四川省南充市第十中学校2017届九年级数学9月月考(第一次月考)试题
- 格式:doc
- 大小:2.47 MB
- 文档页数:8
四川省南充市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·陕西模拟) 的倒数是()A . 2B . -2C . 2D .2. (2分)(2017·昆山模拟) 南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A . 0.35×108B . 3.5×107C . 3.5×106D . 35×1053. (2分)下列图形是正方体表面积展开图的是()A .B .C .D .4. (2分)(2019·武昌模拟) 下列平面图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .5. (2分)(2018·抚顺) 二次根式在实数范围内有意义,则x的取值范围是()A . x≥1B . x≤1C . x>1D . x<16. (2分)某地统计部门公布最近5年国民消费指数增长率分别为8.5%、9.2%、9.9%、10.2%、9.8%.业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据比较小的是()A . 方差B . 平均数C . 众数D . 中位数7. (2分) (2017八下·蒙阴期中) 平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B ( 2,﹣1 ),C(﹣m,﹣n),则点D的坐标是()A . (﹣2,1 )B . (﹣2,﹣1 )C . (﹣1,﹣2 )D . (﹣1,2 )8. (2分) A,B两地相距180 km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1 h.若设原来的平均车速为x km/h,则根据题意可列方程为()A . - =1B . - =1C . - =1D . - =19. (2分)若点A(﹣1,y1),B(1,y2),C(2,y3)都在反比例函数y= 的图象上,则y1 , y2 , y3的大小关系为()A . y1<y2<y3B . y1<y3<y2C . y3<y1<y2D . y3<y2<y110. (2分)(2017·天门模拟) 若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1 , 0),(x2 , 0),且x1<x2 ,图象上有一点M(x0 , y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2 ,其中正确的有()A . ①②B . ①②④C . ①②⑤D . ①②④⑤二、填空题 (共5题;共6分)11. (1分)(2017·虞城模拟) 计算:| ﹣4|﹣()﹣2=________.12. (1分) (2018八上·东台月考) 在平面直角坐标系中点,关于轴对称的点的坐标为(-2,-4),则点的坐标是________.13. (1分)李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是________.14. (2分)(2019·福田模拟) 如图,直线y x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.15. (1分)(2017·绵阳) 如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC 的延长线于点F.在AF上取点M,使得AM= AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是________.三、解答题 (共7题;共69分)16. (5分) (2020八上·襄城期末) 先化简,再求值.(1),其中x=0.5(2),其中x=-3.217. (12分)(2018·亭湖模拟) 某公司共25名员工,下表是他们月收入的资料.月收入/元45000180001000055004800340030002200人数111361111(1)该公司员工月收入的中位数是________元,众数是________元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.18. (6分) O为等腰△ABC的底边AB的中点,以点O为圆心,AB为直径的半圆分别交AC,BC于点D,E.(1)求证:∠AOE=∠BOD.(2)求证:19. (5分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长(精确到0.1m);(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?(精确到0.1m)(参考数据:sin68°=0.9272,cos68°=0.3746,tan68°=2.4751,sin50°=0.766O,cos50°=0.6428,tan50°=1.1918)20. (15分)如图,反比例函数(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.21. (11分) (2020八上·昭平期末) 某地长途汽车客运公规定旅客可随携带一定质量的行李,如果超过规定需要购买行李票,行李票费用y元是行李质量xkg的一次函数,如图所示.(1)求y与x之间的函数表达式;(2)求旅客最多可免费携带行李的质量是多少?22. (15分)(2017·安徽模拟) 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD= 时,求线段BG的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共69分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共12 页第12 页共12 页。
