b=4,求当a=10时,b的值。
解析:反比例关系可以表示为ab=k,其中k是一个常数。
由于a=8时,b=4,我们可以得到8*4=k,因此k=32。
当a=10时,我们可以使用反比例关系公式ab=k,将k代入得到10b=32,解方程得到b=3.2。
答案:当a=10时,b=3.2。
4. 问题:已知x和y成反比例关系,且当x=3时,y=7/2,求当x=5时,y的值。
解析:根据反比例关系xy=k,可以得到3*(7/2)=k,解方程得到k=21/2。
当x=5时,我们可以将k代入反比例关系公式,得到5y=21/2,解方程得到y=21/10。
答案:当x=5时,y=21/10。
通过以上练习题,我们可以加深对初三数学中反比例关系的理解。
在解决反比例关系问题时,我们可以利用反比例关系公式xy=k,将已知条件代入求解未知变量的值。
反比例关系在实际问题中也有广泛的应用,例如时间和速度的关系等。
反比例应用题专项练习90题(有答案)1.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)2.某学校美化环境,用彩色水泥砖铺路面,用面积4平方分米的方砖铺要4500块,若改用面积9平方分米的方砖铺要几块?3.张师傅准备给自家的客厅里铺上地板砖,如果用面积是36平方分米的方砖就需要40块,如果改用面积是60平方分米的方砖,则需要多少块?(用比例解)4.学校微机室需用方砖铺地,用面积是16平方分米的方砖,需要150块,如果改用面积是25平方分米的方砖,需要多少块?5.电视机厂计划每天产75台电视机,12天完成任务,实际每天多生产15台,多少天可以完成任务?(用比例知识解题)6.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)7.排版一部书稿,如果每页排640个字,要200页;如果每页排800个字,可排多少页?8.用一批纸装订练习本,如果每本装订25页,可以装订36本;如果每本装订15页,可以装订多少本?(用比例解)9.一个筑路队铺一段铁路,原计划每天铺3.2千米,实际每天比原计划多铺25%,实际铺完这段铁路用了12天,原计划用多少天铺完?(用比例解)10.王奶奶家装修房子,用面积是9平方分米的方砖铺地要用160块,如果改用边长为4分米的方砖铺地,要用多少块?(用比例解)11.盖一幢职工宿舍.计划使用6米长的水管240根.后来改用8米长的水管,共需要多少根?(用比例知识解答)12.小明读一本故事书,每天读15 页,12 天读完.如果每天读20 页,几天可以读完?(比例解)13.发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了几天?(用比例知识解答)14.时新服装厂生产一批西服,原计划每天生产150套,24天可以完成任务.实际每天生产180套,实际生产了多少天?(用比例知识解)15.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)16.一本书,如果每天读30页,6天可以读完,若每天读20页,要多少天才能读完?17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)18.做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(比例解)19.金光电子厂要生产一批零件,原计划每天生产180个,12天完成.实际的生产效率是原计划的120%,实际多少天可以完成?(比例解)20.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验.如果要提前8小时到达,每小时需行驶多少千米?21.铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(比例解)22.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)23.桃每千克售价1.8元,梨每千克售价2.4元.买40千克桃的钱,可以买多少千克梨?24.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)25.汽车从A到B地,每小时行60千米,需8小时到达,实际上2小时已行160千米,照这样计算,行完全程共需多少小时?(用正、反两种比例解)26.有一批饮料,每箱装24瓶,正好装50箱.如果要装60箱,每箱装多少瓶?(用比例解)27.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务.实际每天装配30台,只需几天就可以完成任务?(用比例方法解)28.同学们做操,每行站15人,正好站12行.如果每行站9人,可以站多少行?29.一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?30.一个房间,如果用边长为0.3m的方砖铺地,需800块,如果改用边长为0.2m的方砖铺地,需要多少块?(用比例解答)31.食堂有一堆煤,原计划每天烧60千克,可以烧40天,实际每天烧48千克,这堆煤实际可烧多少天?(用比例解)32.一辆汽车从甲地开往乙地,每小时行90千米,3小时到达,若要2.5小时到达,每小时需行多少千米?(用比例解)33.邮递员小李从A地到B地送信,去时每小时走20km,用可7.5小时,回的时候每小时走50km,多小时可以回到A地?(用比例知识解)34.一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?(用比例解)35.学校买来一批图书,如果每班分30本,可以分给8个班,现在需要分给12个班,每班只能分到多少本?(用比例解)36.方叔叔开车去县城以每小时80km的速度,行了3小时,返回时每小时行90km,返回时少用了多少时间?(用比例的知识解答)37.一堆煤,计划每天烧0.5吨,可以烧40天,如果每天烧0.4吨,可以烧多少天?(用比例解)38.某车间要生产一批零件,计划每天生产80个,15天完成.实际要10天完成,平均每天应生产多少个?(用比例知识解答)39.一辆汽车从甲城开往乙城,每小时行45千米,5小时到达.返回时,每小时行驶50 千米,几小时回到甲城?(用比例解)40.小红读一本故事书,如果每天读20页,30天读完.现在每天读25页,几天读完?(用比例解)41.用边长0.2米的方砖给一间小房间铺地,要900块,如果改用边长0.3米的方砖来铺,需要多少块?(用比例解)42.用4500张白纸装订练习本,先用360张装订了40本,照这样计算,剩下的纸还能装订多少本?(用比例知识解答)43.养牛场计划5天割草3000千克,实际每天比原计划多割150千克,实际用了多少天?44.一辆汽车从甲地到乙地,如果每小时行42.6千米,要用5.4小时.如果每小时行60千米,要用几小时才能到达?45.印刷厂用一批纸装订练习本,如果每本装20页,可以装订300本.如果要装订250本练习本,每本应装订多少页?(比例解)46.如图是两个相互交合的齿轮,大齿轮的半径是2分米,小齿轮的半径是8厘米,如果大齿轮转动200周,小齿轮要转动多少周?47.某工厂计划加工一批零件,如果每天加工20个,18天可以完成,实际4天加工了96个,照这样计算,几天可以完成任务?48.一块地,用面积是0.09平方米的方砖铺满要1152块;如果改用面积是0.16平方米的方砖,需要多少块才能铺满?(用比例知识解答)49.一批游客到博鳌水城要乘游艇游览,原计划租用14只游艇,每只坐24人.但实际只租到12只,实际每只游艇应坐多少人?(用比例方法解)50.学校要装修一间会议室,用边长3分米的方砖铺地,需要600块;如果改用边长5分米的方砖铺地,需要多少块砖?(用比例解)51.一堆煤计划每天烧4吨可以烧72天.由于改进炉灶,每天节约0.8吨,这样,这堆煤可烧多少天?(用比例解)52.一间房子要用方砖铺地,用边长是3分米的方砖,需要96块,如果改用边长是4分米的方砖,买55块够不够?53.修一条路原计划每天修50米,25天修完.实际20天完成任务,实际每天修多少米?(用比例解)54.一辆汽车从甲地开往乙地,每小时行42千米,15小时可以到达,如果要提前1个小时到达,每小时应行多少千米?(用比例解答)55.一堆煤,原计划每天烧1.5吨,可以烧36天.实际每天节约0.3吨,这样可以烧几天?(用比例解)56.机床厂生产一批机器,原计划每天生产240台,25天完成,如果要提前5天完成,平均每天要生产多少台?(用比例方法解)57.学校组织远足活动,原计划每小时走3.8千米,3小时到达目的地,实际2.5小时行完全程,平均每小时多行多少千米?(用比例解答)58.“天虹”电机厂接到生产一批发电机的任务,原计划每天生产30台,12天可以完成,实际每天多生产6台,实际用多少天可以完成任务?(运用比例知识解)59.李叔叔买了一套新房,客厅是一个长方形,原计划用面积是16平方分米的方砖铺地,需要150块地砖,现在决定用长6分米,宽1分米,厚2厘米的木地板铺地,那么至少需要买这种木地板多少块?60.一间房子,用面积是18平方米的方砖铺底,需要176块,如果用面积是16平方米的方砖铺地需要多少块砖?(用比例解)61.生产一批农具,原计划每天生产240件,15天完成,实际每天多生产60件,实际多少天完成?(用比例解)62.修一条路,如果每天修1200米,8天可以修完;如果每天修800米,几天可以修完?(用比例方法解)63.一辆汽车从甲地开往乙地,若每小时行35千米,6小时到达.若每小时行42千米,几小时到达?64.一篇文章原稿每行24个字,共40行.现改为每行32个字,那么这篇文章需要打印多少行?(用比例解)65.一列火车从甲地开往乙地,每小时行120千米,8小时到达.如果每小时行100千米,几小时到达?(用比例解)66.袁师傅原来加工一个零件要用12分钟,现在减少到8分钟,原来每天加工50个零件的时间,现在每天可加工多少个零件?(用比例解)67.用同样的砖铺地,铺9平方米用砖308块,如果铺12平方米,要用多少块砖?(用比例)68.买来一批煤,计划每天烧吨,可烧20天;实际每天比原来节约20%,这样可以烧多少天?(用比例解答)69.欢欢家里装修,如果用面积为16平方分米的方砖铺地,需要180块.请你帮忙计算一下,如果改用面积为36平方分米的方砖铺地,需要多少块?(用比例方法解)70.用边长是0.6米的方砖给办公室铺地,需要2000块;如果改用边长0.8米的方砖铺地,至少需要多少块砖?71.王强从家到学校每分钟走50米,18分钟到校;放学回家时,他想比上学时少用3分钟到家,他每分钟应走多少米?(用比例解)72.学校会议室需要用方砖铺地.