数学知识点重庆市2017届高三9月月考数学(文)试题 Word版含答案-总结
- 格式:doc
- 大小:400.55 KB
- 文档页数:10
山西省忻州市2025届高三上学期9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x|y =lg(2−x )},B ={x ∈N|y = 4−x 2},则A ∩B =( )A. {0,1,2}B. {0,1}C. (−2,2)D. (0,2)2.已知a ∈R,b ∈R ,且(2+i )(1−ai )=2+bi ,则a +b =( )A. −1B. 0C. 1D. 23.已知命题p:∃x >0,x 2>2x ,则p 的否定为( )A. ∀x >0,x 2≤2xB. ∀x >0,x 2>2xC. ∃x >0,x 2≤2xD. ∃x ≤0,x 2≤2x4.在平行四边形ABCD 中,AP =2PB ,则PD =( )A. 23AB +ADB. −23AB +ADC. 13AB +ADD. −13AB +AD 5.如果随机变量ξ∼B (n,p ),且E (3ξ)=12,D (ξ)=43,则p =( )A. 14 B. 13 C. 12 D. 236.已知x >0,y >0,x +y +2xy =4,则x +y−xy 的最小值为( )A. 32B. 2C. 12D. 17.已知数列{a n }满足a n +1a n +a n +1a n +2=2,且a 2=a 12a 1+1,a 3=17,则3a 100=( )A. 165 B. 167 C. 169 D. 1718.已知a >0,设函数f (x )=e 2x +(2−a )x−ln x−ln a ,若f (x )≥0在(0,+∞)上恒成立,则a 的取值范围是( )A. (0,1e ]B. (0,1]C. (0,e ]D. (0,2e ]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知a >0,则函数f(x)=a x −2a 的图象可能是( )A. B. C. D.10.已知函数f (x )=2sin(2x +φ)(|φ|<π2),且f (x )≤|f (π6)|,则下列结论正确的是( )A. φ=π6B. f(x)在区间[π2,π]上单调递增C. 若x1,x2为方程f(x)=2的两个解,则|x2−x1|的最小值为2πD. 若关于x的方程f(x)=a在区间[0,π4]上有且仅有一个解,则a的取值范围为[1,3)∪{2}11.已知函数f(x)的定义域为R,设g(x)=f(x+2)−1,若g(x)和f′(x+1)均为奇函数,则( )A. f(2)=1B. f(x)为奇函数C. f′(x)的一个周期为4D. ∑2024k=1f(k)=2024三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。
2019-2020学年重庆市巴蜀中学高三(上)9月月考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|≤0},B={x|y=,则A∩B=()A.[﹣1,1]B.[0,1]C.[0,1)D.(0,1)2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)已知抛物线C:y2=4x的焦点为F,点M(x0,2)在抛物线C上,则|MF|=()A.2B.3C.4D.54.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α.则m∥n B.若m⊥α,n⊥α,则m∥nC.若m∥α,m∥β,则α∥βD.若α⊥γ,β⊥γ,则α∥β5.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果是()A.B.﹣1C.D.06.(5分)已知是函数f(x)=2sin(2x+φ)(|φ|<)图象的一条对称轴,则下列说法正确的是()A.φ=B.f(x)在[0,]上单调递增C.由f(x)的图象向左平移个单位可得到y=2sin2x的图象D.由f(x)的图象向左平移个单位可得到y=2sin2x的图象7.(5分)若tan=3,则=()A.B.C.﹣D.8.(5分)函数f(x)是定义在R上的奇函数,f(x+1)是偶函数,且当0<x≤1时,f(x)=﹣log2018x,则f(2018﹣)=()A.1B.﹣1C.0D.29.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.B.5C.D.610.