THDF 和 ηB的测量问题
- 格式:pdf
- 大小:1.23 MB
- 文档页数:6
非均匀磁场的测量[目的]1.掌握感应法测磁场原理。
2.测量非均匀磁场分布。
3.测量亥姆霍兹线圈磁场分布,验证叠加原理。
[原理]测量磁场的方法很多,具体采用什么方法,要由被测磁场的类型和强弱来确定。
均匀磁场的测量在8.2实验中我们应用了物质在磁场中表现的磁特性而产生的霍耳效应法,而对于非均匀磁场的研究和测量,本实验采用感应法测磁场。
这种方法是以电磁感应定律 dtd ϕε−=为基础:当导线中通有变化电流时,其周围空间必然产生变化磁场。
处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。
通过测量此感应电动势的大小,就可以计算出磁场的量值,这就是感应法的实质。
这种方法既可测交变磁场,也可测恒定磁场。
对于不随时间变化的恒定磁场,可采用恒速转动测量线圈的方法来获得感应电动势,达到测量磁场的目的。
磁场是矢量场,因此磁场的测量就是要测出场中各点的磁感应强度大小与方向。
但实际上往往只能测出某一小区域的平均值,很难测得非均匀磁场中各点的磁感应强度矢量。
为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化t B B m ωsin =式中m B 为磁感应强度的峰值,ω为角频率。
再假定置于此磁场中探测线圈T(线圈面积为S ,共有N 匝)的法线n 与m B 之间夹角为θ,如图20-1所示。
则通过T 的总磁通量ϕ为θωϕcos sin t NSB B NS m =⋅=由于磁场是交变的,因此在线圈中会出现感应电动势,其值为 dt d ϕε−= θωωcos cos t B NS m −=t m ωεcos −= (20-1)式中θωεcos m m B NS =为感应电动势峰值。
将探测线圈T 的两条引线与一个交流毫伏表连接,则毫伏表指针会发生偏转。
注意读数为有效值,它与峰值的关系为θωεcos 22m m B NS U == (20-2) 由(20-2)式可知(1)当N 、S 、ω、m B 一定时,角θ越小,毫伏表读数越大,反之亦然。
奈奎斯特准则频域条件奈奎斯特准则是指在采样过程中,为了避免出现混叠现象,采样频率必须大于信号最高频率的两倍。
这个准则是由美国电气工程师哈里·奈奎斯特在20世纪40年代提出的,也被称为奈奎斯特采样定理。
在信号处理中,我们通常将信号分为时域和频域两个方面来研究。
时域是指信号在时间上的变化,而频域则是指信号在频率上的变化。
奈奎斯特准则是频域条件,它告诉我们在采样时需要满足的条件,以避免混叠现象的发生。
混叠现象是指在采样时,由于采样频率不足以满足奈奎斯特准则,导致信号的高频成分被混叠到低频成分中,从而使得原始信号无法恢复。
这种现象在信号处理中是非常不利的,因为它会导致信号失真,影响信号的质量。
奈奎斯特准则的频域条件可以用一个公式来表示:采样频率必须大于信号最高频率的两倍。
也就是说,如果信号的最高频率为fmax,那么采样频率fs必须满足fs > 2*fmax。
这个公式的含义是,我们需要以足够高的频率对信号进行采样,以保证信号的高频成分不会被混叠到低频成分中。
如果采样频率不足以满足这个条件,就会出现混叠现象,从而导致信号失真。
奈奎斯特准则的频域条件是信号处理中非常重要的一个概念,它告诉我们在采样时需要注意的问题。
在实际应用中,我们需要根据信号的特点来选择合适的采样频率,以保证信号的质量。
如果采样频率过低,就会出现混叠现象,导致信号失真;如果采样频率过高,就会增加计算量和存储量,从而影响系统的性能。
总之,奈奎斯特准则的频域条件是信号处理中非常重要的一个概念,它告诉我们在采样时需要满足的条件,以避免混叠现象的发生。
在实际应用中,我们需要根据信号的特点来选择合适的采样频率,以保证信号的质量。
0-1 基本磁化曲线与初始磁化曲线有何区别?磁路计算时用哪种磁化曲线?基本磁化曲线是铁磁材料被反复磁化时,B-H 曲线不是单值,而是一条磁滞回线,磁滞回线平均后得到基本磁化曲线;将未经磁化的铁磁材料进行磁化,磁场强度H由零增大时,磁通密度B随之增大,所得B=?( H)曲线称为初始磁化曲线;在进行磁路计算时,为了简化计算,不考虑磁滞现象,而用基本磁化曲线来表示B与H之间的关系,故通常所说的铁磁材料的磁化曲线是指基本磁化曲线。
