广东省韶关市仁化县第一中学七年级数学下册 5.1.2 垂线导学案(无答案)(新版)新人教版
- 格式:doc
- 大小:116.68 KB
- 文档页数:3
集体备课导学案
学段初中年级七年级学科数学
单元
第5单元课题 5.1.2 垂线
(1)
课型新授
主备学校初审人终审人
主备人合作团队
课标
依据
理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
教学目标1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
教学
重点
垂线的定义及性质。
教学
难点
垂线的画法
导学环节课堂
流程
时
间
任务驱动
问题导学
学法
指导
知识
链接
呈现
目标
用小黑板呈现本节课的学习目标,并让学生诵读
自主学习温故
知新
4 1.如图,若∠1=60°,那么∠2=_______、
∠3=_______、∠4=_______
2.改变上图中∠1的大
小,若∠1=90°,请画出这
种图形,并求出此时∠2、
∠3、∠4的大小。
小组
内完
成。
七年级数学下册《垂线》课案(1)(学生用)(无答案)新人教版5.1.2 垂线(1)(新授课)【学习目标】1.知识技能(1)使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握过一点有且只有一条直线与已知直线垂直的结论.(2)会用三角板或量角器过一点画一条直线的垂线.2.解决问题通过探索垂线的性质,能解决相关的垂线问题,并能够进行适当的说理.3.数学思考经历观察、分析、概括、论述的学习过程,培养学生逻辑思维能力以及推理能力,进一步训练学生的作图能力.4.情感态度通过创设情境,激发学生学习兴趣,给学生创造成功的机会,体验成功的快乐.【学习重难点】1.重点:使学生掌握垂线,理解垂线的性质.2.难点:用垂线定义判断两条直线是否垂直及垂线的画法.课前延伸【知识梳理】1.下列说法中,不正确的是()A.经过一点能画一条直线和已知线段垂直B.一条直线可以有无数条垂线C.过射线的端点与该射线垂直的直线只有一条D.过直线外一点并过直线上一点可画一条直线与该直线垂直2.下列说法正确的有()①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点不可能向一条射线或线段所在的直线作垂线;⑥若1l ⊥2l ,则1l 是2l 的垂线,2l 不是垂线.A .2个B .3个C .4个D .5个3.过一条线段外一点,画这条线段的垂线,垂足在( )A . 这条线段上B .这条线段的端点C . 这条线段的延长线上D .以上都有可能4.如图,直线AB 与直线CD 的位置关系是__________,记作__________,此时,∠AOD =∠________=∠________=∠________=90°.5.如图,直线AB 、CD 相交于点O ,OE 为射线,若∠1=35°,∠2=55°,则OE 与AB _____(填“垂直”或“不垂直”).ABCDOADOBCE1 2第4题 第5题自主学习记录卡课内探究一、课堂探究1(问题探究,自主学习)1.(1)现有一条已知直线AB ,分别过直线外一点C 和直线上一点D ,作AB 的垂线,你能有几种方法?CADB(2)通过上述方法画出的垂线有几条?从中你能发现什么结论? 二、课堂探究2(分组讨论,合作探究)1.已知如图,直线AB 、CD 相交于点O ,OE ⊥AB ,且∠DOE =3∠COE ,求∠AOD 的度数.OEDCBA2.如图,OA ⊥OB ,OC ⊥OD ,OE 是OD 的反向延长线.(1)试说明:∠AOC =∠BOD ;(2)若∠BOD =32°,求∠AOE 的度数.三、反馈训练1.如图,OB ⊥CD ,∠AOC ∶∠BOC =2∶5,则∠AOB 等于( )A .36°B .126°C .108°D .162°CDAB O ABDCOABCDO第1题 第2题 第3题 2.如图,AO ⊥BO ,CO ⊥DO ,∠AOC ∶∠BOC =1∶5,则∠BOD = ( )A .105°B .112.5°C .135°D .157.5°3.∠A 的两边分别垂直于∠B 的两边,∠A 比∠B 大60°,则∠A 是( )A .120°B .35°C .40°D .38°4.如图,AO ⊥BC ,垂足为O ,且∠COD -∠DOA =34°28′,则∠BOD =________.ADO B CAEF BCD OADOCBPSTRQ第4题 第5题 第6题 第7题5.如图,直线AB 、EF 相交于点O ,OC ⊥AB ,∠DOE =2∠AOE ,∠BOF =33°,则∠AOD =__________,∠DOC =__________,∠COE =__________,∠DOF =__________. 6.如图,直线AB 、CD 相交于点O ,AD ⊥CD 于点D ,CB ⊥AB 于点B ,若∠A =35°,则∠C等于____________°.7.如图,∠PQR =138°,SQ ⊥QR ,QT ⊥PQ ,则∠SQT 等于____________. 8.