因式分解四种方法(讲义)
- 格式:docx
- 大小:143.46 KB
- 文档页数:5
精品资料·人教版初中数学因式分解的四种方法(讲义)课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解的四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法的时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()+++=++x p q x pq x p x q3.因式分解是有顺序的,记住口诀:“___________________”;因式分解是有范围的,目前我们是在______范围内因式分解.精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+;(2)32a a a --+; 解:原式=解:原式=(3)()(1)()(1)a b m b a n -+---;解:原式=(4)22()()x x y y y x ---;(5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+;(10)22222()4a b a b +-.解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---;(4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-.解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --;解:原式=解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;解:原式=(6)222221x xy y x y -+-++.解:原式=【参考答案】课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
因式分解讲解一、辅导内容提取公因式法、公式法、分组分解法、十字相乘法四种基本方法的掌握。
二、学习指导因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数式恒等变形中有直接应用。
重点是掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法。
难点是根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
三、考点阐述考点1 提公因式法和公式法 常用公式:(1)))((22b a b a b a +-=- (2)222)(2b a b ab a ±=+± (3)))((2233b ab a b a b a +-+=+ (4)))((2233b ab a b a b a ++-=- 补充公式:(1)2222)(222c b a ca bc ab c b a ++=+++++(2)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++例1 (1)33xy y x -; (2)x x x 2718323+-(3)()112---x x (4)()()3224x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1”③注意()()n na b b a 22-=-,()()1212++--=-n n a b b a④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
答案:(1)()()y x y x xy -+; (2)()233-x x ;(3)()()21--x x ; (4)()()y x y x -+-222考点2 十字相乘法例2 (1) 893+-x x (2)32231222xy y x y x -+;(3)()222164x x -+ (4)22103y xy x --分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。
因式分解法的四种方法初中数学嘿,同学们!今天咱就来好好聊聊初中数学里的因式分解法的那四种方法哟!咱先来说说提公因式法吧。
这就好比是一群小伙伴一起出去玩,总要有个带头的呀!公因式就是那个带头的,把它一提出来,剩下的部分就好处理啦。
比如一个式子像 3x²+6x,那 3x 不就是那个带头的嘛,提出来就变成 3x(x+2)啦,是不是挺神奇的?然后呢,是公式法。
这就像是一把神奇的钥匙,专门开特定的锁。
平方差公式和完全平方公式就是那两把厉害的钥匙哦。
遇到像 a²-b²这样的式子,马上就能想到用平方差公式,变成(a+b)(a-b)。
还有像a²+2ab+b²这样的,那就是完全平方公式啦,能变成(a+b)²呢!再来说说十字相乘法。
嘿,这可有点像搭积木哦!要把那些数字巧妙地组合起来。
比如说x²+5x+6,咱就得找到两个数,它们相乘等于6,相加等于 5,这不就是 2 和 3 嘛,然后就可以写成(x+2)(x+3)啦。
最后还有分组分解法呢。
这就像是给式子分小组一样,把它们分成合适的小组,然后再分别处理。
有时候式子看起来很复杂,但是一用分组分解法,嘿,马上就变得清晰明了啦!你们想想看呀,要是没有这些方法,那面对那些复杂的式子,咱不得抓耳挠腮呀!但有了这四种方法,就像有了四个得力的小助手,什么难题都能轻松搞定啦!学数学呀,就像是一场奇妙的冒险,而因式分解法就是我们在这场冒险中的有力武器。
咱可得把这武器用得溜溜的,在数学的世界里披荆斩棘呀!可别小瞧了这些方法哦,它们能帮我们解决好多难题呢!所以呀,同学们,一定要好好掌握这四种方法,让它们成为我们的好朋友,和我们一起在数学的海洋里畅游吧!怎么样,是不是觉得因式分解法很有趣呀?快去试试吧!。
因式分解是将一个多项式表达为几个多项式的乘积的过程。
对于初中生来说,通常需要掌握以下几种基本的因式分解方法:
1. 提公因式法:如果多项式的各项中都有公共的因子,可以提取出来,使得原多项式变为公因子与剩余部分的乘积。
例如:ax + ay = a(x + y)
2. 分组分解法:将多项式的各项分成几组,每组提出公因子,再将提取公因子后的表达式进行合并。
例如:ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
3. 完全平方公式法:利用完全平方公式(a + b)^2 = a^2 + 2ab + b^2和(a - b)^2 = a^2 - 2ab + b^2进行因式分解。
例如:x^2 + 6x + 9 = (x + 3)^2
4. 差平方公式法:利用差平方公式a^2 - b^2 = (a + b)(a - b)进行因式分解。
例如:x^2 - 9 = (x + 3)(x - 3)
5. 十字相乘法:适用于形如ax^2 + bx + c的三项式的因式分解,其中a、b、c是常数。
例如:x^2 + 5x + 6 = (x + 2)(x + 3)
6. 配方法:通过添加和减去同一个数,将二次项和一次项的部分转换为完全平方的形式。
例如:x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4
7. 其他特殊公式:如立方和公式、立方差公式等,用于特定形式的多项式因式分解。
因式分解是初中数学中的一个重要知识点,它不仅能够帮助简化多项式的表达,还是解决方程、不等式等问题的重要工具。
因式分解最全方法归纳在数学中,因式分解是一种将多项式表达式分解为较简单的乘法形式的方法。
它是解决多项式的基础步骤,也是高等数学和代数学中的重要概念。
本文将对因式分解的最全方法进行归纳总结,帮助读者更好地理解和应用这一概念。