2017——2018学年度第一学期九年级月考数学试卷试卷满分120分,考试时间100分钟. 答卷前,请你务必将自己的班级、姓名、考号填写在“答题卡”上.务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,仅需将“答题卡”交回. 第Ⅰ卷选择题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号的信息点. 第Ⅱ卷非选择题用0.5毫米黑颜色水笔或签字笔作答.第Ⅰ卷(选择题)(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)已知x =1是关于x 的一元二次方程x 2+mx –2=0的一个根,则m 的值是( ) .–1 B . 0或10 C .0 D .1 一元二次方程x 2–x +2=0的根的情况是( ) .有两个相等的实数根B .有两个不相等的实数根 .无实数根D .只有一个实数根方程x 2–9x +18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) .12 B .12或15 C .15 D .不能确定直角坐标平面上将二次函数y =–2(x –1)2–2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )A .(0,0)B .(1,–2)C .(–2,1)D .(0,–1)如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是( ) 如图,函数y = –x 2+bx +c 的部分图象与x 轴、y 轴的交点分别为A (1,0),B (0,3),对称轴B(11题图)D.B. C.A.NEB CDAFM(9题图)是x= –1,在下列结论中,错误的是( )A.顶点坐标为(–1,4)B.函数的解析式为y= –x2–2x+3C.抛物线与x轴的另一个交点是(–3,0)D. 当x<0时,y随x的增大而增大7. 将含有30°角的直角三角板OAB若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(2,–2)B.(–2,2) C .(2,–2) D. .(–2,2)8. 剪纸是中国传统的民间艺术,下列剪纸作品中是中心对称图形的是()9.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM,DN分别交于点E,F,把三角板DMN绕点D旋转到一定位置,使得DE=DF,则∠BDN的度数是()A.105°B.115°C.120°D.135°10.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( )A.3cmB.4cmC.5cmD.6cm11.如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=( )A.65°B.50°C.130°D.80°12. 如图,如图,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是( )A.(5,4)B.(5,3)C.(4,2)D.(4,3)第Ⅱ卷(非选择题)(18题图)CDB ′EC ′D ′二、填空题(本大题共6小题,每小题3分,共18分)方程12x (x –4)=5(x –4)的根是.抛物线y = –x 2–2x +m ,若其顶点在x 轴上,则m =.已知二次函数y = –x 2+bx +c 过四个点A (3,–4),B (–5,–4),C (–2,y 1),D (3,y 2),则y 1_____ y 2 (填“>”、“=”或“<”).如图,在⊙O 中,弦AB =1㎝,圆周角∠ACB =30°,则⊙O 的直径等于㎝. 如图,一个宽为2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是 cm.如图,将矩形ABCD 绕点A 逆时针旋转至矩形AB ′C ′D ′的位置.(1)若AC ′的中点恰好与D 点重合,AB ′交CD 于点E ,则旋转的角度是; (2)在(1)的条件下,若AB =3,则△AEC 的面积为.解方程:4(2x +1)2=3(4x 2-1) 如图,某建筑工地上一钢管的横截面是圆环形.王师傅将直尺边缘紧靠内圆,直尺与外圆交于点A 、B (AB 与内圆相切于点C ,其中点A 在直尺的零刻度处).请观察图形,写出线段AB 的长(图中最小刻度为1cm),并根据得到的数据计算该钢管的横截(阴影部分)面积.(结果用含π的式子表示) 若二次函数的图象的对称轴是x = 32,并且图象过A (0,–4)B (4,0).(16题图)108642(17题图)( 1 ) 求此二次函数图象上点B 关于对称轴x = 32对称的点B ′的坐标;( 2 ) 求此二次函数的解析式.22. 如图,AB 是⊙O 的直径,点F 、C 是⊙O 上两点,且AF⌒=FC ⌒=CB ⌒,连接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D . (1)求证:CD 是⊙O 的切线; (2)若CD =23,求⊙O 的半径.23.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.24.已知△ABC 是等边三角形,点P 为射线AD 上任意一点(点P 与点A 不重合),连结CP ,将线段CP 绕点C 顺时针旋转60°得到线段CQ ,连结QB 并延长交直线AD 于点E .图1E B D APQ 图2EB CD APQ 图3BCDA PQ(1)如图1,若∠DAC =90°,猜想∠QEP = °;(2)如图3,若∠DAC =135°,∠ACP =15°,且AC =2,则BQ 的长为;(3)如图2、图3,若当∠DAC 是锐角或钝角时,其它条件不变,猜想∠QEP 的度数,选取一种情况加以证明.25.如图,已知抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为Q (2,–1),且与y 轴交于点C (0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线(备用图)向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 且以A 、P 、E 、F 为顶点的四边形是平行四边形,请直接写 出点F 的坐标.。