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =21°,求∠AOM 的度数.9.如图,AB 、CD 、EF 相交于O 点,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC ∶∠COG =4∶7,求∠DOF 、∠DOH 的大小.EF H BACGD四、布置作业:1.必做题:教科书第8页习题5.1第3、4、5、6题2.选做题:(1)如图,∠A=∠ABC=∠ACB=60°,延长AC交直线MN于E,作ED⊥BC,垂足为D,请你找出图中5对互余的角和5对互补的角.(2)已知如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.3.【预习题】1.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度2.和一个已知点P的距离等于3㎝的直线可以画()A.1条B.2条C.3条D.无数条G OFEDC BA3.P 为直线l 外一点,A 、B 、C 为直线l 上三点,PA =5Cm ,PB =3Cm ,PC =4Cm ,则点P 到直线l 的距离为( ) A .4㎝B .3㎝C .小于3㎝D .不大于3㎝4.如图,若把水渠中的水引到水池C ,挖一条沟CD 垂直于渠岸AB ,垂足为D ,这时沟CD最短,这时根据_________________________。
AB CDE F平行线的性质和判定的综合运用一、问题引入,展示目标1、问题:①平行线的性质有哪些?②平行线的判定有哪些?2、平行线的性质与判定的区别与联系区别:性质是:根据两条直线平行,去证角的相等或互补.判定是:根据两角相等或互补,去证两条直线平行. 联系:它们都是以两条直线被第三条直线所截为前提;它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定 二、问题启发,探究新知(一) 例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
1、分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥B C ,所以∠A +∠B =180°,又∠B =∠AEF , 所以∠A +∠AEF =180°成立.于是得证2、证明:∵ AD ∥BC (已知)∴ ∠A+∠B =180°( ) ∵ ∠AEF=∠B (已知)∴ ∠A +∠AEF =180°(等量代换) ∴ AD ∥EF ( ) 3、思考:在填写两个依据时要注意什么问题?4、推广:你有其他方法证明这个问题吗?你写出过程。
(二)练一练: 1、如图,已知:AB ∥DE ,∠ABC+∠DEF=180°, 求证:BC ∥EF 。
2、如图,已知:∠1=∠2,求证:∠3+∠4=180o3、如图,已知:AB ∥CD ,MG 平分∠AMN ,NH 平分∠DNM ,求证:MG ∥NH 。
A BCD F EA BCDMFG123451A BMEHED C B A F ED C B A FE D C B A4、如图,已知:AB ∥CD ,∠A =∠C , 求证:AD ∥BC 。
三、问题变换,深化理解探索发现: 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.(提示:过点P 做平行线)PDCBA PDC BAPDCB APD CB A(1) (2) (3) (4)变式1:如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.变式2:如图所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( ) A.180° B.360° C.540° D.720°四、问题反馈,认知升华1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五、问题集萃,当堂达标(5-8分钟检测)1、如图1,AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下:因为∠ECD=∠E,所以CD ∥EF( ) 又AB ∥EF,所以CD ∥AB( ). (1)2、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•D③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④3、如图,平行光线AB 、DE 照射在平面镜上,经反射得到光线BC 与EF ,已知∠1= ∠2, ∠3= ∠4,则光线BC 与EF 平行吗?为什么?4、如图,已知B 、E 分别是AC 、DF 上的点,∠1=∠2,∠C=∠D. (1)∠A BD 与∠C 相等吗?为什么.(2)∠A 与∠F 相等吗?请说明理由.FE21DCBA5、如图,已知EAB 是直线,AD ∥BC,AD 平分∠EAC,试判定∠B 与∠C 的大小关系,并说明理由.E DBAABC DEF13 24。
