第02讲 运动学
- 格式:ppt
- 大小:562.00 KB
- 文档页数:44
高中物理竞赛辅导讲义第2篇 运动学【知识梳理】一、匀变速直线运动二、运动的合成与分解运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。
我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。
以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则v 绝对 = v 相对 + v 牵连或 v 甲对乙 = v 甲对丙 + v 丙对乙位移、加速度之间也存在类似关系。
三、物系相关速度正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。
以下三个结论在实际解题中十分有用。
1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。
2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。
3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。
四、抛体运动: 1.平抛运动。
2.斜抛运动。
五、圆周运动: 1.匀速圆周运动。
2.变速圆周运动:线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a tτ∆→∆=∆,方向指向切线方向。
六、一般的曲线运动一般的曲线运动可以分为很多小段,每小段都可以看做圆周运动的一部分。
在分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理。
对于一般的曲线运动,向心加速度为2n v a ρ=,ρ为点所在曲线处的曲率半径。
七、刚体的平动和绕定轴的转动1.刚体所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。
刚体的基本运动包括刚体的平动和刚体绕定轴的转动。
运动学定义运动学是物理学的一个分支,研究物体的运动规律和运动状态。
它是研究物体运动的基础,也是研究力学、动力学、静力学等学科的基础。
在运动学中,我们可以通过运动的速度、加速度、位移等参数来描述物体的运动状态,从而更好地理解物体的运动规律。
在运动学中,最基本的概念是位移和速度。
位移是指物体从一个位置到另一个位置的距离,而速度则是指物体在单位时间内所移动的距离。
在运动学中,我们通常用速度-时间图像来描述物体的运动状态。
这个图像可以告诉我们物体的速度随时间的变化情况,从而更好地理解物体的运动规律。
除了速度和位移之外,加速度也是运动学中非常重要的一个概念。
加速度是指物体在单位时间内速度的变化量。
如果物体的速度在单位时间内增加了,那么它的加速度就是正的;如果物体的速度在单位时间内减少了,那么它的加速度就是负的。
在运动学中,我们通常用加速度-时间图像来描述物体的加速度变化情况。
这个图像可以告诉我们物体的加速度随时间的变化情况,从而更好地理解物体的运动规律。
在运动学中,还有一个非常重要的概念是力。
力是指物体之间相互作用的结果,它可以改变物体的运动状态。
在运动学中,我们通常用牛顿第二定律来描述物体的运动状态。
这个定律告诉我们,物体的加速度与作用在它上面的力成正比,与物体的质量成反比。
因此,如果我们知道物体的质量和作用在它上面的力,就可以计算出物体的加速度,从而更好地理解物体的运动规律。
除了以上几个概念之外,运动学还涉及到许多其他的概念,比如动量、能量等。
动量是指物体的质量乘以它的速度,它可以告诉我们物体的运动状态。
能量是指物体所具有的能够产生运动的能力,它可以告诉我们物体的运动状态。
在运动学中,我们通常用动量守恒定律和能量守恒定律来描述物体的运动状态。
这些定律可以告诉我们物体的动量和能量在运动过程中是不变的,从而更好地理解物体的运动规律。
运动学是研究物体运动规律和运动状态的基础学科,它涉及到许多重要的概念和定律。