一、因式分解的基本定义因式分解是一种将多项式表达式分解为乘法形式的方法。
通常,我们将一个多项式表示为包含常数项、一次项、二次项等的和的形式。
而因式分解的目的就是将这个多项式表示为一个或多个因子相乘的形式。
二、常见因式分解方法1. 因式分解公式法因式分解公式法是因式分解中常用的方法之一。
根据不同的多项式形式,我们可以利用一些常见的因式分解公式来进行因式分解。
例如:- 当多项式为二次差平方时,可以利用差平方公式进行因式分解。
例如,x^2 - a^2 = (x+a)(x-a)。
- 当多项式为完全平方时,可以利用完全平方公式进行因式分解。
例如,x^2 + 2ab + b^2 = (x+a)^2。
- 当多项式为二次三项差积时,可以利用二次三项差积公式进行因式分解。
例如,x^2 - ax - b = (x-c)(x-d),其中c、d为满足cd = b且c+d = a的两个数。
2. 提取公因式法提取公因式法是因式分解的一种常用方法。
当多项式的各项存在公因式时,我们可以将这些公因式提取出来,得到一个公因式和一个因式分解后的多项式。
例如:对于多项式2x^2 + 4x,我们可以提取出公因式2x,得到2x(x+2)。
3. 分组分解法分组分解法是一种将多项式进行分组,然后再进行因式分解的方法。
它通常适用于多项式中存在四项以上的情况,且多项式的各项无法直接提取公因式。
例如:对于多项式x^3 + x^2 + 3x + 3,我们可以按照如下方式进行分组分解:(x^3 + x^2) + (3x + 3)。
进一步因式分解得到:x^2(x + 1) + 3(x + 1)。
再进一步因式分解得到:(x^2 + 3)(x + 1)。
因式分解的方法因式分解是代数学中的重要概念,它在解决多项式的因式问题时起着至关重要的作用。
因式分解的方法有多种,本文将为大家介绍一些常见的因式分解方法,希望能够帮助大家更好地理解和掌握这一概念。
首先,我们来看一下因式分解的基本原理。
当我们要对一个多项式进行因式分解时,其实就是要把这个多项式表示成几个因式的乘积的形式。
而要实现这个目标,我们就需要运用一些特定的方法和技巧来进行因式分解。
一、公因式提取法。
公因式提取法是因式分解中最基本的一种方法。
它适用于多项式中含有公因式的情况。
具体来说,就是先找到多项式中的公因式,然后将其提取出来,再将剩下的部分进行因式分解。
例如,对于多项式2x+4xy,我们可以提取出公因式2x,得到2x(1+2y),这样就完成了因式分解。
二、配方法。
配方法是另一种常用的因式分解方法。
它适用于多项式中含有平方项的情况。
具体来说,就是通过加减平方项的方法,将多项式转化为一个完全平方的形式,然后再进行因式分解。
例如,对于多项式x^2+2xy+y^2,我们可以将其转化为(x+y)^2,然后再进行因式分解。
三、分组分解法。
分组分解法是针对四项式的因式分解方法。
具体来说,就是将四项式中的四个项进行分组,然后再对每组进行公因式提取或者配方法,最终将四项式进行因式分解。
例如,对于四项式x^2+2xy+2x+4y,我们可以将其分组为(x^2+2xy)+(2x+4y),然后再进行因式分解。
四、换元法。
换元法是一种比较灵活的因式分解方法。
它适用于多项式中含有复杂因式的情况。
具体来说,就是通过变量替换的方法,将多项式转化为一个更容易进行因式分解的形式,然后再进行因式分解。
例如,对于多项式x^3+3x^2+3x+1,我们可以通过令y=x+1,将其转化为y^3,然后再进行因式分解。
以上就是一些常见的因式分解方法,当然,实际问题中可能还会涉及到更多的情况和方法。
希望大家通过学习和练习,能够更好地掌握因式分解的方法,从而更好地解决代数学中的问题。
因式分解方法
因式分解是将一个多项式表达式写成若干个因子相乘的形式。
它可以帮助我们简化计算、求解方程、理解多项式的性质等。
以下是一些常见的因式分解方法:
1. 括号法:将多项式中的每一项按照最大公因式进行分组,然后利用分配律将括号因式提取出来。
例如,分解多项式3x^2 + 6x为3x(x + 2)。
2. 公式法:利用一些常见的代数公式进行分解,例如二次差平方公式、完全平方公式等。
例如,分解多项式x^2 - 4为(x + 2)(x - 2)。
3. 分解质因数法:将多项式中的每一项进行质因数分解,然后将相同的质因数提取出来。
例如,分解多项式2x^2 + 6x为2x(x + 3)。
4. 代入法:利用代入某个特定的值之后多项式值为零的性质进行分解。
例如,求解方程x^2 - 4 = 0,可以利用代入法将它分解为(x + 2)(x - 2) = 0,得到解x = 2或x = -2。
这些方法只是因式分解的一部分,具体的分解方法会根据多项式的形式和结构的不同而有所变化。
因此,在实际的因式分解过程中,根据具体问题的要求选择合适的方法是非常重要的。
因式分解方法大全因式分解是数学中一种常见的运算方法,指将一个多项式按照约定的规则展开或合并,以求得其约简或简化的过程。
因式分解在代数中的应用非常广泛,可以用来解方程、简化算式、求最大公因式等。
1.提取公因式法:当一个多项式中各项都含有相同的因子时,可以先将这个公因子提取出来。
例如,对于多项式2x+6,可以将公因子2提取出来,得到2(x+3)。
2.公式法:对于一些常见的代数公式,可以直接运用它们进行因式分解。
例如,平方差公式a^2-b^2可以分解为(a+b)(a-b)。
3. 完全平方公式法:当一个多项式是一个完全平方时,可以利用完全平方公式进行因式分解。
完全平方公式为a^2 + 2ab + b^2 = (a +b)^2、例如,对于多项式x^2 + 4x + 4,可以看出它是一个完全平方,因此可以因式分解为(x + 2)^24.分组法:当一个多项式中含有四项及以上的项,并且无法直接运用其他公式进行因式分解时,可以尝试使用分组法。
分组法的基本思想是将多项式中的项以一定的方式分成两组,并将每一组内的项提取出一个公因式,然后再运用其他的因式分解方法进一步简化。
例如,对于多项式3x^3-6x^2+4x-8,可以将其分为两组:(3x^3-6x^2)+(4x-8),然后分别提取每一组内的公因式,得到3x^2(x-2)+4(x-2),再将公共因子(x-2)提取出来,得到(x-2)(3x^2+4)。
5. 和差平方公式法:当一个多项式可以表示为两个项的平方之差时,可以运用和差平方公式进行因式分解。
和差平方公式有两个形式:(a +b)(a - b) = a^2 - b^2和(a + b)^2 - 2ab = a^2 + 2ab + b^2、例如,对于多项式x^2 - 4y^2,可以看出它是一个差的平方,因此可以因式分解为(x + 2y)(x - 2y)。
6.相异二次根法:当一个多项式为一个一次二次根式相减或相加时,可以尝试运用相异二次根法进行因式分解。