课题:5、1、2 垂线(1)课型:新授课总第2节时间:星期二【学习目标】1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2、掌握点到直线的距离的概念,并会度量点到直线的距离。
3、掌握垂线的性质,并会利用所学知识进行简单的推理。
【学习重点】垂线的定义及性质。
【学习难点】垂线的画法预习篇1、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______2、改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。
学习篇探究一:1、当两条直线相交所成的四个角中有一个角是90°时,这两条直线互相____,其中一条直线叫做另一条直线的____,两条直线的交点叫____,垂直用符号____来表示,读作____,如直线AB垂直CD,就记作____。
回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。
总结:用语言概括垂直定义1、两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
2、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。
3、垂直的推理应用:(1)∵∠AOD=90°()∴AB⊥CD ()(2)∵ AB⊥CD ()∴∠AOD=90°()探究二:1、用三角尺或量角器画出已知直线l的垂线,这样的垂线能画出几条?(1)ODC BA(2)ODCBA E(3)O D CBA 2、经过直线l 上一点A 画出l 的垂线,能画出几条? 3、经过直线l 外一点B 画出l 的垂线,能画出几条?总结: 由此我们得出如下结论:1、一条直线的垂线有____条。
课题3 5.1.2垂线的学案2德育目标:观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,在独立思考和小组交流中学习。
学习目标:1. 了解垂线段的概念,了解垂线段最短的性质2. 体会点到直线的距离的意义, 并会度量点到直线的距离.学习重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.学习难点:对点到直线的距离的概念的理解.学习过程:一.课堂引入:教师展示课本图,提出问题:要把河中的水引到农田P 处, 如何挖渠能使渠道最短? 问题1,上学期我们曾经学过什么最短的知识,还记得吗?问题2在连接直线L 外一点P 与直线L 上各点的线段中,哪一条最短?二.自学教材P5 探究思考:(1)垂线段与垂线的区别与联系. (2)垂线段与线段的区别与联系.辅导教师:引导学生完整比较3. 自学点到直线的距离.辅导教师:学生自学过程中,教师给予及时的引导三、例题讲解:例、画图操作,(1)画出直线L 与L 外一点P;(2)过P 点出PO ⊥L,垂足为O;(3)点A 1,A 2,A 3……在L 上,连接PA 、PA 2、PA 3……(4)度量比较PO 、PA 1、PA 2、PA 3……长短,你能得出什么结论?四.当堂练习。
(学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价)(A 组)1、如图,∠APC=900,PB ⊥AC,垂足为B ,则能表示点到直线(或线段)的距离的线段有A .5条B .4条C .3条D .2条2、如图,直线a 上有三点A 、B 、C ,直线a 外有一点P ,若PA=5cm ,PB=3cm ,PC=2cm , 那么点P 到直线a 的距离是 A .等于2cm B .大于2cm ,小于3cmC .小于2cmD .不大于2cm3、如图所示,村庄A 要从河流L 引水入庄, 请画出最短距离。
l A C B A P A B C PaA B C (B 组)4、在右图中按要求画图: (1)过B 点画AC 的垂线段;(2)过A 点画出BC 的垂线;(3)画出表示点C 到线段AB 距离的线段.5、已知∠AOB 为一个钝角,OC 、OD 、OE 是三条射线,若OC ⊥OA ,OD 平分∠AOB ,OE 平分∠BOC ,求∠DOE 的度数.(C 组)6、如图,已知直线AB 、CD 相交于O ,O E ⊥AB,垂足为O ,OF 平分∠AOC,∠AOF :∠AOD=5:26,求∠EOC7、上图中,若∠AO F +∠BOD=51°,其他条件不变,求∠EOD 的度数。
2019-2020学年七年级数学下册 5.1.2 垂线导学案(2)(新版)新人教版2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离。
【自主学习】1.上学期我们学习过“什么什么最短”的几何知识,还记得吗? 。
2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1.问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。