第2讲平抛运动【教学目标】1.知道平抛运动的定义以及条件,知道其运动轨迹是抛物线;2.理解平抛运动是加速度为g的匀变速曲线运动;3.熟练掌握平抛运动的规律,学会用平抛运动的规律解决实际问题的方法;4.理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动,并且这两个运动互不影响.【重、难点】1.平抛运动的特点和规律;2.对平抛运动的两个分运动的理解和运用.如图所示,沿水平方向扔出一块橡皮,或者将一个小球从水平桌面以一定的初速度推离边沿,可以看到它们做曲线运动的轨迹是相似的.本节课我们来学习这一类常见曲线运动的规律.知识点睛一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,仅在重力作用下物体所做的运动称为平抛运动.2.由于平抛运动只受重力作用,加速度为g,故平抛运动是匀变速曲线运动.二、平抛运动的研究方法由于平抛运动是匀变速曲线运动,速度、位移的方向时刻发生变化,无法直接应用运动学公式,因此研究平抛运动问题时采用运动分解的方法.那么平抛运动可以看成哪两个分运动的合成呢?做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动,加速度等于g.平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体运动.以上是从理论角度去分析得到的结论,我们能否通过实验来验证我们的结论呢?实验探究平抛运动的特点(1)研究平抛运动水平方向分运动的特点①使电磁铁C 和D 分别相对各自轨道出口水平线处于相同高度.把两个钢球分别吸在电磁铁C 、D 上.切断电源,使两个钢球以相同的初速度同时水平射出.②改变电磁铁C 、D 与各自轨道出口水平线的相对高度,并确保高度相等. ③多次重复以上步骤.观察实验现象,并分析平抛运动水平方向分运动的特点. (2)研究平抛运动竖直方向分运动的特点①把两个钢球分别吸在电磁铁C 、E 上,并确保电磁铁E 上的钢球与轨道A 出口处于同一高度,释放轨道A 的钢球.钢球在水平出口处碰撞开关S ,切断电磁铁E 的电源,使钢球从电磁铁E 处释放. ②改变电磁铁E 的位置,让其从N 向M 移动.③多次重复以上步骤.观察实验现象,并分析平抛运动竖直方向分运动的特点.(3)结论:平抛运动在水平方向的分运动是匀速直线运动,在竖直方向的分运动是自由落体运动. 三、平抛运动的规律如图所示,以抛出点O 为坐标原点,水平方向为x 轴(正方向与初速度v 0方向相同),以竖直方向为y 轴(正方向向下),经时间t 做平抛运动的质点到达P 位置,速度为v .1.平抛运动的位置坐标与位移(1)位置坐标⎩⎪⎨⎪⎧x =v 0t y =12gt 2 (2)位移大小s =x 2+y 2=v 20t 2+14g 2t 4(3)位移方向tan α=y x =gt2v 0,其中α为位移与x 轴的夹角2.平抛运动的速度(1)水平分速度v x =v 0 (2)竖直分速度v y =gt (3)合速度大小v =v 20+v 2y =v 20+g 2t 2(4)合速度方向tan θ=v y v x =gtv 0,其中θ为合速度与水平方向的夹角3.平抛运动的轨迹由x =v 0t 与y =12gt 2可得y =g2v 20x 2.因此,平抛运动的轨迹是一条抛物线.考点一 对平抛运动的理解1.物体做平抛运动的条件物体的初速度v 0沿水平方向,只受重力作用,两个条件缺一不可. 2.平抛运动的性质:加速度为g 的匀变速曲线运动. 3.平抛运动的三个特点(1)理想化特点:平抛运动是一种理想化的模型,即把物体看成质点,抛出后只考虑重力作用,忽略空气阻力.(2)匀变速特点:平抛运动的加速度恒定,即始终等于重力加速度.(3)速度变化特点:任意两个相等的时间间隔内速度的变化相同,Δv =g Δt ,方向竖直向下,如图所示.例1.(多选)在空气阻力可忽略的情况下,下列物体的运动可视为平抛运动的是( ) A .沿水平方向扣出的排球 B .沿斜向上方投出的篮球 C .沿水平方向抛出的小石子 D .沿竖直方向向上抛出的橡皮 例2.(多选)关于平抛运动,下列说法中正确的是( ) A .平抛运动是一种非匀变速曲线运动 B .平抛运动是一种匀变速曲线运动 C .平抛运动的速度,加速度都在变化D .平抛运动中某时刻的速度方向为轨迹切线方向例3.从高空水平方向匀速飞行的飞机上,每隔1分钟投一包货物,空气阻力忽略不计,则空中下落的许多包货物和飞机的连线是( ) A .倾斜直线 B .竖直直线 C .平滑曲线 D .抛物线典例精析考点二 平抛运动中运动参量的决定因素 物体从离地高为h 处以初速度v 0水平抛出,则 1.由h =12gt 2,得落地时间t =2hg,故平抛运动的时间仅由下落高度h 决定,跟其他因素无关; 2.落地时的水平位移x= v 0t = v 02hg,故水平位移由初速度v 0和下落高度h 共同决定; 3.v y =gt =2gh ,落地时的速度v =v 20+v 2y =v 20+2gh ,故落地时的速度由初速度v 0和下落高度h共同决定.例4.(多选)如图所示,滑板运动员以速度v 0从离地高度为h 的平台末端水平飞出,落在水平地面上.忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是( )A .v 0越大,运动员在空中运动时间越长B .v 0越大,运动员落地瞬间速度越大C .运动员落地瞬间速度与高度h 有关D .运动员落地位置与v 0大小无关变式1、做平抛运动的物体,在水平方向通过的最大距离取决于( ) A .物体的高度和受到的重力 B .物体受到的重力和初速度 C .物体受到的重力、高度和初速度 D .物体的高度和初速度 考点三 平抛运动的规律应用例5.一架老式飞机在高出地面h =2km 的高度,以v 0=3.6×102km/h 的速度水平飞行,为了使飞机上投下的炸弹落在指定的目标上,应该在与轰炸目标的水平距离为多远的地方投弹?g 取10m/s 2,不计空气阻力.变式2、如图所示,飞机离地面高度为H=500m,水平匀速飞行,速度为v1=100m/s,追击一辆速度为v2=20m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(飞机和汽车均视为质点,不计空气阻力,重力加速度g=10m/s2)变式3、如图所示,在距地面高为H=45 m处,有一小球A以初速度v0=10 m/s水平抛出.与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数μ=0.5,A、B均可看成质点,空气阻力不计.求:(1)A球从抛出到落地的时间;(2)A球从抛出到落地这段时间内的水平位移;(3)A球落地时,A、B之间的距离.例6.一小球水平抛出时的速度大小为10m/s,落地时的速度大小为20m/s,g取10m/s2.求:(1)在空中的飞行时间t;(2)小球抛出时的高度h;(3)水平位移x.变式4、(多选)以v0的速度水平抛出一个物体,当其竖直分位移与水平分位移相等时,则()A.运动的时间为gv0B.竖直分速度等于水平分速度C.瞬时速度为5v0D.运动的位移是gv2222变式5、(多选)在距离水平地面高为h 处,将一物体以初速度v 0水平抛出(不计空气阻力),落地时速度为v 1,竖直分速度为v y ,落地点与抛出点的水平距离为s ,则能用来计算该物体在空中运动时间的式子有( )A .v 21-v 2gB .2h g C .2hv y D .sv 1例7.如图所示,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速度为v 0的平抛运动,恰好落在b 点.若小球初速度变为v ,其落点位于c ,则()A .v 0<v <2v 0B .v =2v 0C .2v 0<v <3v 0D .v >3v 0例8.在水平地面上方某一高度处沿水平方向抛出一个小物体,抛出t 1=1s 后物体的速度方向与水平方向的夹角为45°,落地时物体的速度方向与水平方向的夹角为60°,重力加速度g 取10 m/s 2.求: (1)物体平抛时的初速度v 0; (2)抛出点距离地面的竖直高度h ; (3)物体从抛出点到落地点的水平位移x .变式6、如图所示,由倾角为θ的斜面顶端A 处水平抛出一钢球,落到斜面底端B 处,斜面长为L ,重力加速度为g .求抛出时的初速度.研究平抛运动的一般思路1.把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动;2.分别运用两个分运动的运动规律去求分速度、分位移等,再合成得到平抛运动的速度、位移等.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,使问题的解决过程得到简化.考点四 两类与斜面结合的平抛运动 1.模型构建(1)物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角;(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角.2.求解思路例9.如图所示,斜面倾角为θ=30°,小球从斜面上的P 点以初速度v 0水平抛出,恰好落到斜面上的Q 点.重力加速度为g .求:(1)小球从P 到Q 运动的时间;(2)PQ 的长度.例10.如图所示,以10m/s 的水平速度抛出的物体,飞行一段时间后垂直撞在倾角为θ=30°的斜面上,空气阻力不计,g 取10m/s 2,物体飞行的时间和物体撞在斜面上的速度的大小分别为( )A .3s ,20 m/sB .3s ,15 m/sC .3s ,15 m/sD .3s ,20 m/s变式7、一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A .tan θB .2tan θC .1tan θD .12tan θ考点五 多个物体的平抛问题例11.