专训1 因式分解的六种常见方法 公开课一等奖课件
- 格式:ppt
- 大小:436.00 KB
- 文档页数:27
因式分解ppt作为一名数学学者,我认为因式分解是数学中的基本算法之一,也是许多高级数学领域的基础。
在学校的数学教育中,因式分解通常作为代数学的一部分来学习。
因此,本文将从代数学的角度阐述因式分解的相关知识和应用。
首先,让我们来看看因式分解的定义。
因式分解是将一个多项式分解成若干个较简单的因子的乘积的过程。
可以分解的多项式通常具有以下形式:$a^2-b^2$,$ax^2 + bx + c$等。
接下来,让我们来看一些常见的因式分解方法。
首先是提公因式法,该方法可以从一个多项式中提取一个公共因子。
例如,对于式子$3x^2 + 9x$,我们可以提取出3x,得到$3x(x+3)$。
其次是求平方差法,该方法可以将形如$a^2-b^2$的多项式分解为$(a+b)(a-b)$。
例如,$9-4$可以分解为$(3+2)(3-2)$。
最后是配方法,这是一种用于分解三次或更高次多项式的方法。
例如,对于式子$x^3+3x^2+3x+1$,我们可以使用配方法将其分解为$(x+1)^3$。
除了以上方法外,还有一些其他的因式分解技巧,如因式定理、差积公式等,都可以有效地帮助我们完成因式分解。
事实上,因式分解在数学中有着广泛的应用。
在高等数学领域,因式分解是许多理论研究的基础,如线性代数、物理学、工程学等都有广泛的应用。
在实际计算中,因式分解也有许多应用,如多项式插值、信号处理、图像处理等。
此外,在金融等领域中,因式分解也有不少应用,如投资分析、财务报告分析等。
总之,因式分解是一种基本的数学算法,在数学教育中具有重要的地位。
通过学习和掌握因式分解的方法和应用,不仅能够提高代数学的水平,也能够更好地应用于实际计算和理论研究中。
专训1 因式分解的六种常见方法名师点金:因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.提公因式法公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2分解因式,其中一个因式是-4x2y2,则另一个因式是( )A.3y+4x-1 B.3y-4x-1 C.3y-4x+1 D.3y-4x2.【2015·广州】分解因式:2-6=.3.把下列各式分解因式:(1)2x2-;(2)-4m4n+16m3n-28m2n.公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.公式法直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.先提公因式再用公式法6.把下列各式分解因式:(1)(x-1)+b2(1-x);(2)-3x7+24x5-48x3.先局部再整体法7.分解因式:(x+3)(x+4)+(x2-9).先展开再分解法8.把下列各式分解因式:(1)x(x+4)+4;(2)4x(y-x)-y2.分组分解法9.观察“探究性学习”小组的甲、乙两名同学的因式分解:甲:x2-+4x-4y=(x2-)+(4x-4y) (分成两组)=x(x-y)+4(x-y) (分别提公因式)=(x-y)(x+4). (再提公因式)乙:a2-b2-c2+2=a2-(b2+c2-2) (分成两组)=a2-(b-c)2(运用完全平方公式)=(a+b-c)(a-b+c). (再用平方差公式)请你在他们的解法的启发下,把下列各式分解因式:(1)m2-+-;(2)x2-2+y2-9.拆、添项法10.分解因式:x4+.11.先阅读下面的材料:我们已经学过将一个多项式分解因式的方法有提公因式法、运用公式法、分组分解法,其实分解因式的方法还有拆项法等.拆项法:将一个多项式的某一项拆成两项后可提公因式或运用公式继续分解的方法.如:x2+2x-3=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).请你仿照以上方法,分解因式:(1)x2-6x-7;(2)a2+4-5b2.整体法“提”整体12.分解因式:a(x+y-z)-b(z-x-y)-c(x-z+y).“当”整体13.分解因式:(x+y)2-4(x+y-1).“拆”整体14.分解因式:(c2+d2)+(a2+b2).“凑”整体15.分解因式:x2-y2-4x+6y-5.换元法16.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.答案1.B 2.2m(x-3y)3.解:(1)2x2-=x(2x-y).(2)-4m4n+16m3n-28m2n=-4m2n(m2-4m+7).点拨:如果一个多项式第一项含有“-”号,一般要将“-”号一并提出,但要注意括号里面的各项要改变符号.4.解:(1)原式=a(b-c)-(b-c)=(b-c)(a-1).(2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5).点拨:将多项式中的某些项变形时,要注意符号的变化.5.解:(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(+2)(-2).(2)原式=(x2+y2+2)(x2+y2-2)=(x+y)2(x-y)2.(3)原式=(x2+6x+9)2=[(x+3)2]2=(x+3)4.点拨:因式分解必须分解到不能再分解为止,如第(2)题不能分解到(x2+y2+2)(x2+y2-2)就结束了.6.解:(1)原式=(x-1)-b2(x-1)=(x-1)(1-b2)=(x-1)(1+b)(1-b).(2)原式=-3x3(x4-8x2+16)=-3x3(x2-4)2=-3x3(x+2)2(x-2)2.7.解:原式=(x+3)(x+4)+(x+3)·(x-3)=(x+3)[(x+4)+(x-3)]=(x+3)(2x+1).点拨:解此题时,表面上看不能分解因式,但通过局部分解后,发现有公因式可以提取,从而将原多项式因式分解.8.解:(1)原式=x2+4x+4=(x+2)2.(2)原式=4-4x2-y2=-(4x2-4+y2)=-(2x-y)2.点拨:通过观察发现此题不能直接分解因式,但运用整式乘法法则展开后,便可以运用公式法分解.9.解:(1)m2-+-=(m2-)+(-)=m(m-n)+x(m-n)=(m-n)(m+x).(2)x2-2+y2-9=(x2-2+y2)-9=(x-y)2-9=(x-y+3)(x-y-3).10.解:原式=x4+x2+-x2=-x2=(x2-x+).点拨:此题直接分解因式很困难,考虑到添加辅助项使其符合公式特征,因此将原式添上x2与-x 2两项后,便可通过分组使其符合平方差公式的结构特征,从而将原多项式进行因式分解.11.解:(1)x2-6x-7=x2-6x+9-16=(x-3)2-42=(x-3+4)(x-3-4)=(x+1)(x-7).(2)a2+4-5b2=a2+4+4b2-9b2=(a+2b)2-(3b)2=(a+2b+3b)(a+2b-3b)=(a+5b)(a-b).12.解:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z)(a+b-c).13.解:原式=(x+y)2-4(x+y)+4=(x+y-2)2.点拨:本题把x+y这一整体“当”作完全平方公式中的字母a.14.解:原式=2+2+2+2=(2+2)+(2+2)=(+)+(+)=(+)(+).点拨:本题“拆”开原式中的两个整体,重新分组,可谓“柳暗花明”,出现转机.15.解:原式=(x2-4x+4)-(y2-6y+9)=(x-2)2-(y-3)2=(x+y-5)(x-y+1).点拨:这里巧妙地把-5拆成4-9.“凑”成(x2-4x+4)和(y2-6y+9)两个整体,从而运用公式法分解因式.16.解:(1)设a2+2a=m,则原式=(m-2)(m+4)+9=m2+4m-2m-8+9=m2+2m+1=(m+1)2=(a2+2a+1)2=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1=n2+3n+n+3+1=n2+4n+4=(n+2)2=(b2-b+2)2.。