四川省南充市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分、共30分) (共10题;共30分)1. (3分)一元二次方程x2﹣4x﹣1=0配方后正确的是()A . (x﹣2)2=1B . (x﹣2)2=5C . (x﹣4)2=1D . (x﹣4)2=52. (3分) (2019九下·象山月考) 如图,在Rt△ABC中,BC=3,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动.下列结论:①若C、O两点关于AB对称,则OA=3 ;②若AB平分CO,则AB⊥CO;③C,O两点间的最大距离是6;④斜边AB的中点D运动的路径长是π,其中正确的有()A . ①②B . ③④C . ②③④D . ①③④3. (3分)已知三角形三边的长分别为4,9,则这个等腰三角形的周长为()A . 13B . 17C . 22D . 17或224. (3分)(2019·路南模拟) 下列说法正确的是()A . 调查某班学生的身高情况,适宜采用抽样调查B . “若m、n互为相反数,则mn=0”,这一事件是必然事件C . 小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D . “1,3,2,1的中位数一定是2”,这一件是不可能事件5. (3分) (2017八下·和平期末) 在菱形ABCD中,E、F分别在BC和CD上,且△AEF是等边三角形,AE=AB,则∠BAD等于()A . 95°B . 100°C . 105°D . 120°6. (3分)(2017·姑苏模拟) 如图已知一次函数y=﹣x+b与反比例函数y= 的图象有2个公共点,则b 的取值范围是()A . b>2B . ﹣2<b<2C . b>2或b<﹣2D . b<﹣27. (3分)如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE=()A . 40°B . 50°C . 60°D . 70°8. (3分)右图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A . 5πcm2B . 10πcm2C . 15πcm2D . 20πcm29. (3分) (2020九上·来宾期末) 某文具店将进价为30元的钢笔,以50元售出,平均每月能售出300支,经试销发现每支钢笔每涨价10元,其月销售量就减少10支,为实现每月利润8000元,设定价为x,则可得方程()A . 300(x-30)=8000B . 300(x-50)=8000C . (x-30)[300-(x-50)]=8000D . x-30=800010. (3分) (2019八上·双台子期末) 如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A .B .C .D .二、填空题(每小题3分,共18分) (共6题;共18分)11. (3分)(2018·聊城) 某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是________.12. (3分) (2019九上·定边期中) 若1是关于的方程的一个根,则的值为________.13. (3分)(2018·天桥模拟) 将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则菱形AECF 的周长为________.14. (3分) (2016九上·海原期中) 依次连接菱形各边中点所得到的四边形是________.15. (3分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是________,m的值是________。
九年级数学上学期【第一次月考卷】(人教版)(满分120分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一.选择题(共10小题)1.若关于x的一元二次方程(m﹣3)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于()A.1B.2C.1或2D.02.方程(x﹣1)(x+3)=12化为ax2+bx+c=0的形式后,a、b、c的值为()A.1、2、﹣15B.1、﹣2、﹣15C.﹣1、﹣2、﹣15D.﹣1、2、﹣153.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=1444.下列一元二次方程中,两实数根之和为3的是()A.x2﹣3x+3=0B.x2+3x﹣3=0C.x2﹣3x﹣3=0D.x2+3x+3=05.二次函数y=2x2﹣x﹣1的顶点坐标是()A.(0,﹣1)B.(2,﹣1)C.(,﹣)D.(﹣,)6.方程x(x−2)=x−1化成一元二次方程的一般形式是()A.x2﹣2x+2=0B.x2﹣2x=0C.x2﹣3x﹣1=0D.x2﹣3x+1=07.