专题07因式分解(4个知识点13种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.提公因式法因式分解知识点2.公式法因式分解知识点3.十字相乘法法因式分解知识点4.分组分解法法因式分解【方法二】实例探索法题型1.因式分解的概念题型2.用提公因式法分解因式(公因式为单项式)题型3.用提公因式法分解因式(公因式为多项式)题型4.用提公因式法分解因式的简单应用题型5.利用平方差公式分解因式题型6.综合利用提公因式法与平方差公式分解因式题型7.完全平方式题型8.利用完全平方公式分解因式题型9.综合利用提公因式法与完全平方公式分解因式题型10.十字相乘法题型11.十字相乘法的灵活应用题型12.利用分组分解法分解因式题型13.分组分解法的灵活应用【方法三】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1.提公因式法因式分解一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.知识点2.公式法因式分解1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a 2﹣b 2=(a +b )(a ﹣b );完全平方公式:a 2±2ab +b 2=(a ±b )2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.知识点4.十字相乘法法因式分解十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p ,满足这两个条件便可以进行如下分解因式,即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.知识点5.分组分解法法因式分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【方法二】实例探索法题型1.因式分解的概念1.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.2.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.题型2.用提公因式法分解因式(公因式为单项式)3.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.4.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.5.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.6.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.题型3.用提公因式法分解因式(公因式为多项式)7.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.8.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.【分析】首先把式子变形为:a(a﹣b)﹣b(a﹣b),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a(a﹣b)+b(b﹣a)=a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2.故答案为:(a﹣b)2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.9.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【分析】直接提取公因式a﹣c即可.【解答】解:原式=(a﹣c)(2m﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.10.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.11.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.题型4.用提公因式法分解因式的简单应用12.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.题型5.利用平方差公式分解因式13.(2022秋•徐汇区期末)分解因式:x2﹣=.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣=(x+)(x﹣).故答案为:(x+)(x﹣).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.14.(2022秋•嘉定区校级期中)因式分解:x4﹣16=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b),进行两次分解.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).【点评】此题主要考查了用公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2022秋•黄浦区期中)分解因式:﹣(a+b)2+1=.【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:原式=[1﹣(a+b)][1+(a+b)]=(1﹣a﹣b)(1+a+b).故答案为:(1﹣a﹣b)(1+a+b).【点评】此题主要考查了公式法分解因式,正确运用平方差公式分解因式是解题关键.16.(2022•黄浦区校级二模)分解因式:x2﹣4y2=.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).故答案为:(x+2y)(x﹣2y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.17.(2022秋•上海期末)分解因式:9a2﹣25(a+b)2.【分析】根据平方差公式因式分解即可.【解答】解:9a2﹣25(a+b)2=[3a﹣5(a+b)][3a+5(a+b)]=(﹣2a﹣5b)(8a+5b)=﹣(2a+5b)(8a+5b).【点评】本题考查了公式法进行因式分解,熟练掌握因式分解的方法是解题的关键.18.(2022秋•黄浦区期中)分解因式:25(m+n)2﹣9(m﹣n)2.【分析】直接利用平方差公式分解因式.【解答】解:25(m+n)2﹣9(m﹣n)2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【点评】本题考查了因式分解﹣公式法:掌握a2﹣b2=(a+b)(a﹣b)是解题的关键.题型6.综合利用提公因式法与平方差公式分解因式19.(2022秋•浦东新区校级期末)分解因式:4x2﹣16=.【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).故答案为:4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.20.(2022秋•青浦区校级期中)因式分解:3a(a+b)2﹣27ab2.【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3a[(a+b)2﹣9b2]=3a(a+b+3b)(a+b﹣3b)=3a(a+4b)(a﹣2b).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型7.完全平方式21.(2022秋•青浦区校级期中)下列多项式中可以用完全平方公式进行因式分解的()A.x2+x+1B.x2﹣2x﹣1C.x2+2x+4D.x2﹣x+【分析】根据完全平方公式的结构特征逐项进行判断即可.【解答】解:A.x2+x+1,不能利用完全平方公式进行因式分解,因此选项A不符合题意;B.x2﹣2x﹣1,不能利用完全平方公式进行因式分解,因此选项B不符合题意;C.x2+2x+4,不能利用完全平方公式进行因式分解,因此选项C不符合题意;D.x2﹣x+=(x﹣)2,能利用完全平方公式进行因式分解,因此选项D符合题意;故选:D.【点评】本题考查了因式分解﹣运用公式法,掌握完全平方公式的结构特征是正确判断的前提.题型8.利用完全平方公式分解因式22.(2022秋•黄浦区期中)因式分解:(x2﹣4x)2+8(x2﹣4x)+16.【分析】直接利用完全平方公式分解因式,进而得出答案.【解答】解:原式=(x2﹣4x+4)2=(x﹣2)4.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题的关键.23.