那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?)2.学具感受自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA 长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。
3.画图验证(1)画直线L,在L外取一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段最小。
4.归纳结论._l_P_a_AED CBA连接直线外一点与直线上各点的所有线段中, .简单说成: . 5.知识类比(1)垂线段与垂线有何区别联系? (2)垂线段与线段有何区别与联系?6.解决问题:此时你会解决课本P 5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7.探究“点到直线的距离”?定义:(1) 学习课本P 6第二段内容回答什么叫“点到直线的距离”?默写一遍: 叫做点到直线的距离.......。
.(2)对照课本P 5图5.1-9,回答线段PO 、PA 1、PA 2、PA 3、PA 4……中,哪一条或几条线段的长度是点P 到直线L 的距离? 【运用举例】例1:判断对错,并说明理由:.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离. (2)如图,线段AE 是点A 到直线BC 的距离. (3)如图,线段CD 的长是点C 到直线AB 的距离.例:2:已知直线a 、b,过点a 上一点A 作AB⊥a,交b 于点B,过B 作BC⊥b 交a 于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离.baCBA【反思总结】本节课你学到了哪些知识或方法?还有什么困惑?相互交流一下。
5.1.2 垂线(1)学习目标:1.使学生理解垂线的意义和垂线的第一个性质。
2.会用三角板过一点画已知直线的垂线,培养学生掌握画图的基本技能。
3.通过垂线性质的教学,培养学生发现问题的能力 学习重点:垂线的意义、性质和画法。
学习难点:垂线的画法。
一、学前准备 1.回顾:①如果∠α与∠β互为余角,∠α=37°,那么∠β=。
②已知∠1与∠2互为余角,∠1与∠3互为余角,那么∠2与∠3的关系是 。
2.探索与思考:①如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2=_______.②上题中试将AB 、CD 旋转,使∠1=90°,则∠2=_______,其它两个角呢? 动手试一试:用一张纸,先把它随意折一次,再把折得的边对折。
把这张纸展开得到两条折痕AB 与CD 。
问:(1)这两条折痕可以近似看作什么?(2)其中四个角的度数各是多少?你是怎么知道的?3.定义:两条直线相交所成的四个角中,有一个角是 时,这两条直线就互相垂直。
其中一条直线叫做另一条直线的 ,它们的交点叫做 。
4.符号表示:如图①如果直线AB 、CD 互相垂直,记作AB ⊥CD ,垂足为O 。
②由两条直线垂直,可知四个角为直角。
1ACBD OABCDO 记为∵AB ⊥CD (已知) ∴∠AOD =90°(垂直定义)由两条直线交角为直角,可知两条直线互相垂直。
记为∵∠AOD =90°(已知) ∴AB ⊥CD (垂直定义)5.总结:①垂直是相交的一种特殊情况。
②垂直是一种相互关系,即a ⊥b ,同时b ⊥a③当提到线段与线段,线段与射线,射线与射线,射线与直线的垂直情况时,是指它们所在的直线互相垂直。
6.生活中的垂直关系:日常生活中,两条直线互相垂直很常见,你能否举出几个例子?7.动手画一画:如图,过点A 能否作直线BD 的垂线?能作几条?ADB直线的性质:过一点_________________垂直于已知直线。
初中数学人教新版七年级下册实用资料七年级数学自学案5.1.2垂线一、自学范围(3页——6页练习)二、自学目标:1、知道垂线的定义、能过一点画出已经直线的垂线、会用符号表示垂直。
2、理解垂线的两个性质三、自学重点理解垂线的性质四、自学过程:1、自学第一、二自然段:2、什么是垂直呢: 垂直是相交的一种 情况,当两条直线相交所成的四个角中,有一个角是 时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .3、什么上垂直呢?如图一:直线AB 、CD 互相垂直,记作“AB ⊥CD ”或“CD ⊥AB ”,读作“AB 垂直于CD ”,如果垂足为O ,记作“AB ⊥CD ,垂足为O ”4、举出生活中垂直的例子:图一十字路口的两条道路 如下图,当∠AOC =90°时,∠BOD 、∠AOD 、∠BOC 等于多少度?为什么?这种位置有几种?直线AB 与直线CD 的位置关系怎样?5、自学4页探究:用课本中的作图方法完成下面图形(1)过直线l 上一点A,作直线AB ⊥l 垂足为A(2)过直线AB 外一点C,作CD ⊥AB,垂足为D.(3)各能画几条,得到怎样的结论呢?6、自学5页的思考与探究。