如果用边长8dm的方砖铺,需要725块;如果改用边长10dm的方砖铺,需要这样的方砖多少块?(此题限用比例解答.)73.电机厂要生产一批发电机,原计划每天生产20台,12天完成,实际每天多生产10台,实际用多少天完成?(用比例解)74.车队向灾区运送救灾物资,去时每小时行60千米,4.5小时到达,返回时每小时多行15千米,返回出发地点用了多长时间?(用比例解)75.装订一本书,如果每页排500个字,可以排180页,如果改为每页排600个字,可以少排多少页?(用比例解)76.钢铁厂要生产一批钢材,计划每天生产600吨,20天完成.实际每天生产800吨,实际几天完成?77.毛毛全家“六一”到中山公园游玩,拍了许多照片,毛毛买了一本24页的相册,如果每页放6张照片,刚好放16页,现在毛毛打算每页只放4张,请你帮她算一算,这本相册够放吗?(用比例解)78.何聪看一本故事书,原计划每天看45页,6天可以看完.实际每天只看30页,几天可以看完?(用比例知识解答)79.用一批纸装订练习本,每本32页,可以装订成15本.如果装订成24本,平均每本是多少页?80.李叔叔家买了新房,正准备给地面贴磁砖.如果用边长6分米的方砖铺,需要360块,如果改用边长8分米的方砖,最少需要多少整块方砖?81.工程队要修一条公路,原计划18个人25天完成.为了赶工期,需要提前10天完成,这样实际需要安排多少个工人?(用比例解)82.一辆汽车去县城以每分钟2.5km的速度,行了半小时,返回时以每小时120km的速度行驶,汽车返时用了多少分钟?(用比例解)83.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?84.用一批纸装订同样大小的练习本,如果每本30页,可以装订120本;现用这批纸装订了100本,每本应装订多少页?(用比例解答)85.加工一批零件,计划每小时加工40个,6小时完成,实际每小时比计划每小时多加工20%,实际加工完这批零件要多少小时?(用比例知识解答)86.工程队修一条路,每天修45米,20天可以完成任务.实际前4天修了200米,照这样计算,多少天可以完成任务?(用比例解答)87.有一批纸,可以装订每本24页的练习本216本,如果要装订出288本,那么每本应该改装成多少页?(用比例解)88.实验小学举行团体操表演,如果每列25人,要排24列,如果每列20人,要排多少列?(用比例解)89.一堆煤,原计划每天烧3吨,可以烧96天.实际每天烧2.4吨,实际可以烧多少天?(用比例方法解答)90.发电厂运来一批煤,计划每天烧吨,可以烧35天,实际每天比计划节约烧煤0.25吨,这批煤实际烧了多少天?(用比例解)文案大全参考答案:1.设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.2.设改用面积9平方分米的方砖铺要x块,9x=4×4500,x=,x=2000;答:改用面积9平方分米的方砖铺要2000块3.设需要x块,60x=36×40,60x=1440,x=24;答:需要24块4.设需要x块,25x=16×150,x=16×150÷25,x=96;答:需要96块5.设x天可以完成任务,总量一定,每天生产台数和生产天数成反比例,75:(75+15)=x:12,75×12=(75+15)×x,75×12=90×x,x=75×12÷90,x=10;答:10天可以完成任务6.设提前1小时完成任务时的工作效率为x个,40×3=x×(3﹣1),2x=40×3,x=,x=60;(60﹣40)÷40,=20÷40,=50%;答:工作效率需提高50%.7.设可排x页,640×200=800x,800x=128000,x=160;答:可排160页8.设可以装订x本,由题意得:15x=25×36,15x=900,x=60.答:可以装订60本.9.设原计划铺x天,3.2x=3.2×(1+25%)×12,3.2x=4×12,3.2x=48,x=15;答:原计划用15天铺完.10.设用边长为4分米的方砖铺地要用x块,则:(4×4)×x=160×9,16x=1440,x=1440÷16,x=90.答:要用90块11.设共需要x根;8x=6×240,x=,x=180;答:共需要180根.12.设x天可以读完,20x=15×12,x=,x=9;答:9天可以读完.13.设实际x天用完,(30﹣5)x=30×12,25x=360,x=14.4;14.4﹣12=2.4(天);答:实际比计划多用了2.4天14.设实际生产了x天,180x=150×24,x=3600÷180,x=20.答:实际生产了20天.15.设平均每小时行x千米.42×5=4x4x=210x=52.5;答:平均每小时行52.5千米.16.设要x天才能读完.20x=30×6x=180÷20x=9;文案大全答:要9天才能读完.17.设每天应装x台.50×60=40xx=x=75;答:每天应装75台.18.设平均每天做x个;12x=200×15,x=,x=250;答:平均每天做250个.19.设实际x天可以完成,180×120%×x=180×12,216x=2160,x=10;答:实际10天可以完成.20.设每小时需行驶x千米,则有(48﹣8)x=25×48,40x=1200,x=30;答:如果要提前8小时到达,每小时需行驶30千米.21.设换上的新铁轨有x根;9x=6×240,x=,x=160;答:换上的新铁轨有160根22.设实际要x天运完,则有21x=18×84,21x=1512,x=72;答:实际要72天运完.23.1.8×40÷2.4=72÷2.4=30(千克)答:可以买30千克梨.24.设可以提前x天完成.160×15=(160+80)×(15﹣x)160×15=240×(15﹣x)15﹣x=15﹣x=10x=5答:可以提前5天完成.25.(1)设行完全程共需x小时,160:2=(60×8):x,160:2=480:x,160x=480×2,x=,x=6;(2)行完全程共需y小时,(160÷2)×y=60×8,80y=60×8,y=,y=6;答:行完全程共需6小时26.设每箱装x瓶,60x=50×24,x=,x=20;答:每箱装20瓶.27.设只需x天就可以完成任务,30x=20×15,30x=300,x=10;答:实际每天装配30台,只需10天就可以完成任务28.设可以站x行,9x=15×12,x=,x=20,答:可以站20行.29.设需要x块.3×3×432=4×4×x16x=9×432x=243;答:需要243块30.设需要x块,0.3×0.3×800=0.2×0.2×x,0.04x=0.09×800,x=,x=1800,答:需要1800块.31.设这堆煤实际可烧x天,48x=60×40,48x=2400,x=50;答:这堆煤实际可烧50天.32.设每小时需行x千米,文案大全2.5x=90×3,x=,x=108,答:每小时需行108千米.33.设需要x小时回到A地,50x=20×7.5,50x=150,x=3;答:3小时可以回到A地.34.设需要方砖x块,由题意得:0.25x=0.16×2750.25x=44x=176答:需要方砖176块.35.设每班只能分到x本,12x=30×8,12x=240,x=20;答:每班只能分到20本.36.设返回的时间为x小时,90x=80×3,x=,x=,少用的时间:3﹣=(小时),答:返回时少用了小时.37.设可以烧x天,0.4x=0.5×40,x=,x=50;答:可以烧50天.38.设平均每天生产x个,10x=80×15,x=,x=120,答:平均每天应生产120个.39.设x小时回到甲城,50x=45×5,x=,x=4.5,答:4.5小时回到甲城.40.设x天读完;25x=20×30,x=,x=24,答:24天读完41.设需要x块,0.3×0.3x=0.2×0.2×900,0.09x=0.04×900,x=36÷0.09,x=400,答:需要400块42.剩下的纸还能装订x本,=,360x=165600,x=460;答:剩下的纸还能装订460本43.3000÷(3000÷5+150),=3000÷(600+150),=3000÷750,=4(天),答:实际用了4天.44.设要用x小时才能到达,60x=42.6×5.4,60x=230.04,x=3.834;答:如果每小时行60千米,要用3.834小时才能到达.45.设每本应装订x页,250x=20×300,x=,x=24,答:每本应装24页.46.2分米=20厘米,设小齿轮要转动x周,200×3.14×2×20=3.14×2×8×x,4000=8x,x=4000÷8,x=500,答:小齿轮要转动500周47.设x天可以完成任务,(96÷4)×x=20×18,24x=360,文案大全x=360÷24,x=15,答:15天可以完成任务.48.设需要x块才能铺满,由题意得:0.16x=0.09×1152,0.16x=103.68,0.16x÷0.16=103.68÷0.16,x=648;答:需要648块才能铺满.49.设实际每只游艇应坐x人,12x=24×14,12x=336,x=28;答:实际每只游艇应坐28人50.设如果改用边长5分米的方砖铺地,需要x块砖,则有:(5×5)x=(3×3)×600,25x=9×600,25x=5400,x=216;答:如果改用边长5分米的方砖铺地,需要216块砖.51.设这堆煤可烧x天,(4﹣0.8)×x=4×72,3.2x=4×72,x=,x=90;答:这堆煤可烧90天.52.设改用边长是4分米的方砖需要x块,4×4×x=3×3×96,16x=9×96,x=,x=54,54<55,所以买55块够用,答:如果改用边长是4分米的方砖,买55块够用53.设实际每天修x米,20x=50×25,x=,x=62.5,答:实际每天修62.5米54.设每小时应行x千米,(15﹣1)x=42×15,14x=42×15,x=,x=45;答:每小时应行45千米.55.设这样可以烧x天,(1.5﹣0.3)×x=1.5×36,1.2x=1.5×36,x=,x=45;答:这样可以烧45天56.设平均每天要生产x台,240×25=(25﹣5)×x,20x=240×25,x=,x=300;答:平均每天要生产300台57.设实际的速度为x千米/小时,则2.5x=3.8×3,2.5x=11.4,x=4.56;答:平均每小时多行4.56千米58.设实际用x天可以完成任务,(30+6)×x=30×12,36x=360,x=10,答:实际用10天可以完成任务.59.设至少需要买这种木地板x块,则有(6×1)x=16×150,6x=2400,x=400;答:至少需要买这种木地板400块.60.