如图,△ABC的边BC=y,BC边上的高AD=x,△ABC的面积为3,则y与x的函数图象大致是()A.B.C.D.8.已知三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,则此三角形的周长为()A.10B.8C.7D.59.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=57010.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是()A.a1>a2>a3>a4B.a2>a1>a4>a3C.a2>a1>a3>a4D.a1>a2>a4>a3二.填空题(共8小题)11.当方程(m﹣1)x﹣(m+1)x﹣2=0是一元二次方程时,m的值为.12.如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=.13.已知二次函数y=2x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则m =.14.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.15.参加一次聚会的每两人都握了一次手,所有人共握手66次,则有人参加聚会.16.若抛物线y=ax2+bx+c过点A(﹣1,2),B(3,2),则此抛物线的对称轴是直线.17.对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣6x+8=0的两个根,则x1⊗x2=.18.已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④(a+b)2<b2,其中正确的有.三.解答题(共8小题)19.解下列方程:5x2﹣3x=x+1.20.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.21.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个三角形的面积.22.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.23.已知关于x的方程x2﹣(k+1)x+k2+1=0.(1)当k取何值方程有两个实数根.(2)是否存在k值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为.24.如图,抛物线y=ax2+4ax+2的顶点A在x轴上,经过点A的直线交该抛物线于点C,交y轴于点B,且点B是线段AC的中点,(1)求该抛物线的解析式;(2)求直线AC的解析式.25.在Rt△ABC中,∠C=90°,点O是AB的中点,M、N分别在边AC、BC上,OM⊥ON,连MN,AC=4,BC=8.设AM=a,BN=b,MN=c.(1)求证:a2+b2=c2;(2)①若a=1,求b;②探究a与b之间的函数关系式;(3)△CMN的面积等于△ABC的面积的时,求b.26.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.。
数学月考9年级上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. 2C. 3D. 42. 在三角形ABC中,若∠A = 90°,AB = 3,AC = 4,则BC的长度为:A. 5B. 6C. 7D. 83. 下列哪个数是无理数?A. √9B. √16C. √25D. √264. 若sinθ = 1/2,且θ是锐角,则cosθ的值为:A. √3/2B. √2/2C. 1/2D. 1/√25. 二项式展开式(a + b)⁵的系数和为:A. 1B. 2C. 3D. 4二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()3. 若一组数据的方差为0,则这组数据中的每个数都相等。
()4. 在平面直角坐标系中,点(3, -4)在第四象限。
()5. 两个函数若它们的定义域和值域都相同,则这两个函数是同一函数。
()三、填空题(每题1分,共5分)1. 若函数f(x) = 2x + 3,则f(-1) = _______。
2. 若一组数据的平均数为10,则这组数据的总和为_______。
3. 在直角坐标系中,点(2, 3)关于y轴的对称点坐标为_______。
4. 若sinθ = 3/5,且θ在第二象限,则cosθ = _______。
5. 若一个等差数列的首项为3,公差为2,则该数列的第5项为_______。
四、简答题(每题2分,共10分)1. 解释什么是函数的单调性。
2. 简述勾股定理的内容。
3. 什么是绝对值?如何计算一个数的绝对值?4. 解释直角坐标系中,第一象限的特点。
5. 简述等差数列的通项公式。
五、应用题(每题2分,共10分)1. 解一元二次方程x² 5x + 6 = 0。
四川省南充市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共24分) (共8题;共24分)1. (3分) (2019九上·天台月考) 以x为自变量的二次函数y= x2-2(b-2)x+ b2-1的图象不经过第三象限,则实数b的取值范围是()A . b≧B . b≧1或b≦-1C . b≧2D . 1≦ b≦22. (3分) (2018九上·建昌期末) 将抛物线y=2x2 向右平移一个单位后得到的新抛物线的解析式为()A . y=2(x+1)2B . y=2(x-1)2C . y=2x2+1D . y=2x2-13. (3分)如图,关于抛物线y=(x-1)2-2,下列说法错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=lC . 开口方向向上D . 