P 相边的线段 l 的 关系是 ,点P 到直 线l 的距离是 的长度,五、学效测试7、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个8、如图所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AOD=∠_______=∠_______=∠_______=90°.9、过一点有且只有________直线与已知直线垂直. 10、画一条线段或射线的垂线,就是画它们________的垂线.11、直线外一点到这条直线的_________,叫做点到直线的距离.12、完成6页练习l A C A 7A 12A 3A 45A 89OD C B A。
课题:5.1.2 垂线(2)【学习目标】1•经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,培养学生用几何语言准确表达的能力。
2. 了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离。
【自主学习】1•上学期我们学习过“什么什么最短”的几何知识,还记得吗? _____________________ 。
2•思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?3•自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1 •问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。
那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?)2. 学具感受自制学具:在硬纸板上固定木条L , L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。
3. 画图验证(1) 画直线L,在L外取一点P;(2) 过P点出P0丄L,垂足为0;(3) 点A1,A2,A3…… 在L上,连接PA、PA2、PA3……;⑷用度量法比较线段P0、PA1、PA2、PA3……的大小,.得出线段_________ 最小。
4. 归纳结论.连接直线外一点与直线上各点的所有线段中,简单说成: .5. 知识类比(1) 垂线段与垂线有何区别联系?(2) 垂线段与线段有何区别与联系?6. 解决问题:此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7. 探究“点到直线的距离”?定义:(1)学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:叫做点到直线的距离。
5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.。
A BC D O 垂线【学习目标】1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
【学习重、难点】垂线的定义、性质及画法。
学 习 过 程。
【活动一】知识回顾(独立完成)1、叙述邻补角及对顶角的定义对顶角有怎样的性质。
【活动二】新知探究(合作探究)2、垂线的定义: 两条直线相交,所成四个角中有一个角是_________时,我们称这两条直线______________其中一条直线是另一条的_________,他们的交点叫做_________。
3、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB 垂直于直线CD , 垂足为O”,则记为__________,并在图中任意一个角处作上直角记号,如下图。
4、垂直的推理应用: (1)∵∠AOD=90° ( ) (2)∵ AB ⊥CD ( )∴AB ⊥CD ( ) ∴ ∠AOD=90°( )5、探究:(1)用三角尺或量角器画已知直线l 的垂线,这样的垂线能画出几条?(2)经过直线l 上一点A 画l 的垂线,这样的垂线能画出几条?(3)经过直线l 外一点B 画l 的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
归纳:画一条射线或线段的垂线, 就是画它们所在______的垂线.6、垂线的性质性质1 ________________________________________________________探究:比较线段PO 、PA 、PB 、PC ……的长短,这些线段中,哪一条最短?性质2 连接直线外一点到直线上所有线段中,________最短。
简单说成:_______________。
7、点到直线的距离直线外一点到这条直线的_________________,叫做点到直线的距离。
*垂线模块*一、知识巩固1、对顶角性质:________________________。
2、邻补角性质:________________________。