如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是( )A .t a >t b ,v a <v bB .t a >t b ,v a >v bC .t a <t b ,v a <v bD .t a <t b ,v a >v b 变式8、(多选)如图所示,在同一竖直平面内,距地面不同高度的地方,以不同的水平速度同时抛出两个小球.则两球( )A .一定不能在空中相遇B .抛出到落地的水平距离有可能相等C .落地时间可能相等D .抛出到落地的水平距离一定不相等考点六 平抛运动的两个推论a1.推论一:某时刻速度、位移与初速度方向的夹角α、θ的关系为tan α=2tan θ2.推论二:平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点 例12.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ变式9、如图所示,从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v 1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v 2,球落到斜面上的瞬时速度方向与斜面夹角为α2,则( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .α1、α2的关系与斜面倾角θ有关D .无论v 1、v 2关系如何,均有α1=α2变式10、在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( ) A .2倍 B .4倍 C .6倍 D .8倍 考点七 平抛运动中的临界极值问题 1.特点(1)若题目中有“刚好”“恰好”“正好”等字眼,表明题述过程中存在临界点;(2)若题目中有“最大”“最小”“至多”“至少”“取值范围”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点. 2.求解思路(1)画出临界轨迹,找出临界状态对应的临界条件; (2)分解速度或位移; (3)列方程求解结果.例13.如图所示,水平屋顶高H=5m,围墙高h=3.2 m,围墙到房子的水平距离L=3m,围墙外马路宽x=10m,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取10 m/s2)变式11、一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m.一小球以水平速度v飞出,g取10 m/s2,欲打在第四级台阶上,则v的取值范围是()A. 6 m/s <v≤2 2 m/s B.2 2 m/s <v≤3.5 m/sC. 2 m/s<v< 6 m/s D.2 2 m/s<v< 6 m/s【能力展示】【小试牛刀】1.做平抛运动的物体,每秒的速度增量总是()A.大小相等,方向相同B.大小不等,方向不同C.大小相等,方向不同D.大小不等,方向相同2.在空中将一个小球水平抛出,不计空气阻力作用,则下列说法正确的是()A.不论抛出速度多大,抛出位置越高,飞得一定越远B.不论抛出速度多大,抛出位置越高,其飞行时间一定越长C.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长D.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大3.从同一点O 抛出三个物体A 、B 、C ,做平抛运动的轨迹如图所示,则三个物体做平抛运动对应的初速度v A 、v B 、v C 的关系和三个物体做平抛运动对应的时间t A 、t B 、t C 的关系分别是( )A .v A >vB >vC t A >t B >t C B .v A =v B =v C t A =t B =t CC .v A <v B <v C t A >t B >t CD .v A >v B >v C t A <t B <t C4.(多选)在高度为h 的同一位置上向水平方向同时抛出两个小球甲和乙,若抛出时甲球的初速度大于乙球的初速度,则下列说法正确的是( )A .甲球落地时间小于乙球落地时间B .在空中飞行的任意时刻,甲球的速度总大于乙球的速度C .在飞行过程中的任一段时间内,甲球的水平位移总是大于乙球的水平位移D .若两球在飞行中遇到一堵竖直的墙,甲球击中墙的高度总是大于乙球击中墙的高度5.(多选)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以初速度v 沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是( )A .