设用面积是16平方米的方砖铺地需要X块砖.16X=18×176;16X=3168;X=198;答:用面积是16平方米的方砖铺地需要198块砖.61.设实际x天完成,则有(240+60)x=240×15,300x=3600,x=12;答:实际12天完成.62.设x天可以修完,800x=1200×8,文案大全x=,x=12;答:12天可以修完63.设x小时到达.35×6=42xx=x=5答:5小时到达64.设这篇文章需要打印x行,32x=24×40,x=,x=30,答:这篇文章需要打印30行65.设如果每小时行100千米,x小时到达,则有100x=120×8,100x=960,x=9.6;答:如果每小时行100千米,9.6小时到达.66.设现在每天可加工x个零件,则有8x=12×50,8x=600,x=75;答:现在每天可加工75个零件67.设要用x块砖,则12:x=9:3089x=308×12x=308×12÷9x=410答:要用410块砖.68.设这样可以少x天,×(1﹣20%)x=×20x×80%=5,0.2x=5,x=5÷0.2,x=25;答:这样可以少25天.69.设需要x块面积为36平方分米的方砖.36x=16×180,x=,x=80;答:如果改用面积为36平方分米的方砖铺地,需要80块.70.设至少需要x块砖,0.8×0.8x=0.6×0.6×2000,0.64x=0.36×2000,x=,x=1500,答:至少需要1500块方砖71.设他每分钟应走X米,50×18=X×(18﹣3),15X=900,X=900÷15,X=60;答:他每分钟走60米72.设需要x块砖,由题意得,10×10x=8×8×725,100x=46400,x=464;答:需要这样的方砖464块.73.设实际用x天完成,(20+10)x=20×12,30x=240,x=8;答:实际用8天完成.74.设返回出发地点用了x小时,由题意得:(15+60)×x=60×4.5,75x=270,x=3.6.答:返回出发地点用了3.6小时75.设改为每页排600个字,可以排x页,500×180=600×x,6x=900,x=150,180﹣150=30(页);答:可以少排30页.76.设实际x天完成,800x=600×20,x=12000÷800,x=15;算术法:600×20÷800,=12000÷800,文案大全=15(天);答:实际15完成.77.设每页只放4张,可以放x页,4x=6×16,4x=96,x=24;因为这本相册有24页,所以正好够.答:这本相册够放.78.设x天可以看完;30x=45×6,x=,x=9,答:9天可以看完.79.设平均每本是x页,24×x=32×15x=x=20答:平均每本是20页.80.设如果改用边长为8分米的方砖要x块.8×8×x=6×6×360,64x=36×360,x=12960÷64,x=202.5,x≈203;答:如果改用边长为8分米的方砖最少要203块81.设实际需要安排x个工人,(25﹣10)×x=18×25,15x=450,x=30;答:实际需要安排30个工人82.每小时120km的速度行驶转化成每分钟120÷60=2km的速度行驶,半小时=30分钟;设汽车返时用了X分钟,2X=2.5×30,2X=75,X=37.5;答:汽车返时用了37.5分钟83.设可以装订x本,32x=36×4000,32x=144000,x=4500,答:可以装订4500本.84.设每本应装订x页,100x=120×30,100x=3600,x=3600÷100,x=36;答:每本应装订36页85.设实际加工完这批零件要x小时.40×(1+20%)×x=40×6,48x=240,x=5;答:实际加工完这批零件要5小时.86.x天可以完成任务,(200÷4)×x=45×20,50x=45×20,x=,x=18,答:18天可以完成任务.87.设每本应该改装成x页,288x=216×24,x=,x=18,答:每本应该改装成18页88.设如果每列20人,要排x列,则有20x=25×24,20x=600,x=30;答:如果每列20人,要排30列89.实际可以烧x天.3×96=2.4xx=x=120答:实际可以烧120天.90.设这批煤实际烧了x天.(1﹣0.25)x=1×35,1.25x=52.5,x=42.答:这批煤实际烧了42天文案大全。
反比例应用题练习题一、填空。
1、路程一度,压路机直径和前轮滚过的圈数(成)比例关系。
2、面积和半径的平方(成)比例关系。
3、面积和半径()比例。
4、汽车的耗油量一定,油箱中汽油的数量与行驶的路程成()比例关系。
5、圆锥高一定,体积和底面积(成)。
6、一幅图上,2厘米代表30千米,这幅图的比例尺是()。
(画出线段比例尺)7、两种变化的量,当一种量扩大5倍时,另一种量也随着扩大5倍,而且比值一定,那么这两种量成()比例。
8、甲乙两城市之间的距离是24千米,在比例尺是1:的地图上应该画()厘米的长度。
9、根据表格判断数量间的比例关系。
时间(小时)……路程(千米)xxxxxxxxxxxxxxx……时间与路程()。
X10、如果=8,那么y和x成()比例;如果x=4y,那么y和x成()Y比例。
11、两地的实际距离是600千米,在舆图上量得它们之间的距离是6厘米,这幅舆图的比例尺是()。
12、真分数与它的倒数成()比例。
13、一种3毫米长的呆板零件,画在图纸上长是1.5厘米,图纸的比例尺是()。
14、如果a×8=b×6,那么a:b=():()那么ab成()比例。
15、根据规律判断比例关系,并填空。
X……Y4.57.512……X与Y()。
16、在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另一个内项是()17、六年级同学共同订阅《少年报》。
报纸的总价和所订份数成()比例。
18、“一只青蛙四条腿,两只眼睛一张嘴;两只青蛙八条腿,四只眼睛两张嘴;三只青蛙……”,儿歌中青蛙的只数与对应的腿数成()比例关系。
19、在A÷4=B÷4中,A和XXX()比例。
20、一件工作,甲独做6小时完成,乙独做10小时完成,甲乙工作效率的比是()。
21、A、B、C三种量的关系是:A×B=C。
①如果A一定,那么B和C成()比例②如果B肯定,那末A和C成()比例③如果C一定,那么A和B成()比例22、相遇问题,时间一定,速度和路程成()比例。
初中反比例练习题1. 设x和y为正整数,且x与y成反比例关系。
已知当x=3时,y=9。
求当x=5时,y的值。
解答:根据反比例关系,x与y的乘积应为常数。
设乘积为k,则有:3 * 9 = kk = 27当x=5时,根据反比例关系,有:5 * y = ky = k / 5 = 27 / 5 = 5.4所以,当x=5时,y的值为5.4。
2. 某商店的商品售价与销售数量成反比例关系。
已知当售价为20元时,销售数量为100件。
求当售价为15元时,销售数量的值。
解答:根据反比例关系,售价与销售数量的乘积应为常数。
设乘积为k,则有:20 * 100 = kk = 2000当售价为15元时,根据反比例关系,有:15 * 销售数量 = k销售数量= k / 15 = 2000 / 15 ≈ 133.33所以,当售价为15元时,销售数量的值为约133.33件。
3. 某车辆以恒定的速度行驶。
已知车辆以60千米/小时的速度行驶2小时所走的距离为120千米。
求车辆以80千米/小时的速度行驶4小时所走的距离。
解答:根据反比例关系,速度与时间的乘积应为距离。
设乘积为k,则有:60 * 2 = kk = 120车辆以80千米/小时的速度行驶4小时,根据反比例关系,有:80 * 4 = k距离 = k / 80 = 120 / 80 = 1.5 千米所以,车辆以80千米/小时的速度行驶4小时所走的距离为1.5千米。
注意:由于距离为实际量,所以答案为一个确定的值。
以上是初中反比例练题的解答。
希望能帮到你!。
《反比例》专项应用题1.两个咬合在一起的齿轮,主动轮有50个齿,每分钟转100转;从动轮有20个齿,每分钟转多少转?解:设从动轮每分钟转x转,则20x=50×10020x=5000x=250答:从动轮每分钟转250转。
2.用边长15厘米的方砖给房间铺地需要2000块,如果改用边长为25厘米的方砖铺地,需要多少块?解:设需要x块。
25×25x=15×15×2000解得x=7203.为了保护环境,净化空气,六年级同学要去植树,原计划每小时植树40棵,3小时植完。
实际每小时比原计划多植树20棵,实际提前几小时完成任务?解:设实际提前x小时完成任务40:(40+20)=(3-x):360×(3-x)=1203-x=2x=1答:实际提前1小时完成任务《反比例》专项应用题4.如果x和y成正比例关系,当x=16时,y=0.8;当x=10时,y 是多少?如果x和y成反比例关系,当x=16时,y=0.8;当x=10时,y是多少?解:①16:0.8=10:y16y=0.8×1016y÷16=8÷16y=0.5答:如果x和y成正比例关系,当x=16时,y=0.8;当x=10时,y是0.5.②10y=16×0.810y÷10=12.8÷10y=1.28答:如果x和y成反比例关系,当x=16时,y=0.8;当x=10时,y是1.28。
5.用边长20厘米的方砖铺一块地面需要270块,如果改用面积为9平方分米的方砖铺这块地需要多少块?(用比例解)解:设需要x块,20厘米=2分米9x=2×2×270x=1080÷9x=120答:需要120块.《反比例》专项应用题6.工程队修一条公路,计划每天4.5千米,20天完成,实际每天修6千米,实际几天可修完?(用比例解)解:设实际x天可修完.20:x=6:4.56x=20×4.56x=90x=15答:实际15天可修完.7.一辆汽车在两地之间行驶。