3、两条直线相互垂直,其中一条直线是另一条直线的________,它们的交点叫做_________。
4、垂线性质:__________________________________________________________________________________________________________________________________________ 二、慧眼识金1CD ,三角板的放法正确的是( )A B C D 2、画一条线段的垂线,垂足在( )A 、线段上B 、线段的端点C 、线段的延长线上D 、以上都有可能 3、下列说法正确的是( )A 、点B 到AC 的垂线段是AB B 、点C 到AB 的垂线段是AC C 、线段AD 是点D 到BC 的垂线段 D 、线段BD 是点B 到AD 的垂线段 4、下列说法正确的有( )①在同一平面内,过直线外一点有且只有一条直线与垂直于已知直线;②在同一平面内,过直线上一点有且只有一条直线与垂直于已知直线;③在同一平面内,过一点可以任意画一条直线垂直于已知直线;④在同一平面内,有且只有一条直线与已知直线垂直。
DDABC DABCDABCA 、1个B 、2个C 、3个D 、4个5、如图,已知ON ⊥l ,OM ⊥l ,OM 与ON 重合,其理由是( ) A 、两点确定一条直线B 、过一点有且只有一条直线垂直于已知直线C 、垂线段最短D 、过一点只能作一条垂线6、如图,线段PQ 的长度表示点P 到直线l 的距离的是( )A B C D7、有下列说法:①两条直线相互垂直,则所成任意相邻两角均相等;②同一平面内,一条直线不可能与两条相交直线都垂直;③两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线垂直;④直线外一点与直线上一点间的线段长度是这一点到这条直线的距离。
5.1.2垂线教学目标:1.利用生活实例,理解垂线的定义;2.掌握垂线的性质并会应用;3.通过生活中的实例,更好的体会垂线的画法;教学重点、难点:1.重点:掌握垂线的性质并会应用;2.难点:会过一点画已知直线的垂线.教学过程:一、课堂引入如图,直线AB,CD相交于点O.若∠1=90°,求其他三个角.教师出示问题,学生独立解决问题,并在练习本上书写解答过程.在这一过程中,教师应当关注学生是否能够独立完成问题,并且能否较规范地写出解答过程.二、探究新知教师指出,若两条直线相交,当它们的交角中有一个角是90°时,这两条直线互相垂直,它是直线相交的一种特殊情形,其交点叫垂足.如图,记作:AB⊥CD,垂足为O.“⊥”是垂直符号.师生共同总结画垂线的方法:用三角尺:贴直线——过定点——画垂线.用三角尺的两条直角边“一贴”,贴住已知直线;“二靠”,靠住已知点;“三画”,画垂线.垂线段:垂线上一点到垂足的线段.点到直线的距离:直线外一点到这条直线的垂线段的长度.三、课堂总结学习指导:一、自主预习1.当两条直线相交所成的四个角中,有一个角是时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的,它们的交点叫做.2.过一点有且只有直线与已知直线垂直.3.如果直线AB⊥CD于O,那么∠AOC=.4.用“⊥”和直线字母表示垂直.5.连接直线外一点与直线上各点的所有线段中最短,简单说成6.直线外一点到这条直线的的长度,叫做点到直线的距离.认真专注独立思考7.如图,AC⊥BC,AC=3,BC=4,AB=5,则B到AC的距离是,点A到BC 的距离是,点C到AB的距离是.二、导入新课图片导入三、互动教学知识点一:垂线的概念1、如图,直线AB、CD相交于点O,OE⊥CD于O,∠AOE:∠COE=1∶3,求∠BOD的度数.知识点二:垂线的性质2、如图,小河北边有一个村庄A,计划用水管将小河的水引进A村,请你帮助设计从小河的哪点处引水能使所用的水管最节省?班级小组姓名使用时间年月日编号:02导学案内容学生笔记知识点三:点到直线的距离3、点P为直线l外一点,A、B、C为直线l上三点,且PA=2,PB=3,PC=4,则点P到直线l的距离为( )A.2 B.3 C.4 D.不大于2四、训练展示1.下面四种判定两条直线垂直的方法,正确的有()个(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直(2)两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直(3)两条直线相交,所成的四个角相等,这两条直线互相垂直(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直A. 4B. 3C. 2D. 12.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.(2)过点P画CD的垂线,与AB相交于F点.3.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________.4.在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离5.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB.(1)求∠AOC的度数;(2)判断AB与OC的位置关系.熟练掌握自信展示突破自我大胆发言五、本课小结,本节课你收获了什么?还有什么疑问?板书设计:5.1.2垂线教学反思:。