0-2 铁心中有哪些损耗?这些损耗是如何产生的?又与哪些因素有关?交流磁路中存在着铁心损耗,铁心损耗又分为磁滞损耗和涡流损耗。
磁滞损耗:指铁磁材料在交变的磁场中反复磁化,磁畴间相互摩擦,产生的损耗。
p h k h fB m n V ,磁滞损耗与交变磁场的频率f 、铁心的体积V、磁滞回线的面积成正比。
涡流损耗:指涡流产生的损耗。
p w k w f 2B m2 2V ,kw 为与材料有关的比例系数,? 为铁磁材料的厚度。
0-3 电机的磁路通常采用什么材料制成?这些材料有什么特点?铁磁材料是组成磁路的主要部分,其特点是能在外磁场中呈现很强的磁性,磁化曲线具有饱和性,其磁导率远大于非铁磁材料磁导率,且不是常数,随磁场强度的变化而变化。
铁磁材料具有剩磁和矫顽力,饱和性、磁滞现象是其基本特性。
0-4 磁路与电路在物理本质上有何区别?在物理本质上磁路与电路的区别:电路中存在的漏电现象通常是极小的,可忽略不计;磁路中存在的漏磁现象较漏电现象严重,一般在电机和变压器设计中,为了提高计算精度,需要考虑漏磁的影响,只有在不需精确计算或为了简化计算时,才不考虑漏磁影响。
第一章变压器1-1 变压器有什么用途?其铁心为什么要用硅钢片叠成?1-2 变压器铭牌有哪些主要额定数据?各额定值的含义是什么?1-3 短路电压的大小由什么因素决定?它对变压器运行有什么影响?1-4 为什么变压器的空载损耗可近似看成铁损?为什么变压器的短路损耗可近似看成铜损?1-5 变压器的空载试验为什么一般在低压侧做?短路试验时,一次侧所加的电压至短路电流为额定电流为止,为什么?1-6 什么是引起变压器负载运行时二次侧端电压变化的原因?电压变化率能为零吗?如果能,则带什么性质负载时有可能使电压变化率为零?答:由于变压器内部存在漏阻抗,当有负载电流时,会产生电压降,所以输出电压是随负载电流变化而变化的,其变化规律与负载的性质有关。
大学物理实验全解物理实验全解(绝对正解)实验一霍尔效应及其应用【预习思考题】1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。
霍尔系数,载流子浓度,电导率,迁移率。
2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型?以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。
3.本实验为什么要用3个换向开关?为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。
总之,一共需要3个换向开关。
【分析讨论题】1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行?若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。
要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。
2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源?误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。
实验二声速的测量【预习思考题】1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定?答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。
在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。
若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。
实验一转动惯量的测定转动惯量的测定一扭摆法测定物体转动惯量【预习思考题】1.如何测量任意形状物体对特定轴的转动惯量?答:先在载物盘上装上几何规则的物体,测量其摆动周期,计算出弹簧的扭转常数K值。
再将任意形状物体装在载物盘上或直接装在垂直轴上,绕特定轴转动,测量出转动惯量。
若绕过质心轴转动,测量出过质心轴转动惯量,利用平行轴定理计算出绕特定轴转动惯量。
2.扭摆启动时摆角要在90°左右,为什么?答:由于弹簧的扭转常数值不是固定常数,它与摆动角度略有关系,在小角度时变小,摆角在90°左右基本相同。