反比例应用题专项练习90题(有答案)1.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)2.某学校美化环境,用彩色水泥砖铺路面,用面积4平方分米的方砖铺要4500块,若改用面积9平方分米的方砖铺要几块?3.张师傅准备给自家的客厅里铺上地板砖,如果用面积是36平方分米的方砖就需要40块,如果改用面积是60平方分米的方砖,则需要多少块?(用比例解)4.学校微机室需用方砖铺地,用面积是16平方分米的方砖,需要150块,如果改用面积是25平方分米的方砖,需要多少块?5.电视机厂计划每天产75台电视机,12天完成任务,实际每天多生产15台,多少天可以完成任务?(用比例知识解题)6.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)7.排版一部书稿,如果每页排640个字,要200页;如果每页排800个字,可排多少页?8.用一批纸装订练习本,如果每本装订25页,可以装订36本;如果每本装订15页,可以装订多少本?(用比例解)9.一个筑路队铺一段铁路,原计划每天铺3.2千米,实际每天比原计划多铺25%,实际铺完这段铁路用了12天,原计划用多少天铺完?(用比例解)10.王奶奶家装修房子,用面积是9平方分米的方砖铺地要用160块,如果改用边长为4分米的方砖铺地,要用多少块?(用比例解)11.盖一幢职工宿舍.计划使用6米长的水管240根.后来改用8米长的水管,共需要多少根?(用比例知识解答)12.小明读一本故事书,每天读15 页,12 天读完.如果每天读20 页,几天可以读完?(比例解)13.发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了几天?(用比例知识解答)14.时新服装厂生产一批西服,原计划每天生产150套,24天可以完成任务.实际每天生产180套,实际生产了多少天?(用比例知识解)15.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)16.一本书,如果每天读30页,6天可以读完,若每天读20页,要多少天才能读完?17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)18.做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(比例解)19.金光电子厂要生产一批零件,原计划每天生产180个,12天完成.实际的生产效率是原计划的120%,实际多少天可以完成?(比例解)20.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验.如果要提前8小时到达,每小时需行驶多少千米?21.铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(比例解)22.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)23.桃每千克售价1.8元,梨每千克售价2.4元.买40千克桃的钱,可以买多少千克梨?24.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)25.汽车从A到B地,每小时行60千米,需8小时到达,实际上2小时已行160千米,照这样计算,行完全程共需多少小时?(用正、反两种比例解)26.有一批饮料,每箱装24瓶,正好装50箱.如果要装60箱,每箱装多少瓶?(用比例解)27.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务.实际每天装配30台,只需几天就可以完成任务?(用比例方法解)28.同学们做操,每行站15人,正好站12行.如果每行站9人,可以站多少行?29.一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?30.一个房间,如果用边长为0.3m的方砖铺地,需800块,如果改用边长为0.2m的方砖铺地,需要多少块?(用比例解答)31.食堂有一堆煤,原计划每天烧60千克,可以烧40天,实际每天烧48千克,这堆煤实际可烧多少天?(用比例解)32.一辆汽车从甲地开往乙地,每小时行90千米,3小时到达,若要2.5小时到达,每小时需行多少千米?(用比例解)33.邮递员小李从A地到B地送信,去时每小时走20km,用可7.5小时,回的时候每小时走50km,多小时可以回到A地?(用比例知识解)34.一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?(用比例解)35.学校买来一批图书,如果每班分30本,可以分给8个班,现在需要分给12个班,每班只能分到多少本?(用比例解)36.方叔叔开车去县城以每小时80km的速度,行了3小时,返回时每小时行90km,返回时少用了多少时间?(用比例的知识解答)37.一堆煤,计划每天烧0.5吨,可以烧40天,如果每天烧0.4吨,可以烧多少天?(用比例解)38.某车间要生产一批零件,计划每天生产80个,15天完成.实际要10天完成,平均每天应生产多少个?(用比例知识解答)39.一辆汽车从甲城开往乙城,每小时行45千米,5小时到达.返回时,每小时行驶50 千米,几小时回到甲城?(用比例解)40.小红读一本故事书,如果每天读20页,30天读完.现在每天读25页,几天读完?(用比例解)41.用边长0.2米的方砖给一间小房间铺地,要900块,如果改用边长0.3米的方砖来铺,需要多少块?(用比例解)42.用4500张白纸装订练习本,先用360张装订了40本,照这样计算,剩下的纸还能装订多少本?(用比例知识解答)43.养牛场计划5天割草3000千克,实际每天比原计划多割150千克,实际用了多少天?44.一辆汽车从甲地到乙地,如果每小时行42.6千米,要用5.4小时.如果每小时行60千米,要用几小时才能到达?45.印刷厂用一批纸装订练习本,如果每本装20页,可以装订300本.如果要装订250本练习本,每本应装订多少页?(比例解)46.如图是两个相互交合的齿轮,大齿轮的半径是2分米,小齿轮的半径是8厘米,如果大齿轮转动200周,小齿轮要转动多少周?47.某工厂计划加工一批零件,如果每天加工20个,18天可以完成,实际4天加工了96个,照这样计算,几天可以完成任务?48.一块地,用面积是0.09平方米的方砖铺满要1152块;如果改用面积是0.16平方米的方砖,需要多少块才能铺满?(用比例知识解答)49.一批游客到博鳌水城要乘游艇游览,原计划租用14只游艇,每只坐24人.但实际只租到12只,实际每只游艇应坐多少人?(用比例方法解)50.学校要装修一间会议室,用边长3分米的方砖铺地,需要600块;如果改用边长5分米的方砖铺地,需要多少块砖?(用比例解)51.一堆煤计划每天烧4吨可以烧72天.由于改进炉灶,每天节约0.8吨,这样,这堆煤可烧多少天?(用比例解)52.一间房子要用方砖铺地,用边长是3分米的方砖,需要96块,如果改用边长是4分米的方砖,买55块够不够?53.修一条路原计划每天修50米,25天修完.实际20天完成任务,实际每天修多少米?(用比例解)54.一辆汽车从甲地开往乙地,每小时行42千米,15小时可以到达,如果要提前1个小时到达,每小时应行多少千米?(用比例解答)55.一堆煤,原计划每天烧1.5吨,可以烧36天.实际每天节约0.3吨,这样可以烧几天?(用比例解)56.机床厂生产一批机器,原计划每天生产240台,25天完成,如果要提前5天完成,平均每天要生产多少台?(用比例方法解)57.学校组织远足活动,原计划每小时走3.8千米,3小时到达目的地,实际2.5小时行完全程,平均每小时多行多少千米?(用比例解答)58.“天虹”电机厂接到生产一批发电机的任务,原计划每天生产30台,12天可以完成,实际每天多生产6台,实际用多少天可以完成任务?(运用比例知识解)59.李叔叔买了一套新房,客厅是一个长方形,原计划用面积是16平方分米的方砖铺地,需要150块地砖,现在决定用长6分米,宽1分米,厚2厘米的木地板铺地,那么至少需要买这种木地板多少块?60.一间房子,用面积是18平方米的方砖铺底,需要176块,如果用面积是16平方米的方砖铺地需要多少块砖?(用比例解)61.生产一批农具,原计划每天生产240件,15天完成,实际每天多生产60件,实际多少天完成?(用比例解)62.修一条路,如果每天修1200米,8天可以修完;如果每天修800米,几天可以修完?(用比例方法解)63.一辆汽车从甲地开往乙地,若每小时行35千米,6小时到达.若每小时行42千米,几小时到达?64.一篇文章原稿每行24个字,共40行.现改为每行32个字,那么这篇文章需要打印多少行?(用比例解)65.一列火车从甲地开往乙地,每小时行120千米,8小时到达.如果每小时行100千米,几小时到达?(用比例解)66.袁师傅原来加工一个零件要用12分钟,现在减少到8分钟,原来每天加工50个零件的时间,现在每天可加工多少个零件?(用比例解)67.用同样的砖铺地,铺9平方米用砖308块,如果铺12平方米,要用多少块砖?(用比例)68.买来一批煤,计划每天烧吨,可烧20天;实际每天比原来节约20%,这样可以烧多少天?(用比例解答)69.欢欢家里装修,如果用面积为16平方分米的方砖铺地,需要180块.请你帮忙计算一下,如果改用面积为36平方分米的方砖铺地,需要多少块?(用比例方法解)70.用边长是0.6米的方砖给办公室铺地,需要2000块;如果改用边长0.8米的方砖铺地,至少需要多少块砖?71.王强从家到学校每分钟走50米,18分钟到校;放学回家时,他想比上学时少用3分钟到家,他每分钟应走多少米?(用比例解)72.学校会议室需要用方砖铺地.如果用边长8dm的方砖铺,需要725块;如果改用边长10dm的方砖铺,需要这样的方砖多少块?(此题限用比例解答.)73.电机厂要生产一批发电机,原计划每天生产20台,12天完成,实际每天多生产10台,实际用多少天完成?(用比例解)74.车队向灾区运送救灾物资,去时每小时行60千米,4.5小时到达,返回时每小时多行15千米,返回出发地点用了多长时间?(用比例解)75.装订一本书,如果每页排500个字,可以排180页,如果改为每页排600个字,可以少排多少页?(用比例解)76.钢铁厂要生产一批钢材,计划每天生产600吨,20天完成.实际每天生产800吨,实际几天完成?77.毛毛全家“六一”到中山公园游玩,拍了许多照片,毛毛买了一本24页的相册,如果每页放6张照片,刚好放16页,现在毛毛打算每页只放4张,请你帮她算一算,这本相册够放吗?(用比例解)78.何聪看一本故事书,原计划每天看45页,6天可以看完.实际每天只看30页,几天可以看完?(用比例知识解答)79.用一批纸装订练习本,每本32页,可以装订成15本.如果装订成24本,平均每本是多少页?80.李叔叔家买了新房,正准备给地面贴磁砖.如果用边长6分米的方砖铺,需要360块,如果改用边长8分米的方砖,最少需要多少整块方砖?81.工程队要修一条公路,原计划18个人25天完成.为了赶工期,需要提前10天完成,这样实际需要安排多少个工人?(用比例解)82.一辆汽车去县城以每分钟2.5km的速度,行了半小时,返回时以每小时120km的速度行驶,汽车返时用了多少分钟?(用比例解)83.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?84.用一批纸装订同样大小的练习本,如果每本30页,可以装订120本;现用这批纸装订了100本,每本应装订多少页?(用比例解答)85.加工一批零件,计划每小时加工40个,6小时完成,实际每小时比计划每小时多加工20%,实际加工完这批零件要多少小时?