当x>1时,Y随X的增大而减小4. (3分) (2017九上·余姚期中) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个5. (3分) (2019九上·义乌月考) 抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是()A . ﹣4<x<1B . ﹣3<x<1C . x<﹣4或x>1D . x<﹣3或x>16. (3分)抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的两根是()A . x1=﹣1,x2=B . x1=﹣1,x2=0C . x1=﹣1,x2=2D . x1=﹣1,x2=7. (3分)如图,二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②b2-4ac<0 ;③2a+b>0 ;④a+b+c>0,其中正确的个数()A . 1B . 2C . 3D . 48. (3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题(每小题3分,共18分) (共6题;共18分)9. (3分) (2017九上·余姚期中) 飞机着陆后滑行的距离单位:米关于滑行的时间单位:秒的函数解析式是,则飞机着陆后滑行的最长时间为________ 秒10. (3分)二次函数y=﹣x2+2x﹣3图象的顶点坐标是________ .11. (3分)(2018·福建) 如图,直线y=x+m与双曲线y= 相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为________.12. (3分) (2019九上·安庆期中) 如图,一名男生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则他将铅球推出的距离是________ .13. (3分) (2017九上·滕州期末) 将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是________.14. (3分) (2016九上·昆明期中) 如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为________三、解答题(本大题共10小题,共78分) (共10题;共78分)15. (6分)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,与y轴相交于点C,请完成下面的填空:(1)该抛物线的解析式为________.(2)在该抛物线的对称轴上存在点Q,使得△QAC的周长最小,则Q点的坐标为________.(3)在抛物线上的第二象限上存在一点P,使△PBC的面积最大,则点P的坐标为________,△PBC的最大面积为________.16. (6分) (2016九上·杭锦后旗期中) 某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.①写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式,并写出x的取值范围.②若商场要每天获得销售利润2000元,销售单价应定为多少元?③求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?17. (6分) (2020九上·三门期末) 用一段长为28m的铁丝网与一面长为8m的墙面围成一个矩形菜园,为了使菜园面积尽可能的大,给出了甲、乙两种围法,请通过计算来说明这个菜园长、宽各为多少时,面积最大?最大面积是多少?18. (7分) (2017九上·灌云期末) 某涵洞的截面边缘成抛物线形,现测得当水面宽AB=2米时涵洞的顶点与水面的距离为4米,这时离开水面2米处涵洞宽DE是多少?19. (7.0分)(2018·成都) 在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,)射线,分别交直线于点, .(1)如图1,当与重合时,求的度数;(2)如图2,设与的交点为,当为的中点时,求线段的长;(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.20. (7.0分)(2019·金台模拟) 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.21. (8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.22. (9.0分)(2020·营口模拟) 某个体地摊经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能售出200件;现采用提高商品售价,减少销售量的办法增加利润,若销售单价每涨1元,每天的销售量就减少20件,设销售单价为每件x元,销售量为y件.(1)写出y与x函数关系式.(2)若想每天的销售利润恰为640元,同时又要使顾客得到实惠,这种小商品每件售价应定为多少元?(3)这种小商品每件售价应定为多少元时,每天的销售利润最大?最大利润是多少元?23. (10分)(2019·张掖模拟) 如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.(1)填空:A点坐标为(________,________),D点坐标为(________,________);(2)若抛物线y= x2+bx+c经过C、D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.24. (12分) (2018九下·市中区模拟) 如图,已知一条直线过点(0,4),且与抛物线y= x2交于A,B 两点,其中点A的横坐标是-2.