球的初速度v 等于L g 2HB .球从击出至落地所用时间为2H g C .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关6.一个物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v ,那么它的运动时间是( )A .v -v 0gB .v +v 0gC .v 2-v 20gD .v 2+v 20gA OBC7.物体做平抛运动时,它的速度方向和水平方向间的夹角θ的正切tan θ随时间t 变化的图象是图中的( )8.如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd .从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A .c 点B .b 与c 之间某一点C .d 点D .c 与d 之间某一点9.战斗机在某一高度匀速飞行,发现目标后在离目标水平距离为s 处投弹,可以准确命中目标,现战斗机飞行高度减半,速度大小减为原来的23,要仍能命中目标,则战斗机投弹时到目标的水平距离应为(不考虑空气阻力)( )A .13sB .23sC .23sD .223s 10.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速运动;(2)竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验:如图所示,用小锤打击弹性金属片,A 球就水平飞出,同时B 球被松开,做自由落体运动,两球同时落到地面,这个实验 ( )A .只能说明上述规律中的第(1)条B .只能说明上述规律中的第(2)条C .不能说明上述规律中的任何一条D .能同时说明上述两条规律tA B tC tD t11.如图所示,以v0=10 m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角θ为45°的斜面上(g取10 m/s2),可知物体完成这段飞行的时间是()3s B. 3 s C.1 s D.2 s 12.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的(g=10 m/s2)()A.1 m/s B.2 m/s C.3 m/s D.4 m/s 【大显身手】13.(多选)甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P点在丙的正下方,在同一时刻甲、乙、丙开始运动,甲以初速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则()A.若甲、乙、丙三球同时相遇,则一定发生在P点B.若甲、丙两球在空中相遇,此时乙球一定在P点C.若只有甲、乙两球在水平面上相遇,此时丙球还未着地D.无论初速度v0大小如何,甲、乙、丙三球一定会同时在P点相遇14.(多选)枪管AB对准小球C,A、B、C在同一水平面上,如图所示,枪管和小球距地面的高度为45m.已知BC=100m,当子弹射出枪口时,C球开始自由下落,若子弹射出枪口时的速度v0=50 m/s,子弹恰好能在C下落20m时击中它.现其他条件不变,只改变子弹射出枪口时的速度v0,不计空气阻力,g取10 m/s2.则()A.v0=60 m/s时,子弹能击中小球B.v0=40 m/s时,子弹能击中小球C.v0=30 m/s时,子弹能击中小球D.以上的三个v0值,子弹可能都不能击中小球15.如图所示,一架在2 000 m高空以200 m/s的速度水平匀速飞行的轰炸机,要用两枚炸弹分别炸山脚和山顶的目标点A、B.已知山高720 m,山脚与山顶的水平距离为1 000 m,若不计空气阻力,g取10 m/s2,则投弹的时间间隔应为()A.4 s B.5 s C.9 s D.16 s 16.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点把两个小球A、B以同样大小的初速度分别向左、向右水平抛出,两个小球最终都落在斜面上.若不计空气阻力,sin 37°=0.6,cos 37°=0.8,sin 53°=0.8,cos 53°=0.6,则该过程中A、B两个小球运动时间之比为()A.1∶1 B.4∶3 C.16∶9 D.9∶16 17.如图所示,在距地面2l高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中.飞镖在飞行过程中受到的空气阻力不计,在计算过程中可将飞镖和气球视为质点,已知重力加速度为g.