(5分)已知双曲线C:的左、右焦点分別为F1,F2,点M,N为异于F1,F2的两点,且M,N的中点在双曲线C的左支上,点M关于F1和F2的对称点分别为A,B,则|NA|﹣|NB|的值为()A.26B.﹣26C.52D.﹣5211.(5分)将某商场某区域的行走路线图抽象为一个2×2×3的长方体框架(如图),小红欲从A处行走至B处,则小红行走路程最近且任何两次向上行走都不连续的路线共有()A.360种B.210种C.60种D.30种12.(5分)已知f(x)是定义在R上的可导函数,且满足(x+3)f(x)+xf′(x)>0,则()A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(x)为增函数二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)如果复数(a∈R)为实数,则a=.14.(5分)若a=,则)展开式的常数项为.15.(5分)已知m,n为正实数,则当=时取得最小值.16.(5分)函数=x3+2017x﹣2017﹣x+1.若f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R 恒成立,则t的取值范围是.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(12分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,)的部分图象如图所示、(Ⅰ)求f(x)的解析式;(Ⅱ)设g(x)=f(x)+2sin(x﹣)sin(x+),求函数g(x)的最小正周期及在区间[0,]上的最小值.18.(12分)我市准备实施天然气价格阶梯制,现提前调査市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调査情况整理成了被调査者的频率分布直方图(图5)和赞成者的频数表如下:(Ⅰ)若从年龄在[15,25),[45,55)的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;(Ⅱ)若从年龄在[15,25),[25,35)的被调査者中各随机选取2人进行调査,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为X,求随机变量X的分布列和数学期望.19.(12分)如图6,梯形ABCD中,AB∥CD,矩形BFED所在的平面与平面ABCD垂直,且AD=DC=CB=BF=AB=2.(Ⅰ)求证:平面ADE⊥平面BFED;(Ⅱ)若P为线段EF上一点,直线AD与平面P AB所成的角为θ,求θ的最大值.20.(12分)已知椭圆C1:(a>b>0)的离心率为,过点E(,0)的椭圆C1的两条切线相互垂直.(Ⅰ)求椭圆C1的方程;(Ⅱ)在椭圆C1上是否存在这样的点P,过点P引抛物线C2:x2=4y的两条切线l1,l2,切点分别为B,C,且直线BC过点A(1,1)?若存在,指出这样的点P有几个(不必求出点的坐标);若不存在,请说明理由.21.(12分)已知函数f(x)=x2﹣aln(x+4)(a∈R)存在两个极值点x1,x2,且x1<x2.(Ⅰ)求实数a的取值范围;(Ⅱ)若﹣1<x2<0,求证:f(x1)+9x2>0.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C1的极坐标方程为=0,曲线C2的参数方程为,(θ为参数)(Ⅰ)求曲线C1的直角坐标方程和曲线C2的普通方程;(Ⅱ)若动点P,Q分别在曲线C1与曲线C2上运动,求|PQ|的最大值.[选修4-5:不等式选讲]23.设函数f(x)=2|x+1|+|x+3|的最小值为m,且f(a)=m.(Ⅰ)求m及a的值;(Ⅱ)若实数p,q,r满足p2+2q2+r2=m,证明:q(p+r)≤2.2019-2020学年重庆市巴蜀中学高三(上)9月月考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x|≤0},B={x|y=,则A∩B=()A.[﹣1,1]B.[0,1]C.[0,1)D.(0,1)【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|0≤x<1},B={x|1﹣x2≥0}={x|﹣1≤x≤1},∴A∩B=[0,1).故选:C.【点评】考查描述法、区间的定义,分式不等式的解法,以及交集的运算.2.