(1)求这条直线的解析式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题(每小题3分,共24分) (共8题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题(每小题3分,共18分) (共6题;共18分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题(本大题共10小题,共78分) (共10题;共78分) 15-1、15-2、15-3、16-1、17-1、答案:略18-1、答案:略19-1、答案:略19-2、19-3、答案:略20-1、20-2、答案:略21-1、21-2、答案:略22-1、答案:略22-2、22-3、答案:略23-1、23-2、23-3、答案:略24-1、答案:略24-2、24-3、答案:略第11 页共11 页。
四川省南充市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题4分,满分40分.) (共10题;共40分)1. (4分)下列函数中①y=3x+1;②y=4x2﹣3x;③y=+x2;④y=5﹣2x2 ,是二次函数的有()A . ②B . ②③④C . ②③D . ②④2. (4分)(2016·赤峰) 函数y=k(x﹣k)与y=kx2 , y= (k≠0),在同一坐标系上的图象正确的是()A .B .C .D .3. (4分)已知抛物线的解析式为y=﹣2(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A . 增大B . 减小C . 先增大再减小D . 先减小后增大4. (4分)(2018·毕节) 将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A . y=(x+2)2﹣5B . y=(x+2)2+5C . y=(x﹣2)2﹣5D . y=(x﹣2)2+55. (4分)如图,A1、A2、A3是抛物线y=ax2( a>0)上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3 ,直线A2B2交线段A1A3于点C.A1、A2、A3三点的横坐标为连续整数n﹣1、n、n+1,则线段CA2的长为()A . aB . 2aC . nD . n-16. (4分)已知函数,若使y=k成立的x值恰好有三个,则k的值为()A . 0B . 1C . 2D . 37. (4分)(2019·增城模拟) 关于抛物线,下列说法错误的是().A . 开口向上B . 与轴只有一个交点C . 对称轴是直线D . 当时,随的增大而增大8. (4分) (2016九上·嘉兴期末) 对于抛物线y=﹣2(x﹣1)2+3,下列判断正确的是()A . 抛物线的开口向上B . 抛物线的顶点坐标是(﹣1.3)C . 当x=3时,y>0D . 方程﹣2(x﹣1)2+3=0的正根在2与3之间9. (4分) (2018九上·大石桥期末) 已知二次函数(a是常数,),下列结论正确的是()A . 当a = 1时,函数图像经过点(一1,0)B . 当a = 一2时,函数图像与x轴没有交点C . 若,函数图像的顶点始终在x轴的下方D . 若,则当时,y随x 的增大而增大10. (4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论正确的有()个.①abc<0,②2a+b=0,③a-b+c>0,④4a+2b+c>0,⑤b>-2c.A . 2B . 3C . 4D . 5二、填空题(本大题共4小题,每小题5分,满分20分) (共4题;共20分)11. (5分)如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是________ .12. (5分)某纸箱厂第1年的利润为50万元,如果每一年比上一年的利润增长率相同,都是x,则第3年的利润为________万元。
2017年秋期九年级第一次月考 数学试题 (满分120分,时间120分钟) 一、选择题(2×10=20分) 1. 化简2)3(-的结果是( ) A. 9 B. -3 C. 3 D. ±3 2. 下列计算正确的是 A .2553=- B .532=+ C .326=÷ D .3226=⨯3. 下列式子一定是二次根式的是( ) A .2--x B .x x +2 C .22+x D .22-x 4. 下列各式不是最简二次根式的是( )C. 4D. 44+a 5.是同类二次根式的是( )6.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤37、、下列各方程中,一定是关于x 的一元二次方程的是( )A 、23252x x x +=+()B 、ax c 20+=C 、()a x x +++=16102D 、()a x x 221320+-+=8、若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=39、 关于x 的一元二次方程()22120a x x -+-=是一元二次方程,则a 满足( )A. 1a ≠B. 1a ≠-C. 1a ≠±D.为任意实数10、若02=+a a ,则 a 的取值范围是 ( )A 、0B 、a ≥ 0C 、a ≤ 0D 、a < 0二、填空题(2×8=16分)11有意义的条件是 。
12.若x<2,化简x x -+-3)2(2的正确结果是 。
13.方程22(2)(3)20m m x m x --+--=是一元二次方程,则____m =。
14.方程()312=-x x 的二次项系数、一次项系数和常数项分别是15. 计算:))2013201444= 。