(2022秋•长宁区校级期中)(m+n)2+6(m2﹣n2)+9(m﹣n)2.【分析】首先利用平方差公式分解m2﹣n2,观察发现此题代数式符合完全平方公式,再利用完全平方公式进行分解即可.【解答】解:原式=(m+n)2+6(m﹣n)(m+n)+9(m﹣n)2,=[(m+n)+3(m﹣n)]2,=(4m﹣2n)2,=4(2m﹣n)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.24.(2022秋•长宁区校级期中)分解因式:m(m﹣4)+4.【分析】先运用单项式乘以多项式法则将括号展开,再利用完全平方公式进行因式分解即可.【解答】解:m(m﹣4)+4=m2﹣4m+4=(m﹣2)2.【点评】本题主要考查了因式分解,熟练掌握完全平方公式(a2±2ab+b2=(a±b)2)是解答本题的关键.题型9.综合利用提公因式法与完全平方公式分解因式25.(2022秋•长宁区校级期中)因式分解:=.【分析】先提取公因式,再利用完全平方公式分解因式即可.【解答】解:原式=(m2﹣4m+4)=(m﹣2)2.故答案为:(m﹣2)2.【点评】本题考查的是多项式的因式分解,掌握“利用完全平方公式分解因式”是解本题的关键.26.(2022秋•长宁区校级期中)分解因式:﹣6x2y﹣3x3﹣3xy2.【分析】先提取公因式,再利用完全平方公式.【解答】解:﹣6x2y﹣3x3﹣3xy2=﹣3x(x2+2xy+y2)=﹣3x(x+y)2.【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.27.(2022秋•青浦区校级期中)因式分解:3a2+12ab+12b2.【分析】先提取公因式,再套用完全平方公式.【解答】解:3a2+12ab+12b2=3(a2+4ab+4b2)=3(a+2b)2.【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型10.十字相乘法28.(2022秋•青浦区校级期末)因式分解:2x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.29.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.30.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.31.(2022秋•奉贤区期中)分解因式:ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.32.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.33.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.34.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.35.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.36.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.题型11.十字相乘法的灵活应用37.(2022秋•静安区校级期中)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).38.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.39.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.40.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.41.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.题型12.利用分组分解法分解因式42.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.43.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.44.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.45.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.46.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.47.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.48.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.49.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.50.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.51.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.题型13.分组分解法的灵活应用52.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.53.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.【方法三】成功评定法一、单选题1.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】根据平方差公式逐项分析即可.【详解】解:A.()()x y x y +-22x y =-,故能用平方差公式计算;B.()()x y x y +-+22y x =-,故能用平方差公式计算;C.()()x y x y -+-222()2x y x xy y =--=-+-,故不能用平方差公式计算;D.()()x y x y -+--22x y =-,故能用平方差公式计算;故选:C .【点睛】此题主要考查了乘法公式,熟练掌握公式是解答本题的关键.完全平方公式是()2222a b a ab b ±=±+;平方差公式是()()22a b a b a b +-=-.二、填空题三、解答题【分析】利用平方差公式进行因式分解即可得出答案.【详解】解:224691x y y +--()224961x y y =--+()22431x y --=()()231231x y x y =+--+.【点睛】此题主要考查因式分解,解题的关键是掌握利用平方差公式进行因式分解.22.(2022秋·上海·七年级阶段练习)因式分解:221218a b ab b -+【答案】22(3)b a -.【分析】先提公因式2b ,再利用完全平方公式即可【详解】解:原式()2269=-+b a a 22(3)=-b a .【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握方法是解题的关键23.(2022秋·上海·七年级校考阶段练习)因式分解:()()2222225225m n m n ---【答案】()()()2221m n m n m n +-+【分析】直接利用平方差公式分解因式即可.【详解】原式()()2222222252255225m n m n m n m n =-+---+()()22227733m n m n =-+()()222221m n m n =-+()()()2221m n m n m n =+-+【点睛】本题考查了公式法分解因式,熟练应用平方差公式是解题关键.24.(2022秋·上海·七年级校考阶段练习)因式分解:()()2280x y y x ----【答案】()()810x y x y ---+【分析】利用十字相乘法分解因式即可.【详解】()()2280x y y x ----。