第五章 相交线与平行线5.1.2 垂 线.. .. 当两条直线相交所成的四个角中有一个角为 时,这两条直线互相垂直,其中一条直线叫做另一条直线的 ,它们的交点叫做 . O ,用字母表示为 .相交于点O ,若∠AOC=90°,则AB 与CD 的位置关系是 ;AOC= . O ,图中∠1与∠2的关系是( ) ∠1+∠2=90° 无法确定一、要点探究探究点1:垂线的概念问题1:问题2:你能借助下图写出问题1例1.(1)如图1,若直线m 、n (2)若直线AB 、CD 相交于点 (3)如图2,BO ⊥AO ,∠∠BOC 的补角为______.例2 如图,直线BC 与MN 求∠AOM 和∠NOC 的度数.探究点2问题3:(1)画已知直线l (2)过直线l 上的一点A 画l (3)过直线l 外的一点B 画l垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.探究点3:点到直线的距离问题4:如图,从A 点向已知直线 l 画一条垂直的线段和几条不垂直的线段. (1)线段AB, AC, AD , AE 谁最短? (2)你能用一句话表示这个结论吗?知识要点:(1)连接直线外一点与直线上各点的所有线段中垂线段最短.简单说成:垂线段最短.(2)线段AD 的长度叫做点A 到直线l 的距离. 【做一做】在灌溉时,要把河中的水引到农田P 处,如何挖掘能使渠道最短?请画出图来,并说明理由.1.下图中过点P向线段AB 所在直线引垂线,正确的是( )2.如图,下列说法正确的是( ) A.线段AB 叫做点B 到直线AC 的距离B.线段AB 的长度叫作点A 到直线AC 的距离C.线段BD 的长度叫作点D 到直线BC 的距离D.线段BD 的长度叫作点B 到直线AC 的距离第2题图 第4题图 第5题图3.两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是( ) A. 有两个角相等 B.有两对角相等 C. 有三个角相等 D.有四对邻补角4.如图, AC ⊥BC, ∠C=90° ,线段AC 、BC 、CD 中最短的是 ( ) A. AC B. BC C. CD D. 不能确定5.如图,直线AB 、CD 相交于点E ,EF ⊥AB 于E ,若∠CEF=58°,则∠BED 的度数为 .6.如图,AO ⊥FD ,OD 为∠BOC 的平分线,OE 为射线OB 的反向延长线,若∠AOB =40°,求∠EOF 、∠COE 的度数.。
吉昌中学 七 年 数学(下) 导学案课题5.1.2垂线课 型 展示课 时 间学习 目标 1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2、掌握点到直线的距离的概念,并会度量点到直线的距离。
3、掌握垂线的性质,并会利用所学知识进行简单的推理。
难 点垂线的画法重 点垂线的定义及性质。
学 习 内 容 (资 源)教学 设计学习指导: 【自学指导】一、垂直、垂线的定义如图1,直线AB 与CD 相交于点O ,现我们将直线CD 绕着点O 旋转,当∠BOD 为_____时(如图2),其他三个角也都为_______.【定义】当两条直线AB 、CD 所构成的四个角有一个角为_____时,直线AB 、CD 互相垂直。
用几何语言记作“_______________”,他们的交点O 叫做_______。
我们把其中一条直线叫做另一条直线的________。
注:垂线的定义有以下两种含义:1、∵AB⊥CD2、∵∠1=90°2、 ∴___________(垂线的定义) ∴___________(垂线的判定) 二、画垂线活动1:已知直线AB ,求作直线CD ,使得AB ⊥CD ,这样的垂线有_______条。
活动2:过直线AB 上一点P ,求作直线CD ,使得AB ⊥CD ,这样的垂线有_______条。
活动3:过直线AB 外一点P ,求作直线CD ,使得AB ⊥CD ,这样的垂线有_______条。
【垂直的性质】在同一平面内,过一点有且只有______条直线与已知直线垂直。
三、垂线段如上图,线段AB 、AC 、AD 、AE ,谁最短?【垂线段的性质】连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:____________________.【点到直线的距离】从直线外一点到这条直线的________的______,叫做点到直线的距离。
例如上图中,点A 到直线ED 的距离为__________________.如图,直线L 表示一条公路,直线L 上的点B 表示车站,直线L 外的点A 表示村庄。