(5分)已知命题p,q,“¬p为假”是“p∨q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据复合命题真假关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:若¬p为假,则p为真,则p∨q为真,即充分性成立,当p假q真时,满足p∨q为真,但¬p为真,则必要性不成立,则“¬p为假”是“p∨q为真”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合复合命题真假关系是解决本题的关键.3.(5分)已知抛物线C:y2=4x的焦点为F,点M(x0,2)在抛物线C上,则|MF|=()A.2B.3C.4D.5【分析】求得抛物线的焦点F和准线方程,代入M的坐标,解得x0,再由抛物线的定义可得所求值.【解答】解:抛物线C:y2=4x的焦点为F(1,0),准线方程为x=﹣1,M(x0,2)在抛物线C上,可得8=4x0,即x0=2,由抛物线的定义可得|MF|=2+1=3.故选:B.【点评】本题考查抛物线的定义和方程、性质,考查方程思想和运算能力,属于基础题.4.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α.则m∥n B.若m⊥α,n⊥α,则m∥nC.若m∥α,m∥β,则α∥βD.若α⊥γ,β⊥γ,则α∥β【分析】A根据线面平行的性质判断.B利用线面垂直的性质判断.C利用线面平行和面面平行的判定定理判断.D利用面面垂直的性质定理判断.【解答】解:A.平行于同一平面的两条直线不一定平行,可能相交,可能异面,∴A错误.B.垂直于同一平面的两条直线平行,∴B正确.C.平行于同一条直线的两个平面的不一定平行,可能相交,∴C错误.D.垂直于同一平面的两个平面不一定平行,可能相交,∴D错误.故选:B.【点评】本题主要考查空间直线和平面平行或垂直的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.5.(5分)阅读如图所示的程序框图,运行相应的程序,则输出的结果是()A.B.﹣1C.D.0【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求的余弦值的和,n从1取到1009.【解答】解:通过分析知该算法是求和cos+cos+cos+cos+…+cos,在该和式中,从第一项起,每6项和为0,由于1009=168×6+1,故cos+cos+cos+cos+…+cos=168(cos+cos+cos+cos+…+cos)+cos=.故选:C.【点评】本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,若满足条件进入循环,否则结束循环,循环结构主要用在一些规律的重复计算,如累加、累积等,在循环结构中框图中,特别要注意条件应用,如计数变量和累加变量等.6.(5分)已知是函数f(x)=2sin(2x+φ)(|φ|<)图象的一条对称轴,则下列说法正确的是()A.φ=B.f(x)在[0,]上单调递增C.由f(x)的图象向左平移个单位可得到y=2sin2x的图象D.由f(x)的图象向左平移个单位可得到y=2sin2x的图象【分析】求出f(x)的对称轴,将代入,根据φ的取值范围求得φ,进而得到函数解析式,根据正弦函数的性质作答;【解答】解:由题意得,2×+φ=+kπ,φ=﹣+kπ,∵∴φ=﹣,A选项不正确;∴f(x)=2sin(2x﹣),由﹣+2kπ≤2x﹣≤+2kπ得函数的单调增区间为﹣+kπ≤x≤+kπ,B选项不正确;f(x)=2sin2(x﹣),D选项正确.故选:D.【点评】本题考查了三角函数图象性质及图象变换,属于基础题.7.(5分)若tan=3,则=()A.B.C.﹣D.【分析】由已知利用两角和的正切函数公式可求tanα的值,利用三角函数恒等变换的应用化简所求即可计算得解.【解答】解:∵tan==3,∴解得tanα=,∴=====﹣.故选:A.【点评】本题主要考查了三角函数恒等变换的应用在三角函数化简求值中的综合应用,考查了转化思想,属于基础题.8.(5分)函数f(x)是定义在R上的奇函数,f(x+1)是偶函数,且当0<x≤1时,f(x)=﹣log2018x,则f(2018﹣)=()A.1B.﹣1C.0D.2【分析】由已知可知,f(x)的图象关于原点对称,且关于x=1对称,从而可知函数的周期T=4,然后代入可求.【解答】解:∵f(x)是定义在R上的奇函数,f(x+1)是偶函数,∴f(x)的图象关于原点对称,且关于x=1对称,∴函数的周期T=4,∵当0<x≤1时,f(x)=﹣log2018x,则f(2018﹣)=f(2﹣)=f()=1,故选:A.