(用比例知识解答)86.工程队修一条路,每天修45米,20天可以完成任务.实际前4天修了200米,照这样计算,多少天可以完成任务?(用比例解答)87.有一批纸,可以装订每本24页的练习本216本,如果要装订出288本,那么每本应该改装成多少页?(用比例解)88.实验小学举行团体操表演,如果每列25人,要排24列,如果每列20人,要排多少列?(用比例解)89.一堆煤,原计划每天烧3吨,可以烧96天.实际每天烧2.4吨,实际可以烧多少天?(用比例方法解答)90.发电厂运来一批煤,计划每天烧吨,可以烧35天,实际每天比计划节约烧煤0.25吨,这批煤实际烧了多少天?(用比例解)11参考答案:1.设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.2.设改用面积9平方分米的方砖铺要x块,9x=4×4500,x=,x=2000;答:改用面积9平方分米的方砖铺要2000块3.设需要x块,60x=36×40,60x=1440,x=24;答:需要24块4.设需要x块,25x=16×150,x=16×150÷25,x=96;答:需要96块5.设x天可以完成任务,总量一定,每天生产台数和生产天数成反比例,75:(75+15)=x:12,75×12=(75+15)×x,75×12=90×x,x=75×12÷90,x=10;答:10天可以完成任务6.设提前1小时完成任务时的工作效率为x个,40×3=x×(3﹣1),2x=40×3,x=,x=60;(60﹣40)÷40,=20÷40,=50%;答:工作效率需提高50%.7.设可排x页,640×200=800x,800x=128000,x=160;答:可排160页8.设可以装订x本,由题意得:15x=25×36,15x=900,x=60.答:可以装订60本.9.设原计划铺x天,3.2x=3.2×(1+25%)×12,3.2x=4×12,3.2x=48,x=15;答:原计划用15天铺完.10.设用边长为4分米的方砖铺地要用x块,则:(4×4)×x=160×9,16x=1440,x=1440÷16,x=90.答:要用90块11.设共需要x根;8x=6×240,x=,x=180;答:共需要180根.12.设x天可以读完,20x=15×12,x=,x=9;答:9天可以读完.13.设实际x天用完,(30﹣5)x=30×12,25x=360,x=14.4;14.4﹣12=2.4(天);答:实际比计划多用了2.4天14.设实际生产了x天,180x=150×24,x=3600÷180,x=20.答:实际生产了20天.15.设平均每小时行x千米.42×5=4x4x=210x=52.5;答:平均每小时行52.5千米.16.设要x天才能读完.20x=30×6x=180÷20x=9;12答:要9天才能读完.17.设每天应装x台.50×60=40xx=x=75;答:每天应装75台.18.设平均每天做x个;12x=200×15,x=,x=250;答:平均每天做250个.19.设实际x天可以完成,180×120%×x=180×12,216x=2160,x=10;答:实际10天可以完成.20.设每小时需行驶x千米,则有(48﹣8)x=25×48,40x=1200,x=30;答:如果要提前8小时到达,每小时需行驶30千米.21.设换上的新铁轨有x根;9x=6×240,x=,x=160;答:换上的新铁轨有160根22.设实际要x天运完,则有21x=18×84,21x=1512,x=72;答:实际要72天运完.23.1.8×40÷2.4=72÷2.4=30(千克)答:可以买30千克梨.24.设可以提前x天完成.160×15=(160+80)×(15﹣x)160×15=240×(15﹣x)15﹣x=15﹣x=10x=5答:可以提前5天完成.25.(1)设行完全程共需x小时,160:2=(60×8):x,160:2=480:x,160x=480×2,x=,x=6;(2)行完全程共需y小时,(160÷2)×y=60×8,80y=60×8,y=,y=6;答:行完全程共需6小时26.设每箱装x瓶,60x=50×24,x=,x=20;答:每箱装20瓶.27.设只需x天就可以完成任务,30x=20×15,30x=300,x=10;答:实际每天装配30台,只需10天就可以完成任务28.设可以站x行,9x=15×12,x=,x=20,答:可以站20行.29.设需要x块.3×3×432=4×4×x16x=9×432x=243;答:需要243块30.设需要x块,0.3×0.3×800=0.2×0.2×x,0.04x=0.09×800,x=,x=1800,答:需要1800块.31.设这堆煤实际可烧x天,48x=60×40,48x=2400,x=50;答:这堆煤实际可烧50天.32.设每小时需行x千米,132.5x=90×3,x=,x=108,答:每小时需行108千米.33.设需要x小时回到A地,50x=20×7.5,50x=150,x=3;答:3小时可以回到A地.34.设需要方砖x块,由题意得:0.25x=0.16×2750.25x=44x=176答:需要方砖176块.35.设每班只能分到x本,12x=30×8,12x=240,x=20;答:每班只能分到20本.36.设返回的时间为x小时,90x=80×3,x=,x=,少用的时间:3﹣=(小时),答:返回时少用了小时.37.设可以烧x天,0.4x=0.5×40,x=,x=50;答:可以烧50天.38.设平均每天生产x个,10x=80×15,x=,x=120,答:平均每天应生产120个.39.设x小时回到甲城,50x=45×5,x=,x=4.5,答:4.5小时回到甲城.40.设x天读完;25x=20×30,x=,x=24,答:24天读完41.设需要x块,0.3×0.3x=0.2×0.2×900,0.09x=0.04×900,x=36÷0.09,x=400,答:需要400块42.剩下的纸还能装订x本,=,360x=165600,x=460;答:剩下的纸还能装订460本43.3000÷(3000÷5+150),=3000÷(600+150),=3000÷750,=4(天),答:实际用了4天.44.设要用x小时才能到达,60x=42.6×5.4,60x=230.04,x=3.834;答:如果每小时行60千米,要用3.834小时才能到达.45.设每本应装订x页,250x=20×300,x=,x=24,答:每本应装24页.46.2分米=20厘米,设小齿轮要转动x周,200×3.14×2×20=3.14×2×8×x,4000=8x,x=4000÷8,x=500,答:小齿轮要转动500周47.设x天可以完成任务,(96÷4)×x=20×18,24x=360,14x=360÷24,x=15,答:15天可以完成任务.48.设需要x块才能铺满,由题意得:0.16x=0.09×1152,0.16x=103.68,0.16x÷0.16=103.68÷0.16,x=648;答:需要648块才能铺满.49.设实际每只游艇应坐x人,12x=24×14,12x=336,x=28;答:实际每只游艇应坐28人50.设如果改用边长5分米的方砖铺地,需要x块砖,则有:(5×5)x=(3×3)×600,25x=9×600,25x=5400,x=216;答:如果改用边长5分米的方砖铺地,需要216块砖.51.设这堆煤可烧x天,(4﹣0.8)×x=4×72,3.2x=4×72,x=,x=90;答:这堆煤可烧90天.52.设改用边长是4分米的方砖需要x块,4×4×x=3×3×96,16x=9×96,x=,x=54,54<55,所以买55块够用,答:如果改用边长是4分米的方砖,买55块够用53.设实际每天修x米,20x=50×25,x=,x=62.5,答:实际每天修62.5米54.设每小时应行x千米,(15﹣1)x=42×15,14x=42×15,x=,x=45;答:每小时应行45千米.55.设这样可以烧x天,(1.5﹣0.3)×x=1.5×36,1.2x=1.5×36,x=,x=45;答:这样可以烧45天56.设平均每天要生产x台,240×25=(25﹣5)×x,20x=240×25,x=,x=300;答:平均每天要生产300台57.设实际的速度为x千米/小时,则2.5x=3.8×3,2.5x=11.4,x=4.56;答:平均每小时多行4.56千米58.设实际用x天可以完成任务,(30+6)×x=30×12,36x=360,x=10,答:实际用10天可以完成任务.59.设至少需要买这种木地板x块,则有(6×1)x=16×150,6x=2400,x=400;答:至少需要买这种木地板400块.60.设用面积是16平方米的方砖铺地需要X块砖.16X=18×176;16X=3168;X=198;答:用面积是16平方米的方砖铺地需要198块砖.61.设实际x天完成,则有(240+60)x=240×15,300x=3600,x=12;答:实际12天完成.62.设x天可以修完,800x=1200×8,15x=,x=12;答:12天可以修完63.设x小时到达.35×6=42xx=x=5答:5小时到达64.设这篇文章需要打印x行,32x=24×40,x=,x=30,答:这篇文章需要打印30行65.设如果每小时行100千米,x小时到达,则有100x=120×8,100x=960,x=9.6;答:如果每小时行100千米,9.6小时到达.66.设现在每天可加工x个零件,则有8x=12×50,8x=600,x=75;答:现在每天可加工75个零件67.设要用x块砖,则12:x=9:3089x=308×12x=308×12÷9x=410答:要用410块砖.68.设这样可以少x天,×(1﹣20%)x=×20x×80%=5,0.2x=5,x=5÷0.2,x=25;答:这样可以少25天.69.设需要x 块面积为36平方分米的方砖.36x=16×180,x=,x=80;答:如果改用面积为36平方分米的方砖铺地,需要80块.70.设至少需要x块砖,0.8×0.8x=0.6×0.6×2000,0.64x=0.36×2000,x=,x=1500,答:至少需要1500块方砖71.设他每分钟应走X米,50×18=X×(18﹣3),15X=900,X=900÷15,X=60;答:他每分钟走60米72.设需要x块砖,由题意得,10×10x=8×8×725,100x=46400,x=464;答:需要这样的方砖464块.73.设实际用x天完成,(20+10)x=20×12,30x=240,x=8;答:实际用8天完成.74.设返回出发地点用了x小时,由题意得:(15+60)×x=60×4.5,75x=270,x=3.6.答:返回出发地点用了3.6小时75.