因式分解的四种方法(讲义)一、知识点睛1.叫做把这个多项式分解因式.2.提公因式法要注意:①,②,③.3.运用公式法要注意:①,②.4.分解因式是有顺序的,记住口诀:“”;分解因式是有范围的,目前我们是在范围分解因式.二、精讲精练1.下列由左到右的变形,是分解因式的是.①-3x2y2=-3·x2·y2②(a+3)(a-3) =a2-9③m2-4=(m+2)(m-2)④a2-b2+1=(a+b)(a-b) +1⑤2mR+2mr=2m(R+r)⑥y2-4y+4=(y-2)22.分解因式(提公因式法):(1)-a2+a;(2)8a2b+2ab;(3)12a2b-24ab2+6ab;(4)2a(b+c)-(b+c);(5)(a-b)(m+1) -(b-a)(n-1);(6)a(m-2) +b(2-m);(7)x(x-y)2-y(y-x)2;(8)x m+x m-1.3.分解因式(公式法):(1)4x2-9;(2)16x2+24x+9;(3)-x2+4xy-4y2;(4)9(m+n)2-(m-n)2;(5)x4-y4;(6)4a2-16;(7)2ab3-2ab;(8)x2(2x-5)+4(5-2x);(9)(m+n)2-6(m+n)+9;(10)4-12(x-y)+9(x-y)2;(11)(x+3y)2-2(x+3y)(4x-3y) +(4x-3y)2;(12)-8ax2+16axy-8ay2;(13)(a2+b2)2-4a2b2;(14)a4-2a2+1.4.分解因式(十字相乘法):(1)x2-x-2;(2)x2+4x+3;(3)x2+x-6;(4)x2+3x-4;(5)x2-3x-10;(6)2x2+x-1;(7)3x2-5x+2;(8)3x2-x-10;(9)2x2+15x+7;(10)3x2+xy-2y2;(11)2x2+13xy+15y2;(12)x3-2x2-8x;(13)x4-7x2+12;(14)x4-6x2-27.5.分解因式(分组分解法):(1)a2-ab+ac-bc;(2)2ax-10ay+5by-bx;(3)m2-5m-mn+5n;(4)3ax+4by+4ay+3bx;(5)1-4a2-4ab-b2;(6)a2+6a+9-9b2;(7)9ax2+9bx2-a-b;(8)a2-2a+4b-4b2.6.用适当的方法分解因式:(1)a2-8ab+16b2-c2;(2)4xy2-4x2y-y3;(3)2(a-1)2-12(a-1)+16;(4)(x+1)(x+2)-12;(5)(2a-b)2+8ab;(6)x2-2xy+y2-2x+2y+1.【参考答案】:一、知识点睛1.把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.2.提公因式法要注意:①公因式要提尽,②首项为负时,先提负号,③提公因式后项数不变.3.运用公式法要注意:①能提公因式先提公因式,②找准公式中的a和b.4.分解因式是有顺序的,记住口诀:“一提二套三分四查”;分解因式是有范围的,目前我们是在有理数范围分解因式.二、精讲精练1.③⑤⑥2.(1)-a(a-1) (2)2ab(4a+1)(3)6ab (2a -4b +1)(4)(b +c )(2a -1) (5)(a -b )(m +n )(6)(m -2)(a -b ) (7)3()x y -(8)1(1)m x x -+ 3.(1)(2x -3)(2x +3)(2)2(43)x + (3)2(2)x y --(4)4(m +2n )(2m +n ) (5)22()()()x y x y x y -++(6)4(a -2)(a +2) (7)2ab (b -1)(b +1)(8)(2x -5)(x -2)(x +2) (9)2(3)m n +-(10)2(332)x y -- (11)29(2)x y -(12)28()a x y -- (13)22()()a b a b -+(14)22(1)(1)a a -+ 4.(1)(x -2)(x +1)(2)(x +1)(x +3) (3)(x -2)(x +3)(4)(x +4)(x -1) (5)(x -5)(x +2)(6)(x +1)(2x -1) (7)(3x -2)(x -1)(8)(3x +5)(x -2) (9)(2x +1)(x +7)(10)(3x -2y )(x +y ) (11)(2x +3y )(x +5y )(12)x (x -4)(x +2) (13)2(3)(2)(2)x x x --+(14)2(3)(3)(3)x x x ++-5.(1)(a +c )(a -b )(2)(2a -b )(x -5y ) (3)(m -n )(m -5)(4)(a +b )(3x +4y ) (5)(1-2a -b )(1+2a +b )(6)(a +3b +3)(a -3b +3) (7)(a +b )(3x -1)(3x +1)(8)(a -2b )(a +2b -2) 6.(1)(a -4b -c )(a -4b +c )(2)2(2)y y x -- (3)2(a -3)(a -5)(4)(x -2)(x +5) (5)2(2)a b +(6)2(1)x y --因式分解的四种方法(随堂测试)1. 下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)2 2. 下列各式能用完全平方式进行分解因式的是( )A .x 2+1B .x 2+2x -1C .x 2+x +1D .x 2+4x +4 3. 分解因式:(1)2x 2-4x +2;(2)x 2+3x +2;(3)x 2-2xy +y 2+x -y ;(4)a (a +3)-3(a +3);(5)x 2y -y ;(6)a 2-2ab +b 2-4c 2.【参考答案】1.D .2.D .3.(1)22(1)x -(2)(x +1)(x +2) (3)(x -y )(x -y +1)(4)(a +3)(a -3) (5)y (x -1)(x +1)(6)(a -b -2c )(a -b +2c ).因式分解的四种方法(作业)1.下列各式中从左到右的变形,是因式分解的()A.(a+3)(a-3)=x2-9 B.x2+x-5=(x-2)(x+3) +1C.a2b+ab2=ab(a+b) D.x2+1=1 () x xx+2.把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A.x(3x+y)(x-3y) B.3x(x2-2xy+y2)C.x(3x-y) D.3x(x-y)23.分解因式:(1)3a2b+6ab2-3ab;(2)y(x-y) -(y-x);(3)4a2-4a+1;(4)x2-5x+6;(5)16-8(x-y)+(x-y)2;(6)x4-1;(7)(a2+1)2-4a2;(8)2a2+7a+3;(9)8(x2-2y2) -x(7x+y)+xy;(10)ab-5bc-2a2+10ac;(11)3m(2x-y)2-3mn2;(12)x2-6xy+8y2;(13)ab-ac+bc-b2;(14)a2-b2+2a+2b;(15)a 2-b 2+a -b ;(16)(x +2)(x +4)+x 2-4;(17)a (a +b )2+b (a +b )2; (18)a 3+a 2-a -1;(19)a 2-4a +4-b 2;(20)a 2+2ab +b 2-2a -2b +1;(21)x 3-4x 2-12x ;(22)x 2-2x -8;(23)a 2-ab -6b 2;(24)2x 2-3x +1;(25)(x +y )2+(x +y )-2;(26)x 4-5x 2+4;(27)3x 2-5xy -2y 2;(28)(x -1)(x -2) -20.