,请你将猜想17. 20b c +=,那么()c a b -=__________.18. 一元二次方程210x -=的解是__________.三、解答题(44分)19、计算(4×4=16分)(1)22)510()31(2801---+- (2)22)23()23(--+(3)(4)83+122-1820、用恰当的方法解下列方程(4×4=16分)(1)2235+-=(限用配方法)(2)5y(y—3)=6—2y x x(3)(2x+1)2=4(4)()()x325x-=-321、已知关于x 的一元二次方程260x kx +-=的一个根是2,求方程的另一个根和k 的值(4分)。
四川省南充市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果a=-,b=-2, c=-2 ,那么︱a︱+︱b︱-︱c︱等于()A . -B .C .D .2. (2分) (2018七上·忻城期中) 用科学记数法表示:﹣208000 是()A . 2.08×105B . ﹣2.08×105C . ﹣2.08×106D . 2.08×1063. (2分) (2019八上·温州期中) 已知a>b,则下列不等式中,正确的是()A . -3a>-3bB . >C . 3-a>3-bD . a-3>b-34. (2分)若规定收入为“+”,那么支出-50元表示()A . 收入了50元B . 支出了50元C . 没有收入也没有支出D . 收入了100元5. (2分)(2018·怀化) 下列命题是真命题的是()A . 两直线平行,同位角相等B . 相似三角形的面积比等于相似比C . 菱形的对角线相等D . 相等的两个角是对顶角6. (2分)下列说法正确的是()A . 对角线互相垂直的四边形是菱形B . 两条对角线互相垂直平分的四边形是正方形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形7. (2分)下列各组线段,能组成三角形的是()A . 2cm 3cm 5cmB . 5cm 6cm 10cmC . 2cm 2cm 5cmD . 3cm 4cm 8cm8. (2分) (2019七上·武汉月考) 某商店同时卖出两件衣服,每件135元,若按成本计,其中一件盈利25%,另一件亏损25%,那么这两件衣服卖出后,商店()A . 不亏不赔B . 赚9元C . 赔18元D . 赚18元9. (2分)已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法确定10. (2分)(2016·黔南) y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A . 没有实数根B . 有一个实数根C . 有两个不相等的实数根D . 有两个相等的实数根二、填空题 (共8题;共9分)11. (1分)(2017·长春) 计算:× =________.12. (1分) (2019七下·沙雅月考) 已知∠a,∠b互为补角,且∠a=∠b ,则∠a= ________.13. (1分)(2019·蒙自模拟) 函数的自变量x的取值范围是________.14. (2分)(2017·吉林模拟) 分式方程 = 的解是________.15. (1分)矩形ABCD的两条对角线相交于O ,∠AOB=60°,AB=8,则矩形对角线的长________.16. (1分) (2019七上·黄冈期末) 若式子2x2+3y+7的值为8,那么式子6x2+9y+2的值为________.17. (1分)(2017·云南) 如图,在△ABC中,D,E分别为AB,AC上的点,若DE∥BC, = ,则=________.18. (1分)(2017·游仙模拟) 如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为________.三、解答题 (共10题;共79分)19. (5分)计算题(1)(2) (2a+b)4÷(2a+b)2(3)(15x4y2-12x2y3-3x2)÷(-3x2)20. (5分) (2018八上·大石桥期末) 先化简,再求值:(1),其中;(2),其中 .21. (5分)(2016·扬州) 解不等式组,并写出该不等式组的最大整数解.22. (2分) (2019七下·福田期末) 己知:为等边三角形,点E为射线AC上一点,点D为射线CB 上一点,.(1)如图1,当E在AC的延长线上且时,AD是的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.23. (6分)如图,在由边长为1的小正方形组成的8×8的网格图中有两个格点 .(注:网格线交点称为格点)(1)请直接写出的长:________;(2)请在图中确定格点,使得的面积为10.如果符合题意的格点不止一个,请分别用,…表示;(3)请用无刻度的直尺在图中以为一边画一个面积为14的矩形 .(不要求写画法,但要保留画图痕迹)24. (10分)(2017·虞城模拟) 2016年10月20日总书记深刻指出:扶贫贵在精准,重在精准,为了贯彻落实政府提出的“精准扶贫”精神,某校特制定了一系列关于帮扶A,B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25. (10分) (2017八下·兴化期中) 已知:反比例函数的图像过点A(,).(1)求的值;(2)过点A作AB⊥x轴于点B,求△OAB的周长.26. (10分)(2016·济宁) 已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.27. (15分)(2020·南通模拟) 已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO= .(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y= 的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.28. (11分)(2018·平顶山模拟) 如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1, ),且与x 轴交于点B,△AOB的面积为。