设改为每页排600个字,可以排x页,500×180=600×x,6x=900,x=150,180﹣150=30(页);答:可以少排30页.76.设实际x天完成,800x=600×20,x=12000÷800,x=15;算术法:600×20÷800,=12000÷800,16=15(天);答:实际15完成.77.设每页只放4张,可以放x页,4x=6×16,4x=96,x=24;因为这本相册有24页,所以正好够.答:这本相册够放.78.设x天可以看完;30x=45×6,x=,x=9,答:9天可以看完.79.设平均每本是x页,24×x=32×15x=x=20答:平均每本是20页.80.设如果改用边长为8分米的方砖要x块.8×8×x=6×6×360,64x=36×360,x=12960÷64,x=202.5,x≈203;答:如果改用边长为8分米的方砖最少要203块81.设实际需要安排x个工人,(25﹣10)×x=18×25,15x=450,x=30;答:实际需要安排30个工人82.每小时120km的速度行驶转化成每分钟120÷60=2km的速度行驶,半小时=30分钟;设汽车返时用了X分钟,2X=2.5×30,2X=75,X=37.5;答:汽车返时用了37.5分钟83.设可以装订x本,32x=36×4000,32x=144000,x=4500,答:可以装订4500本.84.设每本应装订x页,100x=120×30,100x=3600,x=3600÷100,x=36;答:每本应装订36页85.设实际加工完这批零件要x小时.40×(1+20%)×x=40×6,48x=240,x=5;答:实际加工完这批零件要5小时.86.x天可以完成任务,(200÷4)×x=45×20,50x=45×20,x=,x=18,答:18天可以完成任务.87.设每本应该改装成x页,288x=216×24,x=,x=18,答:每本应该改装成18页88.设如果每列20人,要排x列,则有20x=25×24,20x=600,x=30;答:如果每列20人,要排30列89.实际可以烧x天.3×96=2.4xx=x=120答:实际可以烧120天.90.设这批煤实际烧了x天.(1﹣0.25)x=1×35,1.25x=52.5,x=42.答:这批煤实际烧了42天17。
六年级反比例试题及答案
一、选择题
1. 反比例函数的图象是()。
A. 直线
B. 曲线
C. 折线
D. 点
答案:B
2. 函数y=k/x(k≠0)是反比例函数,当k>0时,图象位于()。
A. 第一、三象限
B. 第二、四象限
C. 第一、二象限
D. 第三、四象限
答案:A
3. 在反比例函数y=k/x(k≠0)中,k的值越大,图象越()。
A. 靠近x轴
B. 靠近y轴
C. 远离x轴
D. 远离y轴
答案:B
二、填空题
1. 反比例函数y=k/x(k≠0)的图象是双曲线,当k>0时,图象位于第一、三象限,且在每一象限内,y随x的增大而减小。
答案:减小
2. 反比例函数y=k/x(k≠0)的图象是双曲线,当k<0时,图象位于第二、四象限,且在每一象限内,y随x的增大而增大。
答案:增大
三、解答题
1. 已知反比例函数y=k/x(k≠0),当x=2时,y=1,求k的值。
答案:k=2
2. 已知反比例函数y=k/x(k≠0),当x=-3时,y=-2,求k的值。
答案:k=6
四、应用题
1. 某工厂生产一批零件,零件的总数量与生产时间成反比例关系。
如果生产100个零件需要4小时,那么生产200个零件需要多少小时?答案:生产200个零件需要8小时。
2. 某商店销售一种商品,商品的总销售额与销售数量成反比例关系。
如果销售100件商品的总销售额为5000元,那么销售200件商品的总销售额是多少?
答案:销售200件商品的总销售额为2500元。
反比例函数应用题1、〔2021•曲靖〕某地资源总量Q 一定,该地人均资源享有量与人口数n的函数关系图象是〔〕A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:根据题意有:=;故y与x 之间的函数图象双曲线,且根据,n 的实际意义,n 应大于0;其图象在第一象限.解答:解:∵由题意,得Q=n,∴=,∵Q为一定值,∴是n的反比例函数,其图象为双曲线,又∵>0,n>0,∴图象在第一象限.应选B.点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2、〔2021•绍兴〕教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温〔℃〕与开机后用时〔min〕成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.假设在水温为30℃时,接通电源后,水温y〔℃〕和时间〔min〕的关系如图,为了在上午第一节下课时〔8:45〕能喝到不超过50℃的水,那么接通电源的时间可以是当天上午的〔〕A.7:20 B.7:30 C.7:45 D.7:50考反比例函数的应用.点:分析:第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.解答:解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将〔0,30〕,〔7,100〕代入y=k1x+b得k1=10,b=30∴y=10x+30〔0≤x≤7〕,令y=50,解得x=2;设反比例函数关系式为:y=,将〔7,100〕代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=〔7≤x≤〕,令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.应选A.点评:此题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.3、〔2021•玉林〕工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y 〔℃〕与时间x〔min〕成一次函数关系;锻造时,温度y〔℃〕与时间x〔min〕成反比例函数关系〔如图〕.该材料初始温度是32℃.〔1〕分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;〔2〕根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?考点:反比例函数的应用;一次函数的应用.分析:〔1〕首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;〔2〕把y=480代入y=中,进一步求解可得答案.解答:解:〔1〕停止加热时,设y=〔k≠0〕,由题意得600=,解得k=4800,当y=800时,解得x=6,∴点B的坐标为〔6,800〕材料加热时,设y=ax+32〔a≠0〕,由题意得800=6a+32,解得a=128,∴材料加热时,y与x的函数关系式为y=128x+32〔0≤x≤5〕.∴停止加热进行操作时y与x的函数关系式为y=〔5<x≤20〕;〔2〕把y=480代入y=,得x=10,故从开始加热到停止操作,共经历了10分钟.答:从开始加热到停止操作,共经历了10分钟.点评:考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式。
反比例方程应用题专项练习90题反比例应用题专项练习90题(有答案)1.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)2.某学校美化环境,用彩色水泥砖铺路面,用面积4平方分米的方砖铺要4500块,若改用面积9平方分米的方砖铺要几块?3.张师傅准备给自家的客厅里铺上地板砖,如果用面积是36平方分米的方砖就需要40块,如果改用面积是60平方分米的方砖,则需要多少块?(用比例解)4.学校微机室需用方砖铺地,用面积是16平方分米的方砖,需要150块,如果改用面积是25平方分米的方砖,需要多少块?5.电视机厂计划每天产75台电视机,12天完成任务,实际每天多生产15台,多少天可以完成任务?(用比例知识解题)6.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)7.排版一部书稿,如果每页排640个字,要200页;如果每页排800个字,可排多少页?8.用一批纸装订练习本,如果每本装订25页,可以装订36本;如果每本装订15页,可以装订多少本?(用比例解)9.一个筑路队铺一段铁路,原计划每天铺3.2千米,实际每天比原计划多铺25%,实际铺完这段铁路用了12天,原计划用多少天铺完?(用比例解)10.王奶奶家装修房子,用面积是9平方分米的方砖铺地要用160块,如果改用边长为4分米的方砖铺地,要用多少块?(用比例解)11.盖一幢职工宿舍.计划使用6米长的水管240根.后来改用8米长的水管,共需要多少根?(用比例知识解答)12.小明读一本故事书,每天读 15 页,12 天读完.如果每天读 20 页,几天可以读完?(比例解)13.发电厂运来一批煤,计划每天用30吨,12天用完,实际每天节约5吨煤,实际比计划多用了几天?(用比例知识解答)14.时新服装厂生产一批西服,原计划每天生产150套,24天可以完成任务.实际每天生产180套,实际生产了多少天?(用比例知识解)15.一辆汽车从东城开往西城,每小时行42千米,5小时到达乙城;返回时用了4小时,平均每小时行多少千米?(用比例解)16.一本书,如果每天读30页,6天可以读完,若每天读20页,要多少天才能读完?17.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)18.做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(比例解)19.金光电子厂要生产一批零件,原计划每天生产180个,12天完成.实际的生产效率是原计划的120%,实际多少天可以完成?(比例解)20.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验.如果要提前8小时到达,每小时需行驶多少千米?21.铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(比例解)22.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)23.桃每千克售价1.8元,梨每千克售价2.4元.买40千克桃的钱,可以买多少千克梨?24.