【参考答案】1.C .2.D .3.(1)3ab (a +2b -1)(2)(x -y )(y +1) (3)2(21)a -(4)(x -2)(x -3)(5)2(4)x y --(6)2(1)(1)(1)x x x -++ (7)22(1)(1)a a -+(8)(2a +1)(a +3) (9)(x -4y )(x +4y )(10)(b -2a )(a -5c ) (11)3m (2x -y -n )(2x -y +n ) (12)(x -2y )(x -4y )(13)(b -c )(a -b )(14)(a +b )(a -b +2) (15)(a -b )(a +b +1)(16)2(x +1)(x +2) (17)3()a b +(18)2(1)(1)a a +- (19)(a -2-b )(a -2+b )(20)2(1)a b +- (21)x (x -6)(x +2)(22)(x -4)(x +2) (23)(a -3b )(a +2b )(24)(2x -1)(x -1) (25)(x +y -1)(x +y +2)(26)(x -2)(x +2)(x -1)(x +1) (27)(3x +y )(x -2y )(28)(x -6)(x +3).。
因式分解法的四种方法例题一、引言在数学领域,因式分解是一项重要的技能,它能帮助我们更好地理解和解决各种数学问题。
本文将介绍四种常见的因式分解方法,包括提公因式法、分组分解法、公式法和综合运用。
通过掌握这些方法,你将能够更加熟练地进行因式分解,提升自己的数学能力。
二、第一种方法:提公因式法1.概念阐述提公因式法是指在多项式中找出一个公因式,然后将其提取出来,从而将多项式分解为更简单的形式。
这种方法适用于具有共同因式的多项式。
2.实例解析例如,分解多项式:x^2 + 2x + 1。
解析:这个多项式可以看作是(x+1)^2的形式,因此,我们可以直接提取公因式(x+1),得到分解式:x^2 + 2x + 1 = (x+1)(x+1)。
三、第二种方法:分组分解法1.概念阐述分组分解法是将多项式中的项按照一定的规律进行分组,然后对每组进行因式分解,最后将各组的分解结果合并。
这种方法适用于具有特定规律的多项式。
2.实例解析例如,分解多项式:x^3 - 6x^2 + 9x - 1。
解析:将多项式分组为:(x^3 - 6x^2) + (9x - 1)。
然后分别对每组进行分解,得到:x^3 - 6x^2 = x^2(x-6),9x - 1 = (9x - 1)。
最后将两组的分解结果合并,得到:x^3 - 6x^2 + 9x - 1 = x^2(x-6) + (9x - 1)。
四、第三种方法:公式法1.概念阐述公式法是根据已知的数学公式来分解多项式。
这种方法适用于可以运用公式进行简化的高次多项式。
2.实例解析例如,分解多项式:x^2 - 4。
解析:根据平方差公式,我们知道x^2 - 4可以分解为(x+2)(x-2)。
五、第四种方法:综合运用1.实例解析例如,分解多项式:x^3 + 5x^2 - 6x - 6。
解析:首先,我们可以提取公因式x,得到x(x^2 + 5x - 6)。
然后,我们发现x^2 + 5x - 6可以进一步分解为(x+6)(x-1)。
数学因式分解的方法数学因式分解的方法要想能在综合性较强的几何题目中能灵活应用,就必须要熟记啦。
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。
店铺为大家整理了数学公式:因式分解的方法,希望能够对大家有所帮助!一、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
注意:换元后勿忘还元.【例】在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).二、运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
① 平方差公式:a-b=(a+b)(a-b);② 完全平方公式:a±2ab+b=(a±b) ;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
③ 立方和公式:a^3+b^3=(a+b)(a-ab+b);④ 立方差公式:a^3-b^3=(a-b)(a+ab+b);⑤ 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.【例】a+4ab+4b =(a+2b)三、分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。
用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。
【例】m+5n-mn-5m=m-5m-mn+5n = (m-5m)+(-mn+5n) =m(m-5)-n(m-5)=(m-5)(m-n).四、拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。
因式分解的四种基本方法
因式分解的四种基本方法分别为:
1. 提公因式法:将多项式中的公因子提取出来,化简成为一个公因式和一个多项式的乘积。
2. 公式法:利用已知的公式,将多项式化简成为一个已知形式的多项式进行因式分解。
3. 分组法:将多项式中的各项按照某种规则分组,化简成为几个因式的和或差。
4. 根据定理进行分解:利用多项式恒等式或定理进行分解,如差平方公式、和差化积公式等。
以上四种方法可根据不同情况选取,以便更快地得到多项式的因式分解形式。
因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。
因式分解法的四种方法因式分解是代数学中的一个重要概念,它在解决多项式的因式分解、求根和化简等问题中起着至关重要的作用。
因式分解法有多种方法,本文将介绍其中的四种常用方法,提公因式法、分组分解法、配方法和换元法。
首先,提公因式法是一种常用的因式分解方法。
当多项式中的各项有一个公因式时,可以利用提公因式法进行因式分解。
例如,对于多项式$2x^2+6x$,可以提取公因式2x,得到$2x(x+3)$,从而完成因式分解。
其次,分组分解法是另一种常见的因式分解方法。
当多项式中的项可以分成两组,每组分别提取一个公因式时,可以利用分组分解法进行因式分解。
例如,对于多项式$xy+2x+y+2$,可以将其分成两组$x(y+2)$和$1(y+2)$,然后提取公因式得到$(x+1)(y+2)$,完成因式分解。
除了提公因式法和分组分解法,配方法也是一种常用的因式分解方法。
当多项式可以通过配方法化简成完全平方时,可以利用配方法进行因式分解。
例如,对于多项式$x^2+6x+9$,可以通过配方法化简成$(x+3)^2$,完成因式分解。
最后,换元法是一种较为灵活的因式分解方法。
当多项式中存在较为复杂的因式时,可以通过适当的换元变换,将多项式化简成较为简单的形式,然后进行因式分解。
例如,对于多项式$x^3+8$,可以通过换元$x^3+8=(x+2)(x^2-2x+4)$,完成因式分解。
综上所述,提公因式法、分组分解法、配方法和换元法是常用的因式分解方法。
在解决多项式的因式分解问题时,可以根据具体情况选择合适的方法进行处理,以便更加高效地完成因式分解。
希望本文介绍的四种方法能够帮助读者更好地理解和掌握因式分解的技巧,提高代数学习的效率和水平。
四次多项式怎么因式分解摘要:1.引言:介绍四次多项式及因式分解的概念2.方法一:利用完全平方公式3.方法二:利用平方差公式4.方法三:利用立方差公式5.方法四:利用分组分解法6.结论:总结四次多项式的因式分解方法正文:一、引言四次多项式是指具有形如ax^4 + bx^3 + cx^2 + dx + e 的代数式,其中a、b、c、d、e 为常数,x 为变量。