【点评】本题主要考查了利用函数的性质求解函数值,解题的关键是灵活利用性质.9.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.B.5C.D.6【分析】由三视图可知几何体是由直三棱柱和四棱锥组合而成,由三视图求出几何元素的长度,由分割法、换底法,以及柱体、锥体的体积公式求出几何体的体积,【解答】解:由三视图可知几何体是由直三棱柱ABD﹣AFG和四棱锥C﹣BDGF组合而成,直观图如图所示:直三棱柱的底面是一个直角三角形,两条直角边分别是1、2,高是2,∴几何体的体积V=V三棱柱ABD﹣EFG+V四棱锥C﹣BDGF=V三棱柱ABD﹣EFG+V三棱锥C﹣DFG+V三棱锥C﹣BDF=V三棱柱ABD﹣EFG+V三棱锥F﹣CDG+V三棱锥F﹣BDC==2+=,故选:A.【点评】本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.10.(5分)已知双曲线C:的左、右焦点分別为F1,F2,点M,N为异于F1,F2的两点,且M,N的中点在双曲线C的左支上,点M关于F1和F2的对称点分别为A,B,则|NA|﹣|NB|的值为()A.26B.﹣26C.52D.﹣52【分析】根据中点的性质以及对称性,转化为三角形的中位线关系,结合双曲线的定义进行求解即可.【解答】解:设M,N的中点是P,∵点M关于F1和F2的对称点分别为A,B,∴F1是AM的中点,F2是BM的中点,则PF1是△MAN的中位线,PF2是△MBN的中位线,则|NA|=2|PF1|,|NB|=2|PF2|,则|NA|﹣|NB|=2(|PF1|﹣|PF2|)=﹣2×2a=﹣4a,由双曲线的方程得a2=169,得a=13,即|NA|﹣|NB|=﹣4a=﹣4×13=﹣52,故选:D.【点评】本题主要考查双曲线的定义的应用,结合三角形中位线的性质是解决本题的关键.注意数形结合.11.(5分)将某商场某区域的行走路线图抽象为一个2×2×3的长方体框架(如图),小红欲从A处行走至B处,则小红行走路程最近且任何两次向上行走都不连续的路线共有()A.360种B.210种C.60种D.30种【分析】首先分析题意,将原题转化为“走3次向上,2次向右,2次向前且3次向上不连续的”排列组合问题,再由组合数得其数目.【解答】解:根据题意最近路线,那就是不走回头路,不走重复路线;所以一共要走3次向上,2次向右,2次向前,一共七次;因为不能连续向上,所以先把不向上的次数排列起来,也就是2次向右和2次向前全排列共;因为2次向右没有顺序,所以再除以;同理还需在除以接下来就是把3次向上插到4次不向上之间的空当中5个位置排3个元素共;则共有;故选:C.【点评】本题考查排列、组合的实际应用,解题的难点在于将原题转化为排列、组合问题,特别注意题干中“不连续向上攀登”的限制.12.(5分)已知f(x)是定义在R上的可导函数,且满足(x+3)f(x)+xf′(x)>0,则()A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(x)为增函数【分析】根据题意,设g(x)=x3e x f(x),对其求导分析可得函数g(x)在R上单调递增,而g(0)=0,进而分情况讨论可得f(x)>0,综合即可得答案.【解答】解:根据题意,设g(x)=x3e x f(x),g′(x)=x2e x[(x+3)f(x)+xf′(x)],∵(x+1)f(x)+xf'(x)>0,∴g′(x)=x2e x[(x+1)f(x)+x′(x)]>0,故函数g(x)在R上单调递增,而g(0)=0,∴x>0时,g(x)=x3e x f(x)>0⇒f(x)>0;x<0时,g(x)=x3e x f(x)<0⇒f(x)>0;在(x+3)f(x)+xf'(x)>0中取x=0,得f(0)>0.综上,f(x)>0.故选:A.【点评】本题考查函数的导数与函数单调性的关系,关键是构造函数,并分析函数的单调性.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)如果复数(a∈R)为实数,则a=﹣2.【分析】利用复数代数形式的乘除运算化简,再由虚部为0求得a值.【解答】解:∵=为实数,∴2+a=0,即a=﹣2.故答案为:﹣2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.(5分)若a=,则)展开式的常数项为240.