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)25.汽车从A到B地,每小时行60千米,需8小时到达,实际上2小时已行160千米,照这样计算,行完全程共需多少小时?(用正、反两种比例解)26.有一批饮料,每箱装24瓶,正好装50箱.如果要装60箱,每箱装多少瓶?(用比例解)27.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务.实际每天装配30台,只需几天就可以完成任务?(用比例方法解)28.同学们做操,每行站15人,正好站12行.如果每行站9人,可以站多少行?29.一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?30.一个房间,如果用边长为0.3m的方砖铺地,需800块,如果改用边长为0.2m的方砖铺地,需要多少块?(用比例解答)31.食堂有一堆煤,原计划每天烧60千克,可以烧40天,实际每天烧48千克,这堆煤实际可烧多少天?(用比例解)32.一辆汽车从甲地开往乙地,每小时行90千米,3小时到达,若要2.5小时到达,每小时需行多少千米?(用比例解)33.邮递员小李从A地到B地送信,去时每小时走20km,用可7.5小时,回的时候每小时走50km,多小时可以回到A地?(用比例知识解)34.一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?(用比例解)35.学校买来一批图书,如果每班分30本,可以分给8个班,现在需要分给12个班,每班只能分到多少本?(用比例解)36.方叔叔开车去县城以每小时80km的速度,行了3小时,返回时每小时行90km,返回时少用了多少时间?(用比例的知识解答)37.一堆煤,计划每天烧0.5吨,可以烧40天,如果每天烧0.4吨,可以烧多少天?(用比例解)38.某车间要生产一批零件,计划每天生产80个,15天完成.实际要10天完成,平均每天应生产多少个?(用比例知识解答)39.一辆汽车从甲城开往乙城,每小时行45千米,5小时到达.返回时,每小时行驶50 千米,几小时回到甲城?(用比例解)40.小红读一本故事书,如果每天读20页,30天读完.现在每天读25页,几天读完?(用比例解)41.用边长0.2米的方砖给一间小房间铺地,要900块,如果改用边长0.3米的方砖来铺,需要多少块?(用比例解)42.用4500张白纸装订练习本,先用360张装订了40本,照这样计算,剩下的纸还能装订多少本?(用比例知识解答)43.养牛场计划5天割草3000千克,实际每天比原计划多割150千克,实际用了多少天?44.一辆汽车从甲地到乙地,如果每小时行42.6千米,要用5.4小时.如果每小时行60千米,要用几小时才能到达?45.印刷厂用一批纸装订练习本,如果每本装20页,可以装订300本.如果要装订250本练习本,每本应装订多少页?(比例解)46.如图是两个相互交合的齿轮,大齿轮的半径是2分米,小齿轮的半径是8厘米,如果大齿轮转动200周,小齿轮要转动多少周?47.某工厂计划加工一批零件,如果每天加工20个,18天可以完成,实际4天加工了96个,照这样计算,几天可以完成任务?48.一块地,用面积是0.09平方米的方砖铺满要1152块;如果改用面积是0.16平方米的方砖,需要多少块才能铺满?(用比例知识解答)49.一批游客到博鳌水城要乘游艇游览,原计划租用14只游艇,每只坐24人.但实际只租到12只,实际每只游艇应坐多少人?(用比例方法解)50.学校要装修一间会议室,用边长3分米的方砖铺地,需要600块;如果改用边长5分米的方砖铺地,需要多少块砖?(用比例解)51.一堆煤计划每天烧4吨可以烧72天.由于改进炉灶,每天节约0.8吨,这样,这堆煤可烧多少天?(用比例解)52.一间房子要用方砖铺地,用边长是3分米的方砖,需要96块,如果改用边长是4分米的方砖,买55块够不够?53.修一条路原计划每天修50米,25天修完.实际20天完成任务,实际每天修多少米?(用比例解)54.一辆汽车从甲地开往乙地,每小时行42千米,15小时可以到达,如果要提前1个小时到达,每小时应行多少千米?(用比例解答)55.一堆煤,原计划每天烧1.5吨,可以烧36天.实际每天节约0.3吨,这样可以烧几天?(用比例解)56.机床厂生产一批机器,原计划每天生产240台,25天完成,如果要提前5天完成,平均每天要生产多少台?(用比例方法解)57.学校组织远足活动,原计划每小时走3.8千米,3小时到达目的地,实际2.5小时行完全程,平均每小时多行多少千米?(用比例解答)58.“天虹”电机厂接到生产一批发电机的任务,原计划每天生产30台,12天可以完成,实际每天多生产6台,实际用多少天可以完成任务?(运用比例知识解)59.李叔叔买了一套新房,客厅是一个长方形,原计划用面积是16平方分米的方砖铺地,需要150块地砖,现在决定用长6分米,宽1分米,厚2厘米的木地板铺地,那么至少需要买这种木地板多少块?60.一间房子,用面积是18平方米的方砖铺底,需要176块,如果用面积是16平方米的方砖铺地需要多少块砖?(用比例解)61.生产一批农具,原计划每天生产240件,15天完成,实际每天多生产60件,实际多少天完成?(用比例解)62.修一条路,如果每天修1200米,8天可以修完;如果每天修800米,几天可以修完?(用比例方法解)63.一辆汽车从甲地开往乙地,若每小时行35千米,6小时到达.若每小时行42千米,几小时到达?64.一篇文章原稿每行24个字,共40行.现改为每行32个字,那么这篇文章需要打印多少行?(用比例解)65.一列火车从甲地开往乙地,每小时行120千米,8小时到达.如果每小时行100千米,几小时到达?(用比例解)66.袁师傅原来加工一个零件要用12分钟,现在减少到8分钟,原来每天加工50个零件的时间,现在每天可加工多少个零件?(用比例解)67.用同样的砖铺地,铺9平方米用砖308块,如果铺12平方米,要用多少块砖?(用比例)68.买来一批煤,计划每天烧吨,可烧20天;实际每天比原来节约20%,这样可以烧多少天?(用比例解答)69.欢欢家里装修,如果用面积为16平方分米的方砖铺地,需要180块.请你帮忙计算一下,如果改用面积为36平方分米的方砖铺地,需要多少块?(用比例方法解)70.用边长是0.6米的方砖给办公室铺地,需要2000块;如果改用边长0.8米的方砖铺地,至少需要多少块砖?71.王强从家到学校每分钟走50米,18分钟到校;放学回家时,他想比上学时少用3分钟到家,他每分钟应走多少米?(用比例解)72.学校会议室需要用方砖铺地.如果用边长8dm的方砖铺,需要725块;如果改用边长10dm的方砖铺,需要这样的方砖多少块?(此题限用比例解答.)73.电机厂要生产一批发电机,原计划每天生产20台,12天完成,实际每天多生产10台,实际用多少天完成?(用比例解)74.车队向灾区运送救灾物资,去时每小时行60千米,4.5小时到达,返回时每小时多行15千米,返回出发地点用了多长时间?(用比例解)75.装订一本书,如果每页排500个字,可以排180页,如果改为每页排600个字,可以少排多少页?(用比例解)76.钢铁厂要生产一批钢材,计划每天生产600吨,20天完成.实际每天生产800吨,实际几天完成?77.毛毛全家“六一”到中山公园游玩,拍了许多照片,毛毛买了一本24页的相册,如果每页放6张照片,刚好放16页,现在毛毛打算每页只放4张,请你帮她算一算,这本相册够放吗?(用比例解)78.何聪看一本故事书,原计划每天看45页,6天可以看完.实际每天只看30页,几天可以看完?(用比例知识解答)79.用一批纸装订练习本,每本32页,可以装订成15本.如果装订成24本,平均每本是多少页?80.李叔叔家买了新房,正准备给地面贴磁砖.如果用边长6分米的方砖铺,需要360块,如果改用边长8分米的方砖,最少需要多少整块方砖?81.工程队要修一条公路,原计划18个人25天完成.为了赶工期,需要提前10天完成,这样实际需要安排多少个工人?(用比例解)82.一辆汽车去县城以每分钟2.5km的速度,行了半小时,返回时以每小时120km的速度行驶,汽车返时用了多少分钟?(用比例解)83.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?84.用一批纸装订同样大小的练习本,如果每本30页,可以装订120本;现用这批纸装订了100本,每本应装订多少页?(用比例解答)85.加工一批零件,计划每小时加工40个,6小时完成,实际每小时比计划每小时多加工20%,实际加工完这批零件要多少小时?(用比例知识解答)86.工程队修一条路,每天修45米,20天可以完成任务.实际前4天修了200米,照这样计算,多少天可以完成任务?(用比例解答)87.有一批纸,可以装订每本24页的练习本216本,如果要装订出288本,那么每本应该改装成多少页?(用比例解)88.实验小学举行团体操表演,如果每列25人,要排24列,如果每列20人,要排多少列?(用比例解)89.一堆煤,原计划每天烧3吨,可以烧96天.实际每天烧2.4吨,实际可以烧多少天?(用比例方法解答)90.发电厂运来一批煤,计划每天烧吨,可以烧35天,实际每天比计划节约烧煤0.25吨,这批煤实际烧了多少天?(用比例解)参考答案:1.设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.2.设改用面积9平方分米的方砖铺要x块,9x=4×4500,x=,x=2000;答:改用面积9平方分米的方砖铺要2000块3.设需要x块,60x=36×40,60x=1440,x=24;答:需要24块4.设需要x块,25x=16×150,x=16×150÷25,x=96;答:需要96块5.设x天可以完成任务,总量一定,每天生产台数和生产天数成反比例,75:(75+15)=x:12,75×12=(75+15)×x,75×12=90×x,x=75×12÷90,x=10;答:10天可以完成任务6.设提前1小时完成任务时的工作效率为x 个,40×3=x×(3﹣1),2x=40×3,x=,x=60;(60﹣40)÷40,=20÷40,=50%;答:工作效率需提高50%.7.设可排x页,640×200=800x,800x=128000,x=160;答:可排160页8.设可以装订x本,由题意得:15x=25×36,15x=900,x=60.答:可以装订60本.9.设原计划铺x天,3.2x=3.2×(1+25%)×12,3.2x=4×12,3.2x=48,x=15;答:原计划用15天铺完.10.设用边长为4分米的方砖铺地要用x块,则:(4×4)×x=160×9,16x=1440,x=1440÷16,x=90.答:要用90块11.设共需要x根;8x=6×240,x=,x=180;答:共需要180根.12.