【分析讨论题】1.扭摆在摆动过程中受到哪些阻尼?它的周期是否会随时间而变?答:空气的阻尼,转轴与轴承间的摩擦阻尼。
由于弹簧的扭转常数值不是固定常数,在小角度时变小,因此它的周期会随时间而变。
2.扭摆的垂直轴上装上不同质量的物体,在不考虑阻尼的情况下分析对摆动周期大小的影响。
答:同样形状、同样质量分布的物体,质量大的物体,其摆动周期大。
转动惯量的测定二三线摆法测定物体转动惯量【预习思考题】1.对下圆盘的摆角有何要求?为什么?答:下圆盘的摆角要小于10°。
因为在三线摆法测定物体转动惯量公式推导过程中应用了。
2.怎样启动三线摆才能防止下圆盘出现晃动?答:让已调水平的三线摆保持静止,用手轻轻扭动上圆盘上的扭动杆,使下圆盘摆动角度小于10°,随后将扭动杆退到原处。
【分析讨论题】1.三线摆在摆动过程中要受到空气的阻尼,振幅越来越小,它的摆动周期是否会随时间而变化?答:它的摆动周期是不会随时间而变化。
2.加上待测物体后三线摆的摆动周期是否一定比空盘的周期大?为什么?答:加上待测物体后三线摆的摆动周期不一定比空盘的周期大。
由下圆盘对中心轴转动惯量公式可知,若J/m>J0/m0 加上待测物体后三线摆的摆动周期变大;若J/m<J0/m0 加上待测物体后三线摆的摆动周期变小。
3.如何用三线摆验证转动惯量的平行轴定理?答:将两个完全相同的小圆柱体m分别置于下圆盘的中心,测出绕圆柱体质心的转动惯量J;再将两个完全相同的圆柱体对称置于下圆盘的中心两侧,圆柱体质心与下圆盘的中心l,测出两个圆柱体对中心轴的转动惯量Jˊ。
中国东盾人造板公司从德国迪芬巴赫(Dieffenbacher)公
司订购了一条THDF生产线
秦莉
【期刊名称】《《国际木业》》
【年(卷),期】2006(036)010
【摘要】今年7月上甸,我国主要的中密度板生产商东盾人造板有限公司决定开始生产薄型高密度纤维板(THDF)。
东盾公司总部位于上海附近的常熟市,该公司是国内最大的中密度板生产商,目前已有9条生产线在运行中。
该公司的生产厂都位于上海周围的省份中,负责THDF工程的公司——安徽东盾人造板有限公司,位于扬子江畔,与安徽省池州市相邻。
【总页数】1页(P41)
【作者】秦莉
【作者单位】
【正文语种】中文
【中图分类】TS653
【相关文献】
1.新技术引领人造板行业升级访德国迪芬巴赫机械设备有限责任公司北京代表处首席代表刘守华先生 [J], 尹江苹
2.技术领先,精益制造,走科技创新之路——访迪芬巴赫集团上海人造板机器厂有限公司总经理叶柏东 [J], 余珊
3.湖北康欣公司与德国迪芬巴赫公司历时4年合作研发全球首条COSB高强度定向结构板生产线投产 [J], 李文军
4.上海人造板机器厂有限公司归属德国迪芬巴赫机械制造有限公司旗下 [J],
5.Greenply公司再次订购迪芬巴赫公司的纤维板生产线 [J], 陈玲
因版权原因,仅展示原文概要,查看原文内容请购买。
霍尔法测量圆线圈和亥姆霍兹线圈的磁场资料1. 实验目的1)了解霍尔效应的基本原理和测量方法;3)掌握常用电子仪器的使用方法。
2. 实验原理霍尔效应是指由于导体中存在外加磁场而引起的横向电场现象。
当一个导体在直流磁场中移动时,电子在导体中受到洛伦兹力的作用,使得电子在导体中运动方向的垂直方向上出现了电场,这个现象就称为霍尔效应。
在磁场中,电子的运动方向与磁场方向垂直,因此在运动方向和磁场方向之间存在着洛伦兹力,即F=q(v×B)=qVBsinθ。
因此,在导电材料中,磁场垂直于电流方向时,就会在导体两侧产生电势差。
这即是霍尔效应。
如果把一个霍尔元件放在磁场中,则输出电压U与外加磁场B、霍尔元件的材料与尺寸有关,可以用下面这个公式描述:U=KIB其中,K是霍尔系数,其表征了所用霍尔元件特征;I是电流强度;B是磁场强度。
圆线圈是一种通电后产生磁场的器件,由于线圈的导线排列方式和电流方向都对电磁场的分布产生决定性的影响,因此需要通过实验来测量和确定磁场的分布。
亥姆霍兹线圈是由两个半径相同、电流方向相同的同心环形线圈组成,这两个线圈之间的距离等于它们的半径,对于它们产生的磁场,中心区域的磁感应强度基本稳定,因此常用作磁场源。
3. 实验仪器与器材磁场强度测量仪(霍尔元件、磁场探头、电流源)4. 实验步骤4.1 测量圆线圈的磁场(1)在圆线圈的中心点放置霍尔元件和磁场探头;(2)将电流源连接到圆线圈上,调整电流大小,记录不同位置的磁场强度和霍尔元件输出电压值,并画出磁场分布图;(3)比较实验得到的磁场分布图和理论分布图,分析其误差原因。