【分析】求定积分得到a的值,在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:若a==e x=e ln3﹣e0=2,则=,它的展开式通项公式为T r+1=•(﹣2)r•x12﹣3r,令12﹣3r=0,求得r=4,可得它的展开式的常数项为•16=240,故答案为:240.【点评】本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.15.(5分)已知m,n为正实数,则当=1时取得最小值.【分析】根据条件可得=,然后利用基本不等式求出的最小值,即可得到的值.【解答】解:∵m,n为正实数,∴=≥=5,当且仅当,即时取等号,∴当=1时,取得最小值.故答案为:1.【点评】本题考查了基本不等式在求最值中的应用,考查了转化思想,属中档题.16.(5分)函数=x3+2017x﹣2017﹣x+1.若f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R 恒成立,则t的取值范围是(,+∞).【分析】由题意可得f(+x)+f(﹣x)=2,f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R 恒成立可转化为,可令x=cos2θ,则f(sin2θ)+f(sinθ+t)>f(1+cos2θ)+f(1﹣cos2θ),可得f(sinθ+t)>f(1+cos2θ)恒成立,可令x=sinθ+cosθ﹣,则可得f(sin2θ﹣t)<f(1﹣sinθ﹣cosθ)恒成立,再由f(x)的单调性和参数分离,转化为求最值,即可得到所求范围.【解答】解:f(x+)=x3+2017x﹣2017﹣x+1,可得f(﹣x)=﹣x+2017﹣x﹣2017x+1,则f(+x)+f(﹣x)=2,f(sinθ+cosθ)+f(sin2θ﹣t)<2,即为f(sinθ+cosθ)+f(sin2θ﹣t)<2=f(+x)+f(﹣x),f(sinθ+cosθ)+f(sin2θ﹣t)<2对∀θ∈R恒成立,可令x=sinθ+cosθ﹣,则f(sinθ+cosθ)+f(sin2θ﹣t)<f(sinθ+cosθ)+f(1﹣sinθ﹣cosθ),可得f(sin2θ﹣t)<f(1﹣sinθ﹣cosθ)恒成立,由于f(x+)在R上递增,f(x+)的图象向右平移个单位可得f(x)的图象,则f(x)在R上递增,可得sin2θ﹣t<1﹣sinθ﹣cosθ恒成立,即有t>sin2θ+sinθ+cosθ﹣1,设g(θ)=sin2θ+sinθ+cosθ﹣1=(sinθ+cosθ)2﹣(sinθ+cosθ)﹣2再令sinθ+cosθ=m,则m=sin(θ+),则﹣≤m≤,则g(m)=m2﹣m﹣2,其对称轴m=,故当m=﹣时,g(m)取的最大值,最大值为2+﹣2=.则t>,故答案为:(,+∞)【点评】本题考查不等式恒成立问题的解法,注意运用转化思想,以及函数的单调性和对称性,考查化简整理的运算能力,属于难题.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(12分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,)的部分图象如图所示、(Ⅰ)求f(x)的解析式;(Ⅱ)设g(x)=f(x)+2sin(x﹣)sin(x+),求函数g(x)的最小正周期及在区间[0,]上的最小值.【分析】(Ⅰ)先确定周期,再确定ω,代入最值点求得φ值.(Ⅱ)观察角度之间的关系,根据二倍角公式、辅助角公式化简g(x),求得周期,并用整体法求函数在区间的最值.【解答】解:(Ⅰ)由图象知:A=1,T=,∴ω==2.又∵2×+φ=+2kπ,∴φ=+2kπ,又,∴φ=,即函数解析式为f(x)=sin(2x+).(Ⅱ)g(x)=sin(2x+)+2sin(x﹣)sin[(x﹣)+]=sin(2x+)+2sin (x﹣)cos(x﹣)=sin(2x+)+sin(2x﹣)=sin2x+cos2x﹣sin2x﹣cos2x=(sin2x﹣cos2x)=sin(2x﹣).∴g(x)的最小正周期为π,∵x∈[0,],∴2x﹣∈[﹣,],∴当2x﹣=﹣,即x=0时,g(x)的最小值为.【点评】本题考查根据函数图象求解析式,掌握二倍角公式,辅助角公式,属于基础题.18.