试求:(1)飞镖是以多大的速度击中气球的?(2)掷飞镖和放气球两个动作之间的时间间隔Δt应为多少?18.如图所示,女排比赛时,排球场总长为18 m,设球网高为2 m,运动员站在网前3 m处正对球网跳起将球水平击出.若击球的高度为2.5 m,为使球既不触网又不越界,求球的速度范围.(不计空气阻力,g取10 m/s2)第2讲 平抛运动答案例1.AC 例2.BD 例3.B 例4.BC 变式1、D例5.2000m 变式2、800m 变式3、(1)3 s (2)30 m (3)20 m 例6.(1) 3 s (2)15m (3)10 3 m 变式4、CD 变式5、ABC例7.A 例8.(1)10 m/s 2)15 m 3)10 3 m 变式6、cos θgL 2sin θ例9.(1)gv 3320(2)g v 3420 例10.A 变式7、D 例11.A 变式8、AB 例12.D 变式9、D 变式10、A 例13.5 m/s≤v ≤13 m/s 变式11、A【能力展示】1.A 2.B 3.C 4.BCD 5.AB 6.C 7.C 8.B 9.C 10.B11.C 12.BC 13.AB 14.AB 15.C 16.D17.答案:(1)2gl (2)12l g解析:(1)飞镖A 被投掷后做平抛运动.从掷出飞镖到击中气球,经过时间t 1=l v 0=l g 此时飞镖在竖直方向上的分速度v y =gt 1=gl故此时飞镖的速度大小v =v 20+v 2y =2gl (2)飞镖从掷出到击中气球过程中下降的高度h 1=12gt 21=l 2气球从被释放到被击中过程中上升的高度h 2=2l -h 1=3l 2气球的上升时间t 2=h 2v 0=3l 2v 0=32l g可见,t 2>t 1,所以应先释放气球.释放气球与掷飞镖之间的时间间隔Δt =t 2-t 1=12l g18.310 m/s<v 0≤122m/s。
第二章運動學二-1運動學的意義二-2直線(一維)運動二-3平面(二維)運動二-4拋體運動二-5相對運動運動概念圖描述物體在空間如何運動和隨時間如何變化的學問稱為「運動學」,可細分三類:(1)移動:物體上的各點(整體)在同一時間內有相同的位置變動,此時物體的運動可以用「質點」的運動來代表,例如行駛中的汽車。
(2)轉動:物體所指的方位隨時間改變,例如溜冰選手的旋轉。
(3)振動:物體的位置或形狀隨時間往復變動,例如彈簧振盪。
質點(1)意義:為了簡化對運動物體的描述,我們從佔有位置、不具體積但擁有質量的物體著手,並將其稱為「質點」,即「擁有質量的點狀物體」,是一種理想化的假設。
(2)使用時機①物體的體積遠小於其活動範圍;②物體的體積不影響其活動狀態(任一點的運動狀態皆相同)。
運動(1)意義:物體的位置隨時間改變時稱此物體「在運動」。
(2)內容:包括①方向:往哪動?②時間:何時?③位置:在哪裡?④速率:動多快?⑤軌跡:如何動?⑥位移:位置如何變化?⑦加速度:速度如何變化?運動(3)本質:探討下列四項物理量的關係運動(4)描述一個物體的位置需要三個要素①參考點:通常選用明顯的目標②距離:物體到參考點的直線長度③方向:參考點指向物體時間(1)意義:除了空間之外,用來描述自然現象流逝或變化的一個參數,有特定的方向。
(2)種類①時刻:發生某一事件的瞬間②時距:完成某一事件所需的時間長度(3)表示法①t=1、第1秒末、第2秒初(時刻)②t=1~t=2、第2秒(時距)③t=0~t=3、最初3秒(時距)位置、位移和路徑長(1)位置的意義①物體所在的空間點,通常用「座標」來表示。
②針對直線運動,我們可用一維的實數軸來描述物體的位置。
位置、位移和路徑長(2)位置和時間的函數關係可以表示成x=x(t)①x>0表示物體位於原點的右方(正方向);②x<0表示物體位於原點的左方(負方向)。
位置、位移和路徑長(3)位置的變化①物理量可分成向量與純量兩種向量:具有量值和方向的物理量,例如位置向量、位移、速度等;純量:只具有量值但沒有方向的物理量,例如溫度、時間、路徑長等。
运动学图像物理规律的表达除了用公式外,有的规律还可以用图像表达。
用图像来表达物理规律的优点是能形象、直观地反映物理量之间的函数关系,这也是物理中常用的一种方法。
对图像的要求可概括记为:“一轴二线三斜率四面积”。
除了轨迹图像,其它的图像都只能用来描述直线运动。
一、三种常见的运动学图像1.位移—时间(x−t)图象(1)图线的物理意义:x−t图象是描述做直线运动物体的位移随时间变化的规律。
但并不表示物体的运动轨迹,不能认为乙图线表示物体做曲线运动。
位移—时间图像只能描述物体做直线运动的情况,这是因为位移—时间图像只能表示物体运动的两个方向:t轴上方代表正方向,t轴下方代表负方向;如果物体做曲线运动,则画不出位移—时间图像。