九年级月考(一)数学试题一.选择题(10×4)1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x =-+的图象的顶点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6. 如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 37.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A (-a ,-b ) B (a ,-b ) C (-a ,b ) D (0,0)8.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、 向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2y–1 33O xP1 xy C OA B9.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③C .②③D .①②③五、填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(x<0)的图象上,有点P 1(x 1,y 1),p 2(x 2,y 2)若x 1<x 2,则y 1___y 2 .15.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .(第10(第7题)ox13y OxC A (1,2)B (m ,n )三.解答题(85分)16.(8分)已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.17.(8分)已知二次函数y=x 2-2x-1。
2017年数学九年级上册第一次月考试卷(问卷)一、填空题,(每小题4分,共40分)。
1、近视眼镜的度数y (度)与镜片焦距x (厘米)成反比例,已知400度近视眼镜片的焦距为0.25厘米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .2、如果反比例函数xky =的图象过点(2,-3),那么k = .3、已知y 与x 成反比例,并且当x=2时,y=-1,则当y=3时,x 的值是 .4、若点A (6,y 1)和B (5,y 2)在反比例函数xy 4-=的图象上,则y 1与y 2的大小关系是 .5、已知函数xy 3=,当x <0时,函数图象在第 象限.6.用____ __法解方程3(x-2)2=2x-4比较简便.7.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.8.已知是方程x 2-6x+m=0的一个根,则另一根为_______. 9.一元二次方程20ax bx c ++=(0a ≠)有实数根,若0b =,则两根1x 与2x 之间的关系是_________.10.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于_______.二、选择题(每小题4分,共40分)11.下列各点中,在函数y =-6x图象上的是 ( ):A .(-2,-4);B .(2,3);C .(-6,1);D .(-12,3)。
12.下列函数中,当x>0时,y 值随x 值增大而减小的是 ( ): A .y =-1x ; B .y =x -1; C .y =34 x ; D .y =1x 。
13.已知反比例函数y =1x,下列结论中不正确的是( ):A .图象经过点(-1,-1);B .图象在第一、三象限C .当x>1时,0<y<1;D .当x<0时,y 随着x 的增大而增大14.已知点(4,2)在反比例函数y =k x(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是 ( ):15、下列一元二次方程中,有两个不相等的实数根的是( )A 、012=+-x xB 、012=-+x xC 、0412=+-x x D 、012=+x16、关于x 的一元二次方程:032=--a ax x 的一个根是6,另一个根是( ) A 、2 B 、-2 C 、-6 D 、617、已知2和-3是关于x 的一元二次方程052=++n mx x 的两个根,则把n mx x ++25分解因式为( ) A 、(x +2)(x -3) B 、(x -2)(x +3) C 、5(x +2)(x -3) D 、5(x -2)(x +3) 18.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对19.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C. 19 D. 17或1920、已知a 、b 、c 是△ABC 的三边,那么04)(2=+++cx b a cx 的根的情况为( )A 、没有实数根B 、有两个不相等的正实数根C 、有两个不相等的负实数根D 、有两个异号实数根 三、解答题(共40分) 21、解方程:(16分) (1)2(53)40x +-= (2)0152=+-x x (用配方法)(3)()()23232x x x -=- (4)2210x --=22、(8分)已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式;(2)当y =-3时,x 的值。