(12分)我市准备实施天然气价格阶梯制,现提前调査市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调査情况整理成了被调査者的频率分布直方图(图5)和赞成者的频数表如下:(Ⅰ)若从年龄在[15,25),[45,55)的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;(Ⅱ)若从年龄在[15,25),[25,35)的被调査者中各随机选取2人进行调査,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为X,求随机变量X的分布列和数学期望.【分析】(Ⅰ)结合频率分布直方图与频数表可得各组的情况列表,利用对立事件概率计算公式有求出所选取的4人中到少有2人对天然气价格阶梯制持赞成态度的概率.(Ⅱ)X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E (X).【解答】解:(Ⅰ)结合频率分布直方图与频数表可得各组的情况如下表:∴所选取的4人中到少有2人对天然气价格阶梯制持赞成态度的概率为:P1=1﹣=.(Ⅱ)X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==.P(X=2)==,P(X=3)==,∴X的分布列为:E(X)==.【点评】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查对立事件概率计算公式、排列组合等基础知识,考查运算求解能力,是中档题.19.(12分)如图6,梯形ABCD中,AB∥CD,矩形BFED所在的平面与平面ABCD垂直,且AD=DC=CB=BF=AB=2.(Ⅰ)求证:平面ADE⊥平面BFED;(Ⅱ)若P为线段EF上一点,直线AD与平面P AB所成的角为θ,求θ的最大值.【分析】(Ⅰ)取AB的中点G,连结DG,推导出四边形BCDG是平行四边形,AD⊥BD,AD⊥平面BFED,由此能证明平面ADE⊥平面BFED.(Ⅱ)由于BFED是矩形,BD⊥DE,由AD⊥平面BFED,以D为坐标原点,DA,DB,DE为x,y,z轴,建立空间直角坐标系,利用向量法能求出θ的最大值.【解答】解:(Ⅰ)如图,取AB的中点G,连结DG,则CD AB,∴CD DG,∴四边形BCDG是平行四边形,∴DG=BC=AB=AG=BG,∴AD⊥BD,又平面ABCD⊥平面BFED,且平面ABCD∩平面BFED=BD,∴AD⊥平面BFED,又AD⊂平面ADE,∴平面ADE⊥平面BFED.(Ⅱ)解:由于BFED是矩形,∴BD⊥DE,由(Ⅰ)知AD⊥平面BFED,以D为坐标原点,DA,DB,DE为x,y,z轴,建立空间直角坐标系,D(0,0,0),A(2,0,0),B(0,2,0),=(2,0,0),设点P(0,t,2),=(﹣2,2,0),=(﹣2,t,2),平面P AB的法向量=(x,y,z),∴,取y=2,得平面P AB的一个法向量为=(2,2,2﹣t),∴sinθ==,当t=2时,(sinθ)max=,∴θmax=.∴θ的最大值为.【点评】本题考查面面垂直的证明,考查线面角的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.(12分)已知椭圆C1:(a>b>0)的离心率为,过点E(,0)的椭圆C1的两条切线相互垂直.(Ⅰ)求椭圆C1的方程;(Ⅱ)在椭圆C1上是否存在这样的点P,过点P引抛物线C2:x2=4y的两条切线l1,l2,切点分别为B,C,且直线BC过点A(1,1)?若存在,指出这样的点P有几个(不必求出点的坐标);若不存在,请说明理由.【分析】(Ⅰ)由椭圆的对称性,不妨设在x轴上方的切点为M,x轴下方的切点为N,求得NE的方程为y=x﹣,由椭圆离心率把椭圆方程化为,联立直线方程与椭圆方程,利用判别式等于0求得c,则椭圆方程可求;(Ⅱ)设B(x1,y1),C(x2,y2),P(x0,y0),由抛物线方程利用导数求得抛物线C2:x2=4y在点B处的切线l1,由点P(x0,y0)在切线l1上,得,同理,则点B,C的坐标都满足方程,可得直线BC的方程为,再由点A(1,1)在直线BC上,得,可得点P的轨迹方程为y=,进一步得到直线y=经过椭圆C1内一点(0,﹣1),可得直线y=与椭圆C1有两个交点,则满足条件的P有两个.【解答】解:(Ⅰ)由椭圆的对称性,不妨设在x轴上方的切点为M,x轴下方的切点为N,则k NE=1,NE的方程为y=x﹣.∵椭圆C1的(a>b>0)的离心率为,即,则a=2c,b=,∴椭圆C1的方程:,联立,得.由△=,得c=1.∴椭圆C1的方程为;(Ⅱ)设B(x1,y1),C(x2,y2),P(x0,y0),由x2=4y,得,y,∴抛物线C2:x2=4y在点B处的切线l1为,即,∵,∴y=.