5.2.2平行线判定(一)一、问题引入,展示目标问题1、我们以前已学过用直尺和三角尺画平行线,在三角板移动的过程中,什么没有变?问题2、∠1与∠2是三角板经过点P 的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?二、问题启发,探究新知1、通过上面观察,可以判断出 ∠1与∠2是直线AB,CD 被直线EF 截得的同位角。
由此我们可以得出:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
符号语言: ∵∠1=∠2 ∴AB∥CD. 如图(课本14面5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?2、两条直线被第三条直线所截,同时得到同位角,内错角和同旁内角。
有同位角相等,可以判定两条直线平行,那么能否利用内错角,或同旁内角来判定两条直线平行呢?将上述问题转化为: 如图,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=1800,能得出a ∥b 吗?(1)∵∠2=∠3(已知)∠3=∠1(对顶角相等) ∴∠1=∠2 (等量代换)∴a ∥b (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3 2bac 41G H P E 21DC A简单地说:内错角相等,两直线平行.符号语言:∵∠2=∠3 ∴a∥b.(2)∵ ∠4+∠2=180°,∠4+∠1=180° (已知)∴∠2=∠1 (同角的补角相等)∴a ∥b. (同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行. 简单地说:同旁内角互补,两直线平行. 符号语言: ∵∠4+∠2=180° ∴ a∥b.三、问题变换,深化理解如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?四、问题反馈,认知升华1、同位角相等,两直线平行。
B
a
P
a
5.1.2垂线
一、问题引入,展示目标 问题1:如右图,
(1)∠AOC 的对顶角是哪个角?这两个角的关系怎样? (2)∠AOC 的邻补角有几个?是哪几个角?
问题2:如右图,当∠AOC =90°时,∠BOD 、∠AOD 、∠BOC 等于多少度?为什么?这种位置关系有几种?直线AB 、CD 的位置关系怎样?
二、问题启发,探究新知
问题3,:通过前面观察,你能说出什么样的两条直线互相垂直吗?若直线AB 、CD 垂直,如何用几何语言表示?
直线AB 、CD 互相垂直,记作“A B ⊥CD ”或 “CD ⊥AB ”,读作“AB 垂直于CD ”,如果垂足为O , 记作“AB ⊥CD ,垂足为O ”(如图).
问题4、已知直线a ,能画出a 的垂线吗?能画几条?
问题5、在直线a 上有一点P ,过P 点画a 的垂线,如何画?能画几条?你能从中得到什么
结论?
问题6、在直线a 外有一点B ,过B 点画a 的垂线,如何画?能画几条?你能从中得到什么
结论?
通过操作和讨论得出:在同一平面内,过一点有且
只有
一条直线与已知直线垂直。
三、问题变换,深化理解 1、垂直的定义的应用格式
O
Q
B
A
D
C
2、如图根据下列语句画图:
(1)过点P 画射线MN 的垂线,Q 为垂足;
(2)过点P 画射线B N 的垂线,交射线BN 反向延长线于Q 点; (3)过点P 画线段AB 的垂线,交线AB 延长线于Q 点.
P M
A
N
P
B
P
B
A
四、问题反馈,认知升华
1、直线AB 、CD 互相垂直,记作“AB ⊥CD ”或“CD ⊥AB ”,读作“AB 垂直于CD ”,如果垂足为O ,记作“AB ⊥CD ,垂足为O ”
2、在同一平面内,过一点有且只有一条直线与已知直线垂直。
五、问题集萃,当堂达标(课堂5-8分钟检测)
1、 两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是( ) (A )有两个角相等 (B )有两对角相等 (C )有三个角相等 (D )有四对邻补角
2、下面四种判定两条直线的垂直的方法,正确的有( )个
(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直 (2)两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直 (3)两条直线相交,所成的四个角相等,这两条直线互相垂直 (4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直 ( A )4 (B ) 3 (C )2 (D )1
3、直线AB,CD 互相垂直,用符号语言表示为______________ 4 直线AB,CD 相交于点O ,Q 为CD 上一点,
(1)过点Q 画AB 的垂线,E 为垂足。
(2)过点O 画CD 的垂线。
垂直定义)
已知)((90CD AB AOC ⊥∴︒=∠Θ
5、如图,直线AB、CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°,求∠BOE和∠AOD的度数。