(1)将亥姆霍兹线圈放置在磁场强度测量仪的测量平台上,并将磁场探头放在亥姆霍兹线圈的中心点处;(2)测量电流为$I=1A$时,在不同距离($d_1=10cm,d_2=12cm,d_3=14cm$)处的磁场强度和霍尔元件输出电压值,并画出磁场分布图;(3)将电流调整为$I=2A$,重复(2)中的步骤;5. 实验注意事项1)测量时尽量选择较低的电流,以防止线圈烧毁;2)在测量线圈磁场分布时,探头须与线圈距离尽量近,以提高精度;3)实验中要注意读表误差及外界干扰等因素的影响。
西门子THDF型发电机励磁碳刷烧损原因分析及防范措施摘要:本文对西门子THDF型发电机所发生的一起励磁碳刷烧损现象进行了详细分析,提出了针对性的防范措施,通过这些措施的实施,能够有效地防止发电机励磁电流分布不均而造成碳刷烧损。
关键词:发电机励磁、励磁碳刷烧损、励磁碳刷维护0引言目前大型发电机的励磁系统分为无刷励磁和有刷励磁两大类。
无刷励磁具有设备维护量小的优点,但是其元器件的可靠性仍有待检验。
有刷励磁方式具有元器件可靠性高,励磁电流调节方便,缺点设备的维护量大,维护不及时或维护不当会造成碳刷烧损。
1概况邯峰电厂发电机为西门子生产的THDF 115/67型氢冷发电机,单机容量660MW。
励磁系统采用静态可控硅整流。
2011年6月3日上午发现#2发电机正极东南有四块碳刷刷辫绝缘有破坏现象,打开隔音罩门检查时发现刷辫已经烧断。
马上通知运行人员立即降低机组的无功。
然后逐个的将烧损的刷握及碳刷进行了更换,并测量每个碳刷的电流,使其分布均匀。
该缺陷如果处理不及时,或处理方法不当,就会使碳刷烧损加剧,最终造成停机,严重时甚至损坏发电机转子绕组绝缘。
2发电机励磁系统结构分析2.1 THDF 115/67型发电机额定励磁电流为5375A,励磁碳刷共有96块,分为正负两极安装,每极48块。
碳刷尺寸为32×32×64mm,碳刷电流密度为6-12A/cm2,每块碳刷通过的励磁电流应为61.5-123A。
2.2 励磁轴滑环分为正负两极,每极分为两组滑环,采用方形螺旋状接触面,对应各滑环位置,安装有四组刷架,刷架下部为直流母线端子排,通过软连将其与刷架相连。
2.3 刷握结构见图一所示:图中红圈部位即刷握和刷架的结合面,接触面积为 5.4cm2,接触面的压力由刷握上的弹簧维持,拆卸刷握时压下压把使弹簧压缩,接触面分离,然后将刷握拔下。
碳刷安装在刷握内,碳刷与滑环接触压力由后部的弹簧棒维持。
2.4励磁电流的流向静态可控硅将励磁电流输入直流母线上,通过母线端子排的软连通入刷架,再通过刷架和刷握的接触面将电流通入刷握,刷握上的励磁电流通过刷辩给与碳刷,碳刷端部与滑环接触将电流给与励磁轴内。
大学物理实验教材课后思考题答案一、转动惯量:1.由于采用了气垫装置,这使得气垫摆摆轮在摆动过程中受到的空气粘滞阻尼力矩降低至最小程度,可以忽略不计。
但如果考虑这种阻尼的存在,试问它对气垫摆的摆动(如频率等)有无影响?在摆轮摆动中,阻尼力矩是否保持不变?答:如果考虑空气粘滞阻尼力矩的存在,气垫摆摆动时频率减小,振幅会变小。
(或者说对频率有影响,对振幅有影响)在摆轮摆动中,阻尼力矩会越变越小。
2.为什么圆环的内、外径只需单次测量?实验中对转动惯量的测量精度影响最大的是哪些因素?答:圆环的内、外径相对圆柱的直径大很多,使用相同的测量工具测量时,相对误差较小,故只需单次测量即可。
(对测量结果影响大小)实验中对转动惯量测量影响最大的因素是周期的测量。
(或者阻尼力矩的影响、摆轮是否正常、平稳的摆动、物体摆放位置是否合适、摆轮摆动的角度是否合适等)3.试总结用气垫摆测量物体转动惯量的方法有什么基本特点?答:原理清晰、结论简单、设计巧妙、测量方便、最大限度的减小了阻尼力矩。
三、混沌思考题1.有程序(各种语言皆可)、K值的取值范围、图 +5分有程序没有K值范围和图 +2分只有K值范围 +1分有图和K值范围 +2分2.(1).混沌具有内在的随机性:从确定性非线性系统的演化过程看,它们在混沌区的行为都表现出随机不确定性。
然而这种不确定性不是来源于外部环境的随机因素对系统运动的影响,而是系统自发产生的(2).混沌具有分形的性质(3).混沌具有标度不变性(4).混沌现象还具有对初始条件的敏感依赖性:对具有内在随机性的混沌系统而言,从两个非常接近的初值出发的两个轨线在经过长时间演化之后,可能变得相距“足够”远,表现出对初值的极端敏感,即所谓“失之毫厘,谬之千里”。