因式分解是将一个多项式表示为两个或多个较简单的多项式的乘积的过程。
对于四次多项式,我们可以通过不同的方法进行因式分解。
本文将介绍四种常用的因式分解方法。
二、方法一:利用完全平方公式完全平方公式是指a^2 - 2ab + b^2 = (a - b)^2。
我们可以将四次多项式中的二次项和常数项看作是两个数的平方,然后利用完全平方公式进行因式分解。
例如,对于多项式x^4 - 8x^2 + 16,我们可以将其分解为(x^2 -4)^2,进一步分解为(x + 2)(x - 2)^2。
三、方法二:利用平方差公式平方差公式是指a^2 - b^2 = (a + b)(a - b)。
我们可以将四次多项式中的二次项看作是两个数的平方差,然后利用平方差公式进行因式分解。
例如,对于多项式x^4 - 4x^2 + 4,我们可以将其分解为(x^2 - 2)^2,进一步分解为(x + √2)(x - √2)(x^2 + 2)。
四、方法三:利用立方差公式立方差公式是指a^3 - b^3 = (a - b)(a^2 + ab + b^2)。
我们可以将四次多项式中的三次项看作是两个数的立方差,然后利用立方差公式进行因式分解。
例如,对于多项式x^4 - x^3 - x^2 + x,我们可以将其分解为(x -1)(x^3 + x^2 + x + 1)。
五、方法四:利用分组分解法分组分解法是指将多项式中的项分为两组,然后分别进行因式分解,最后将两组的因式相乘。
例如,对于多项式x^4 + 2x^3 - 3x^2 - 4x + 4,我们可以将其分为(x^4 + 2x^3 - x^2) 和(-3x - 4),然后分别进行因式分解为(x^2 + x)(x + 2)(x - 1) 和(-1)(3x + 4),最后将两组的因式相乘,得到因式分解式为(x^2 + x)(x + 2)(x - 1)(-1)(3x + 4)。
因式分解的四种方法
首先,我们来介绍因式分解的最基本方法——提公因式法。
提公因式法是指根
据多项式的各项提取出一个公因式,然后将多项式分解成公因式和剩余部分的乘积。
这种方法适用于多项式中存在公因式的情况,通过提取公因式,可以简化多项式的因式分解过程,降低难度。
其次,我们介绍因式分解的配方法。
配方法是指根据多项式的特定形式,通过
配方来完成因式分解的过程。
例如,对于二次三项式,可以利用完全平方公式进行配方,将其分解为两个完全平方的乘积。
这种方法适用于特定形式的多项式,通过配方可以快速完成因式分解,提高计算效率。
第三种方法是因式分解的分组法。
分组法是指将多项式中的各项进行分组,然
后利用分组的方式进行因式分解。
这种方法适用于多项式中存在特定形式的项,通过巧妙的分组可以将多项式分解成更简单的形式,从而完成因式分解的过程。
最后,我们介绍因式分解的公式法。
公式法是指根据多项式的特定形式,利用
已知的因式分解公式进行分解。
例如,对于二次三项式,可以利用二次三项式的因式分解公式进行分解。
这种方法适用于多项式中存在已知的因式分解公式的情况,通过套用公式可以快速完成因式分解。
总的来说,因式分解的四种方法各有其适用的情况。
在实际应用中,我们可以
根据多项式的特点和形式,选择合适的方法进行因式分解,以便高效地完成计算。
因此,熟练掌握这四种方法对于代数的学习和应用都是非常重要的。
希望通过本文的介绍,读者能够对因式分解的方法有更深入的理解,从而在代数的学习和解题中能够灵活运用这些方法。
因式分解的方法归纳总结因式分解是数学中重要的基本概念之一,它将一个复杂的多项式分解成简单的因子。
因式分解对于求解方程、简化代数式、证明恒等式等问题具有重要作用。
本文将从基础概念出发,逐一介绍因式分解的方法。
一、公因式提出法公因式提出法是因式分解最基本的方法,根据代数式中的公共因子可以将其差分解成更简单的形式。
这种方法的基本思路就是将多个数的公共因子提出来,从而将长式子分解成更简单的形式。
例如:对于$3a^3+6a^2$,我们可以发现它们的公共因子是$3a^2$,因此我们可以将其分解成$3a^2(a+2)$。
二、配方法配方法又称为乘法公式法,是将一个含有两个括号的式子解析成一个含有多项式的式子,将两个括号中的每个的项分别与对方的各项相乘,并将得到的各项相加,最终得到一个多项式。
例如:对于$a^2+2ab+b^2$,我们可以将其视为$(a+b)^2$,然后根据乘法公式将其展开,即:$a^2+2ab+b^2=(a+b)(a+b)$。
三、完全平方公式完全平方公式是将一个二次多项式拆解成两个一次多项式的方法。
在这个方法中,需要观察多项式的各项系数,然后根据完全平方公式进行分解。
差的平方公式是指将一个二次多项式拆分成两个平方之差的形式。
这种方法常常应用在解方程中。
例如:对于$x^2-9$,我们可以将其分解成$(x+3)(x-3)$,实现了将其拆分成差的平方的形式。
五、分组分解法分组分解法是将多项式中的各项按照一定规律分组,进而用公式进行分解的方法。
这种方法可以用公式快速求出复杂的式子。
例如:对于$4x^3-13x^2-7x+6$,我们可以将其以$-13x^2+4x^3-7x+6$的形式分成两个组,然后将每个组的项提出公因式进行分解,即:$-13x^2+4x^3-7x+6=x^2(4x-13)-(7x-6)=(x^2-1)(4x-13)$。
总结:因式分解是求解数学问题时常常使用的方法。
常用的因式分解方法包括公因式提出法、配方法、完全平方公式、差的平方公式以及分组分解法等。
因式分解的常用方法(方法最全最详细)因式分解的常用方法方法介绍因式分解是将一个多项式化成几个整式的积的形式。
常用的因式分解方法有提公因式法、公式法、十字相乘法、分组分解法和换元法等。
一般的因式分解步骤是先提公因式,再利用乘法公式,若不能实施则采用分组分解法或其他方法。
将一个多项式进行因式分解应分解到不能再分解为止。
提公因式法提公因式法是将多项式中的公因式提取出来,例如ma+mb+mc=m(a+b+c)。
公式法公式法是将整式的乘、除中的乘法公式反向使用,例如(a+b)(a-b) = a^2-b^2,(a±b)^2= a^2±2ab+b^2等。
分组分解法分组分解法是将多项式分为若干组,使得每组都含有公因式,然后再进行因式分解。
换元法换元法是将多项式中的一部分用一个新的变量代替,然后再进行因式分解。
注意:因式分解应分解到不能再分解为止。
例题已知a,b,c是三角形ABC的三边,且a+b+c=ab+bc+ca,则三角形ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形解:a+b+c=ab+bc+ca,移项得2a+2b+2c=2ab+2bc+2ca,化简得(a+b+c)^2=4(ab+bc+ca),即(a-b)^2+(b-c)^2+(c-a)^2=0.因为三角形ABC的三边不全为零,所以(a-b)^2≥0,(b-c)^2≥0,(c-a)^2≥0.所以(a-b)^2=(b-c)^2=(c-a)^2=0,即a=b=c,所以三角形ABC是等边三角形。
以上是因式分解的常用方法,希望对大家有所帮助。
凡是能十字相乘的二次三项式ax^2+bx+c,都要求Δ=b^2-4ac>0且是一个完全平方数。
因此,Δ=9-8a为完全平方数,故a=1.对于分解因式x+5x+6,我们可以将6分解成两个数相乘,且这两个数的和要等于 5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),我们可以发现只有2×3的分解适合,即2+3=5.因此,x+5x+6=(x+2)(x+3)。
因式分解的四种方法(讲义)
➢ 课前预习
1. 平方差公式:___________________________;
完全平方公式:_________________________;
