空间统计分析方法课件.
- 格式:ppt
- 大小:2.53 MB
- 文档页数:94
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
空间自相关分析1.1 自相关分析空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。
若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。
空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。
1.1.1 全局空间自相关分析全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。
首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。
Moran's I 系数公式如下:112111()()I ()()n nij i j i j n nnij i i j i n w x x x x w x x =====--=-∑∑∑∑∑(式 错误!文档中没有指定样式的文字。
-1)其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。
Moran's I 的Z-score 得分检验为:Z =式 错误!文档中没有指定样式的文字。
空间统计方法-样条插值1. 样条插值拉格朗日插值和牛顿插值的结果中,插值函数的为n-1次多项式函数(n 是已知点的个数)。
当样本点很多时,多项式的次数会很高。
这会导致插值结果对已知点的取值非常敏感。
样条插值可以解决上述问题。
样条插值的基础是样条函数。
样条函数是一种特殊的函数,由多项式分段定义, 通常是指分段定义的多项式参数曲线。
在插值问题中,样条插值通常比多项式插值好用。
用低阶的样条插值能产生和高阶的多项式插值类似的效果,分段插值具有良好的稳定性和收敛性,可以避免被称为龙格现象的数值不稳定的出现。
并且低阶的样条插值还具有“保凸”的重要性质。
样条插值一般包括线性样条插值、二次样条插值和三次样条插值,其中三次样条插值最为实用,本节主要介绍三次样条插值。
样条函数插值采用两种不同的计算方法:规则样条(Regularized Spline)和张力样条(Tension Spline)。
设在区间[a,b]上取n+1个节点01a x x x n b =<<<=L ,函数f(x)y =在各个节点处的函数值为f(x )(i 0,1,,1)i i y n ==-L ,若S(x)满足S(x )y ,(i 0,1,,1)i i n ==-L ;S (x )在区间[a ,b ]上具有连续的二阶导数;在每个小区间1[x ,x ](i 0,1,,1)i i n +=-L 上S(x)是三次多项式。
则称S(x)是函数y f(x)=在区间[a,b]上的三次样条插值函数。
从定义可知,要求出S(x)在每个小区间1[x ,x ](i 0,1,,1)i i n +=-L 上要确定4个待定系数,共有n 个小区间,根据上述条件(2)有S(x 0)S(x 0)i i -=+S (x 0)S (x 0),i 1,2,,1i i n ''-=+=-LS (x 0)S (x 0)i i ''''-=+共有3n-3个条件,再加上条件(1),共有4n-2个条件,因此还需2个条件才能确定S(x),通常在区间[a,b]的端点0a x ,b x n ==上各加一个条件(称为边界条件),可根据实际问题的要求给定。
空间回归模型徐成东深圳CDC培训课程2014‐11‐13空间回归分析基础–什么是回归分析•寻求两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
•热点探测回答了“Where”的问题,回归分析试图回答“Why”–回归分析目的•检验理论:基本目标是测量一个或多个变量的变化对另一变量变化的影响程度•进行预测:基本目标是构建一个持续、准确的预测模型。
•寻找假设:基本目标是通过回归分析来探索这些关系并解答想要检验的假设情况。
–回归分析基本步骤•①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。
估计参数的常用方法是最小二乘法。
•②对这些关系式的可信程度进行检验。
•③优化回归方程。
在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
•④利用所求的关系式对某一过程进行预测或控制。
–空间分析常见问题–为什么要有空间回归回归分析常见问题问题影响解决方案遗漏了解释变量回归模型丢失关键解释变量,其系数和相应的关联P 值将不可信。
检查OLS 残差或对OLS 回归残差运行热点分析,尝试找出可能的缺失变量。
非线性关系线性模型中如果解释变量与因变量之间的关系存在非线性关系,则所获得的模型质量不佳。
通过创建散点图了解模型中变量之间的关系。
可通过变换变量来修复曲线性。
数据异常值异常值可使回归关系背离最佳拟合,从而使回归系数发生偏差。
可通过散点图和其他图(直方图)检验数据的极值。
如果异常值存在错误,请修正或移除异常值。
如果异常值正确,则不能将其移除。
回归分析常见问题问题影响解决方案多重共线性多重共线性可导致模型不可靠。
应通过创建交互变量或增大采样从模型中移除冲突变量或对其进行修改。
正态分布偏差当回归模型残差不服从均值为零的正态分布时,系数p 值不可靠。