答对2条以上+1分,否则不给分,只举例的不给分。
四、半导体PN 结(1)用集成运算放大器组成电流一电压变换器测量11610~10--A 电流,有哪些优点?答:具有输入阻抗低、电流灵敏度高、温漂小、线性好、设计制作简单、结构牢靠等优点。
稳态法测量不良导体的导热系数导热系数是表征物质热传导性质的物理量。
材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。
测量导热系数的实验方法一般分为稳态法和动态法两类。
在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。
而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。
【实验目的】本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。
【实验原理】1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。
由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。
设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在t ∆时间内通过样品的热量Q ∆满足下式:S h t QB21θθλ-=∆∆ (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得:2214B Bd h t Qπθθλ-=∆∆ (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。
散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。
非牛顿流体粘滞系数测量非牛顿流体是指其粘滞性质不符合牛顿流体的流动规律。
粘滞系数是描述流体内部摩擦阻力大小的物理量,对于非牛顿流体而言,其粘滞系数可能会随着剪切速率的变化而改变。
因此,测量非牛顿流体的粘滞系数是理解和研究这类流体行为的重要手段。
为了测量非牛顿流体的粘滞系数,通常采用旋转型粘度计或剪切型粘度计。
旋转型粘度计是通过旋转内部的圆柱体来产生剪切力,从而测量流体的粘滞阻力。
而剪切型粘度计是通过施加剪切力,使流体发生剪切变形,从而测量流体的粘滞性质。
旋转型粘度计中,常用的一种是旋转圆柱体粘度计,也称为柏格曼粘度计。
它由一个内部装有粘度计油的圆柱体和一个固定的外筒组成。
当内部的圆柱体旋转时,流体受到剪切力,产生的阻力与旋转速度成正比,通过测量阻力和旋转速度的关系,可以得到非牛顿流体的粘滞系数。
剪切型粘度计中,常用的一种是柯蒂斯剪切型粘度计。
它由一个上下平行的圆盘组成,上面的圆盘固定,下面的圆盘则可以旋转。
当下面的圆盘旋转时,流体被迫通过圆盘间的空隙,产生剪切变形。
通过测量施加的剪切力和变形速度的关系,可以得到非牛顿流体的粘滞系数。
除了旋转型粘度计和剪切型粘度计,还有一些其他的测量方法,如压滤法、挤出法等。
这些方法利用不同的原理来测量非牛顿流体的粘滞系数,适用于不同类型的非牛顿流体。
在实际应用中,非牛顿流体的粘滞系数测量可以用于许多领域。
例如,在食品工业中,测量非牛顿流体的粘滞系数可以用于调整食品的质地和口感;在石油工业中,测量非牛顿流体的粘滞系数可以用于预测油井的产能和流体输送的性能。
此外,非牛顿流体的粘滞系数测量也在医学、化工等领域有着重要的应用。
非牛顿流体的粘滞系数测量对于理解和研究这类流体的行为至关重要。
通过旋转型粘度计、剪切型粘度计等方法,可以准确测量非牛顿流体的粘滞系数,为相关领域的应用和研究提供有力支持。
随着科学技术的不断发展,相信非牛顿流体的粘滞系数测量方法也将不断创新和完善,为更多领域的应用带来更多可能性。
第1篇一、实验目的1. 观察亥姆霍兹线圈中间磁场的均匀性。
2. 验证磁场叠加原理。
3. 了解一种得到均匀磁场的实验室方法。
二、实验原理亥姆霍兹线圈是由两个相同的线圈同轴放置,其中心间距等于线圈的半径。
当两个线圈通以同向电流时,磁场叠加增强,并在一定区域形成近似均匀的磁场;通以反向电流时,则叠加使磁场减弱,以至出现磁场为零的区域。
本实验中,通过霍尔元件测量磁场。
霍尔元件通以恒定电流时,它在磁场中会感应出霍尔电压,霍尔电压的高低与霍尔元件所在处的磁感应强度成正比。