设x天可以读完,20x=15×12,x=,x=9;答:9天可以读完.13.设实际x天用完,(30﹣5)x=30×12,25x=360,x=14.4;14.4﹣12=2.4(天);答:实际比计划多用了2.4天14.设实际生产了x天,180x=150×24,x=3600÷180,x=20.答:实际生产了20天.15.设平均每小时行x千米.42×5=4x4x=210x=52.5;答:平均每小时行52.5千米.16.设要x天才能读完.20x=30×6x=180÷20x=9;答:要9天才能读完.17.设每天应装x台.50×60=40xx=x=75;答:每天应装75台.18.设平均每天做x个;12x=200×15,x=,x=250;答:平均每天做250个.19.设实际x天可以完成,180×120%×x=180×12,216x=2160,x=10;答:实际10天可以完成.20.设每小时需行驶x千米,则有(48﹣8)x=25×48,40x=1200,x=30;答:如果要提前8小时到达,每小时需行驶30千米.21.设换上的新铁轨有x根;9x=6×240,x=,x=160;答:换上的新铁轨有160根22.设实际要x天运完,则有21x=18×84,21x=1512,x=72;答:实际要72天运完.23.1.8×40÷2.4=72÷2.4=30(千克)答:可以买30千克梨.24.设可以提前x天完成.160×15=(160+80)×(15﹣x)160×15=240×(15﹣x)15﹣x=15﹣x=10x=5答:可以提前5天完成.25.(1)设行完全程共需x小时,160:2=(60×8):x,160:2=480:x, 160x=480×2,x=,x=6;(2)行完全程共需y 小时,(160÷2)×y=60×8,80y=60×8,y=,y=6;答:行完全程共需6小时26.设每箱装x瓶,60x=50×24,x=,x=20;答:每箱装20瓶.27.设只需x天就可以完成任务,30x=20×15,30x=300,x=10;答:实际每天装配30台,只需10天就可以完成任务28.设可以站x行,9x=15×12,x=,x=20,答:可以站20行.29.设需要x块.3×3×432=4×4×x16x=9×432x=243;答:需要243块30.设需要x块,0.3×0.3×800=0.2×0.2×x,0.04x=0.09×800,x=,x=1800,答:需要1800块.31.设这堆煤实际可烧x天,48x=60×40,48x=2400,x=50;答:这堆煤实际可烧50天.32.设每小时需行x千米,2.5x=90×3,x=,x=108,答:每小时需行108千米.33.设需要x小时回到A地,50x=20×7.5,50x=150,x=3;答:3小时可以回到A地.34.设需要方砖x块,由题意得:0.25x=0.16×2750.25x=44x=176答:需要方砖176块.35.设每班只能分到x本,12x=30×8,12x=240,x=20;答:每班只能分到20本.36.设返回的时间为x 小时,90x=80×3,x=,x=,少用的时间:3﹣=(小时),答:返回时少用了小时.37.设可以烧x天,0.4x=0.5×40,x=,x=50;答:可以烧50天.38.设平均每天生产x个,10x=80×15,x=,x=120,答:平均每天应生产120个.39.设x小时回到甲城,50x=45×5,x=,x=4.5,答:4.5小时回到甲城.40.设x天读完;25x=20×30,x=,x=24,答:24天读完41.设需要x块,0.3×0.3x=0.2×0.2×900,0.09x=0.04×900,x=36÷0.09,x=400,答:需要400块42.剩下的纸还能装订x本,=,360x=165600,x=460;答:剩下的纸还能装订460本43.3000÷(3000÷5+150),=3000÷(600+150),=3000÷750,=4(天),答:实际用了4天.44.设要用x小时才能到达,60x=42.6×5.4,60x=230.04,x=3.834;答:如果每小时行60千米,要用3.834小时才能到达.45.设每本应装订x页,250x=20×300,x=,x=24,答:每本应装24页.46.2分米=20厘米,设小齿轮要转动x周,200×3.14×2×20=3.14×2×8×x,4000=8x,x=4000÷8,x=500,答:小齿轮要转动500周47.设x天可以完成任务,(96÷4)×x=20×18,24x=360,x=360÷24,x=15,答:15天可以完成任务.48.设需要x块才能铺满,由题意得:0.16x=0.09×1152,0.16x=103.68,0.16x ÷0.16=103.68÷0.16,x=648;答:需要648块才能铺满.49.设实际每只游艇应坐x人,12x=24×14,12x=336,x=28;答:实际每只游艇应坐28人50.设如果改用边长5分米的方砖铺地,需要x块砖,则有:(5×5)x=(3×3)×600,25x=9×600,25x=5400,x=216;答:如果改用边长5分米的方砖铺地,需要216块砖.51.设这堆煤可烧x天,(4﹣0.8)×x=4×72,3.2x=4×72,x=,x=90;答:这堆煤可烧90天.52.设改用边长是4分米的方砖需要x块,4×4×x=3×3×96,16x=9×96,x=,x=54,54<55,所以买55块够用,答:如果改用边长是4分米的方砖,买55块够用53.设实际每天修x米,20x=50×25,x=,x=62.5,答:实际每天修62.5米54.设每小时应行x千米,(15﹣1)x=42×15,14x=42×15,x=,x=45;答:每小时应行45千米.55.设这样可以烧x天,(1.5﹣0.3)×x=1.5×36,1.2x=1.5×36,x=,x=45;答:这样可以烧45天56.设平均每天要生产x台,240×25=(25﹣5)×x,20x=240×25,x=,x=300;答:平均每天要生产300台57.设实际的速度为x千米/小时,则2.5x=3.8×3,2.5x=11.4,x=4.56;答:平均每小时多行4.56千米58.设实际用x天可以完成任务,(30+6)×x=30×12,36x=360,x=10,答:实际用10天可以完成任务.59.设至少需要买这种木地板x块,则有(6×1)x=16×150,6x=2400,x=400;答:至少需要买这种木地板400块.60.设用面积是16平方米的方砖铺地需要X块砖.16X=18×176;16X=3168;X=198;答:用面积是16平方米的方砖铺地需要198块砖.61.设实际x天完成,则有(240+60)x=240×15,300x=3600,x=12;答:实际12天完成.62.设x天可以修完,800x=1200×8,x=,x=12;答:12天可以修完63.设x小时到达.35×6=42xx=x=5答:5小时到达64.设这篇文章需要打印x行,32x=24×40,x=,x=30,答:这篇文章需要打印30行65.设如果每小时行100千米,x小时到达,则有100x=120×8,100x=960,x=9.6;答:如果每小时行100千米,9.6小时到达.66.设现在每天可加工x个零件,则有8x=12×50,8x=600,x=75;答:现在每天可加工75个零件67.设要用x块砖,则12:x=9:3089x=308×12x=308×12÷9x=410答:要用410块砖.68.设这样可以少x天,×(1﹣20%)x=×20x×80%=5,0.2x=5,x=5÷0.2,x=25;答:这样可以少25天.69.设需要x块面积为36平方分米的方砖.36x=16×180, x=,x=80;答:如果改用面积为36平方分米的方砖铺地,需要80块.70.设至少需要x块砖,0.8×0.8x=0.6×0.6×2000,0.64x=0.36×2000,x=,x=1500,答:至少需要1500块方砖71.设他每分钟应走X米,50×18=X×(18﹣3),15X=900,X=900÷15,X=60;答:他每分钟走60米72.设需要x块砖,由题意得,10×10x=8×8×725,100x=46400,x=464;答:需要这样的方砖464块.73.设实际用x天完成,(20+10)x=20×12,30x=240,x=8;答:实际用8天完成.74.设返回出发地点用了x小时,由题意得:(15+60)×x=60×4.5,75x=270,x=3.6.答:返回出发地点用了3.6小时75.设改为每页排600个字,可以排x页,500×180=600×x,6x=900,x=150,180﹣150=30(页);答:可以少排30页.76.设实际x天完成,800x=600×20,x=12000÷800,x=15;算术法:600×20÷800,=12000÷800,=15(天);答:实际15完成.77.设每页只放4张,可以放x页,4x=6×16,4x=96,x=24;因为这本相册有24页,所以正好够.答:这本相册够放.78.设x天可以看完;30x=45×6,x=,x=9,答:9天可以看完.79.设平均每本是x页,24×x=32×15x=x=20答:平均每本是20页.80.设如果改用边长为8分米的方砖要x块.8×8×x=6×6×360,64x=36×360,x=12960÷64,x=202.5,x≈203;答:如果改用边长为8分米的方砖最少要203块81.设实际需要安排x个工人,(25﹣10)×x=18×25,15x=450,x=30;答:实际需要安排30个工人82.每小时120km的速度行驶转化成每分钟120÷60=2km的速度行驶,半小时=30分钟;设汽车返时用了X分钟,2X=2.5×30,2X=75,X=37.5;答:汽车返时用了37.5分钟83.设可以装订x本,32x=36×4000,32x=144000,x=4500,答:可以装订4500本.84.设每本应装订x页,100x=120×30,100x=3600,x=3600÷100,x=36;答:每本应装订36页85.设实际加工完这批零件要x小时.40×(1+20%)×x=40×6,48x=240,x=5;答:实际加工完这批零件要5小时.86.x天可以完成任务,(200÷4)×x=45×20,50x=45×20,x=,x=18,答:18天可以完成任务.87.设每本应该改装成x页,288x=216×24,x=,x=18,答:每本应该改装成18页88.设如果每列20人,要排x列,则有20x=25×24,20x=600,x=30;答:如果每列20人,要排30列89.实际可以烧x天.3×96=2.4xx=x=120答:实际可以烧120天.90.设这批煤实际烧了x天.(1﹣0.25)x=1×35,1.25x=52.5,x=42.答:这批煤实际烧了42天。