_________________________.
2. 对下列各数分解因数:
210=_________; 315=__________;
91=__________; 102=__________.
3. 探索新知:
(1)39999-能被100整除吗?
小明是这样做的:
32299999999991
99(991)
99(991)(991)999800
9998100
-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯
所以39999-能被100整除.
(2)38989-能被90整除吗?你是怎样想的?
(3)3m m -能被哪些整式整除?
➢ 知识点睛
1. __________________________________________叫做把这个多项式因式分
解.
2. 因式分解的四种方法
(1)提公因式法
需要注意三点:
①___________________________;
②___________________________;
③___________________________.
(2)公式法
两项通常考虑_____________,三项通常考虑_____________.
运用公式法的时候需要注意两点:
①___________________________;
②___________________________.
(3)分组分解法
多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.
(4)十字相乘法
十字相乘法常用于二次三项式的结构,其原理是:
2()()()x p q x pq x p x q +++=++
3. 因式分解是有顺序的,记住口诀:“___________________”;因式分解是
有范围的,目前我们是在______范围内因式分解.
➢ 精讲精练
1. 下列由左到右的变形,是因式分解的是________________.
①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;
③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;
⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.
2. 因式分解(提公因式法):
(1)2212246a b ab ab -+;
(2)32a a a --+; 解:原式=
解:原式= (3)()(1)()(1)a b m b a n -+---; 解:原式=
(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=
解:原式= 3. 因式分解(公式法): (1)249x -;
(2)216249x x ++; 解:原式=
解:原式= (3)2244x xy y -+-; (4)229()()m n m n +--; 解:原式=
解:原式= (5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-; 解:原式=
(6)2(25)4(52)x x x -+-; 解:原式=
(7)228168ax axy ay -+-; (8)44x y -; 解:原式=
解:原式= (9)4221a a -+; (10)22222()4a b a b +-. 解:原式= 解:原式=
4. 因式分解(分组分解法): (1)2105ax ay by bx -+-; (2)255m m mn n --+;
解:原式= 解:原式=
(3)22144a ab b ---;
(4)22699a a b ++-;
解:原式=
解:原式= (5)2299ax bx a b +--; (6)22244a a b b -+-. 解:原式=
解:原式= 5. 因式分解(十字相乘法): (1)243x x ++;
(2)26x x +-; 解:原式=
解:原式= (3)223x x -++;
(4)221x x +-; 解:原式=
解:原式= (5)22512x x +-;
(6)2232x xy y +-; 解:原式=
解:原式= (7)2221315x xy y ++; (8)3228x x x --. 解:原式= 解:原式=
6. 用适当的方法因式分解: (1)222816a ab b c -+-; (2)22344xy x y y --;
解:原式= 解:原式=
(3)22(1)12(1)16a a ---+; (4)(1)(2)12x x ++-; 解:原式=
解:原式= (5)2(2)8a b ab -+; 解:原式=
(6)222221x xy y x y -+-++.
解:原式= 【参考答案】
➢ 课前预习
1. 22()()a b a b a b +-=-
222
222()2()2a b a ab b a b a ab b +=++-=-+
2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×2
3. (2)328989898989-=⨯-
289(891)
89(891)(891)899088
=⨯-=⨯+⨯-=⨯⨯
∴38989-能被90整除
3223(1)
(1)(1)m m m m m
m m m m m -=⋅-=-=+-()
∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除
➢ 知识点睛
1. 把一个多项式化成几个整式的积的形式
2. (1)①公因式要提尽
②首项是负时,要提出负号
③提公因式后项数不变
(2)平方差公式,完全平方公式 ①能提公因式的先提公因式
②找准公式里的a 和b
(3)公因式,完全平方公式,平方差公式
3. 一提二套三分四查,有理数 ➢ 精讲精练
1. ④⑥⑦
2. (1)6(241)ab a b -+
(2)2(1)a a a -+-
(3)()()a b m n -+
(4)3()x y -
(5)1(1)m x x -+
3. (1)(23)(23)x x +-
(2)2(43)x +
(3)2(2)x y --
(4)4(2)(2)m n m n ++
(5)29(2)x y -
(6)(25)(2)(2)x x x -+-
(7)28()a x y --
(8)22()()()x y x y x y ++-
(9)22(1)(1)a a +-
(10)22()()a b a b +-
4. (1)(5)(2)x y a b --
(2)(5)()m m n --
(3)(12)(12)a b a b ++--
(4)(33)(33)a b a b +++-
(5)()(31)(31)a b x x ++-
(6)(2)(22)a b a b -+-
5. (1)(1)(3)x x ++
(2)(3)(2)x x +-
(3)(3)(1)x x --+
(4)(21)(1)x x -+
(5)(4)(23)x x +-
(6)()(32)x y x y +-
(7)(5)(23)x y x y ++
(8)(2)(4)x x x +-
6. (1)(4)(4)
a b c a b c -+-- (2)2(2)y x y --
(3)2(5)(3)a a --
(4)(2)(5)x x -+
(5)2(2)a b +
(6)2(1)x y --。