因此,可以通过测量霍尔电压来间接测量磁感应强度。
三、实验仪器1. 亥姆霍兹线圈演示仪2. 霍尔元件3. 稳压电源4. 数码显示屏5. 导轨四、实验步骤1. 打开数码显示屏后面板的开关,先对LED显示屏调零。
2. 打开稳压电源(已调好),同方向闭合两电键(使两线圈通以相同方向电流),转动小手柄,使位于线圈轴线上的霍尔元件由导轨的一端缓慢移向另一端,观察两同向载流圆线圈磁场合成后的分布。
记录显示屏示数。
3. 改变其中一个线圈的电流方向,重复步骤2的操作,观察两反向载流圆线圈磁场合成后的分布。
记录显示屏示数。
4. 将霍尔元件移至线圈中心区域,观察磁场分布,记录显示屏示数。
5. 重复步骤2-4,分别改变电流大小,观察磁场分布变化。
五、实验结果与分析1. 实验结果(1)当两个线圈通以同向电流时,磁场叠加增强,显示屏示数逐渐增大,中间一段基本不变,最后又由大变小。
(2)当两个线圈通以反向电流时,磁场叠加减弱,显示屏示数由小变大,由大变小,又由小变大,由大变小。
(3)将霍尔元件移至线圈中心区域,显示屏示数在中间区域基本不变,两端逐渐减小。
2. 结果分析(1)实验结果验证了磁场叠加原理。
当两个线圈通以同向电流时,磁场叠加增强;通以反向电流时,磁场叠加减弱。
(2)实验结果表明,亥姆霍兹线圈中间区域磁场近似均匀,两端磁场逐渐减小。
(3)实验结果与理论分析基本一致,证明了亥姆霍兹线圈在中间区域能够形成近似均匀的磁场。
实验十一 圆线圈和亥姆霍兹线圈磁场测定亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N 匝的圆环电流。
当它们的间距正好等于其圆环半径R 时,称这对圆线圈为亥姆霍兹线圈。
在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。
在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。
一、实验目的1.学习和掌握弱磁场测量方法,2.验证磁场迭加原理,3.描绘载流圆线圈和亥姆霍兹线圈轴线磁场分布。
二、实验原理(1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图1所示)的磁感应强度为:20223/22()R B N x μ⋅=+I ⋅(1)式中0μ为真空磁导率, R 为线圈的平均半径,x 为圆心到该点P 的距离,为线圈匝数,N I 为通过线圈的电流强度。
因此,圆心处的磁感应强度0B 为:I N B ⋅=200μ (2)(2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈(如图2所示),两线圈内的电流方向一致,大小相同,线圈之间的距离正好等于圆形线圈的半径d R 。
这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,设x 为亥姆霍兹线圈中轴线上某点离中心点处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为:O ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−++⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++=−−2/3222/322202221x R R x R R NIR B μ (3)而在亥姆霍兹线圈上中心O 处的磁感应强度B 为:'003/285N IB Rμ⋅⋅= (4)三、实验仪器FD—HM—Ⅰ圆线圈和亥姆霍兹线圈实验平台, 毫特斯拉计,三位半数字电流表及直流稳流电源组合仪一台;传感器探头, 电源线 1根,连接线 4根,不锈钢直尺 1把,铝合金靠尺1把。
图3 实验装置图1-毫特斯拉计,2-电流表,3-直流电流源,4-电流调节旋钮, 5-调零旋钮,6-传感器插头, 7-固定架, 8-霍耳传感器, 9-大理石台面, 10、线圈, 注:A、B、C、D 为接线柱四、实验内容和步骤1.仪器调试(1)开机后应预热10分钟,再进行测量;(2)将两个线圈和固定架按照图3所示简图安装。
高中物理稳恒电流试题类型及其解题技巧含解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。