图线斜率的意义:①图线上某点切线斜率的大小表示物体速度的大小。
②图线上某点切线斜率的正负表示物体速度的方向。
(2)三种x−t图象的特例①匀速直线运动的x−t图象是一条倾斜的直线,如图中图线甲;②匀变速直线运动的x−t图象是一条抛物线,如图线乙。
③若x−t图象是一条平行于时间轴的直线,则表示物体处于静止状态,如图线丙。
(3)图象反映的信息①从图像上可判断运动性质。
平行于t轴的直线——静止;倾斜线——匀速直线运动;抛物线——匀变速直线运动。
②从图像上可判断运动方向。
斜率为正——正方向;斜率为负——负方向。
③从图象中可知道某一时刻物体的位置;还可知道物体在任意一段时间内的位移或发生某一段位移所用的时间。
直线是否过原点,取决于开始计时的位置是否作为位移的起始点。
④可从图像上求速度:图线上某点切线的斜率的大小表示物体速度的大小;斜率的正负表示速度的方向,是与选定的正方向相同还是相反。
⑤在同一位移图象中,可以比较两物体运动快慢。
越陡(斜率越大),速度越大,运动越快。
两条图线的交点表示两个物体在该时刻具有相同的位置,即两个物体在该时刻相遇。
⑥在位移图象中,图线在x轴上的截距表示物体在开始计时前已发生的位移(即初位移,开始计时时的位置),在t轴上的截距表示计时一段时间后物体才开始运动。
第二讲 运动学§2.1质点运动学的基本概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。
为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。
通常选用直角坐标系O –xyz ,有时也采用极坐标系。
平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。
2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时间的函数 x=X (t ) y=Y (t ) z=Z (t ) 这就是质点的运动方程。
质点的位置也可用从坐标原点O 指向质点P (x 、y 、z )的有向线段r来表示。
如图2-1-1所示, r 也是描述质点在空间中位置的物理量。
r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时间而变,可表示为r =r (t)。
在直角坐标系中,设分别为i 、j 、k 沿方向x 、y 、z 和单位矢量,则r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。
研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点),,(1111z y x P运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。
它描写在一定时间内质点位置变动的大小和方向。
它与坐标原点的选择无关。
第二讲 运动学§2.1质点运动学的基本概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。
为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。
通常选用直角坐标系O –xyz ,有时也采用极坐标系。
平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。
2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时间的函数 x=X (t ) y=Y (t ) z=Z (t ) 这就是质点的运动方程。
质点的位置也可用从坐标原点O 指向质点P (x 、y 、z )的有向线段r来表示。
如图2-1-1所示, r 也是描述质点在空间中位置的物理量。
r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时间而变,可表示为r =r (t)。
在直角坐标系中,设分别为i 、j 、k 沿方向x 、y 、z 和单位矢量,则r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。
研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点),,(1111z y x P运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。
它描写在一定时间内质点位置变动的大小和方向。
它与坐标原点的选择无关。