∵点P(x0,y0)在切线l1上,∴,①同理,②综合①②得,点B,C的坐标都满足方程.∵经过B,C两点的直线是唯一的,∴直线BC的方程为.∵点A(1,1)在直线BC上,∴,∴点P的轨迹方程为y=.又∵点P在椭圆C1上,又在直线y=上,∴直线y=经过椭圆C1内一点(0,﹣1),∴直线y=与椭圆C1有两个交点,∴满足条件的P有两个.【点评】本题考查椭圆方程的求法,考查直线与圆锥曲线的综合,考查计算能力,属难题.21.(12分)已知函数f(x)=x2﹣aln(x+4)(a∈R)存在两个极值点x1,x2,且x1<x2.(Ⅰ)求实数a的取值范围;(Ⅱ)若﹣1<x2<0,求证:f(x1)+9x2>0.【分析】(Ⅰ)f(x)存在两个极值点x1,x2,关于x的方程2x﹣=0,即x2+8x﹣a =0在(﹣4,+∞)内有两个不等实根,进而解出答案.(Ⅱ)由(Ⅰ)知⇒,==,只需确定它的最大值就可证明.【解答】解:由题意:f′(x)=2x﹣(x>﹣4),∵f(x)存在两个极值点x1,x2,∴关于x的方程2x﹣=0,即x2+8x﹣a=0在(﹣4,+∞)内有两个不等实根,令s(x)=2x2+8x(x>﹣4),t(x)=a,则s(x)与t(x)的图象有两个不同的交点,结合图象可得a∈(﹣8,0),(Ⅱ)证明:由(Ⅰ)知⇒,=,=,令g(x)=x++8﹣2(x+2)ln(﹣x)(﹣1<x<0),g′(x)=1﹣﹣2ln(﹣x)﹣2(x+4)=﹣﹣﹣1﹣2ln(﹣x),令F(x)=g′(x)=﹣﹣﹣1﹣2ln(﹣x),(﹣1<x<0),则F′(x)=+﹣=<0,∴F(x)在(﹣1,0)单调递减,从而F(x)<F(﹣1)=﹣9<0,即g′(x)<0,∴g(x)在(﹣1,0)单调递减,从而g(x)<g(﹣1)=﹣9,即,又x2∈(﹣1,0),∴f(x1)>﹣9x2,故f(x1)+9x2>0.【点评】本题考查导数的综合应用,属于中档题.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C1的极坐标方程为=0,曲线C2的参数方程为,(θ为参数)(Ⅰ)求曲线C1的直角坐标方程和曲线C2的普通方程;(Ⅱ)若动点P,Q分别在曲线C1与曲线C2上运动,求|PQ|的最大值.【分析】(Ⅰ)首先利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用参数方程点的坐标公式,利用两点间的距离公式的应用和三角函数关系式的恒等变换及函数的性质的应用求出函数的最大值.【解答】解:(Ⅰ)曲线C1的极坐标方程为=0,转换为直角坐标方程为.圆心坐标为(0,2),r=.曲线C2的参数方程为,(θ为参数)转换为直角坐标方程为.(Ⅱ)根据曲线C2的参数方程为,(θ为参数)设点Q(2cosθ,sinθ),则点Q与圆心的距离d===,当时,,所以|PQ|的最大值为.【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,两点间的距离公式的应用,三角函数关系式的恒等变换,函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.设函数f(x)=2|x+1|+|x+3|的最小值为m,且f(a)=m.(Ⅰ)求m及a的值;(Ⅱ)若实数p,q,r满足p2+2q2+r2=m,证明:q(p+r)≤2.【分析】(1)利用绝对值不等式的性质可得m=4,然后解方程可得a=﹣1.(2)结合(1)的结论,原不等式即p2+2q2+r2=4,利用不等式的性质和均值不等式的结论即可证得题中的结论.【解答】解:(1)∵f(x)=2|x+1|+|x+3|≥|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,当且仅当,即x=﹣1时,f(x)min=4,∴m=4,a=﹣1.(2)证明:由(1)知:p2+2q2+r2=4,∵p2+q2≥2pq,q2+r2≥2qr,∴p2+2q2+r2≥2pq+2qr=2q(p+r),即2q(p+r)≤4,∴q(p+r)≤2.【点评】本题考查了绝对值不等式的应用以及均值不等式的应用,属于中档题.。
数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
2024—2025学年度上学期2022级9月月考数学试卷考试时间:2024年9月25日一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.集合,若,则集合可以为()A. B. C. D.2.若复数,则( )AB.C. 1D. 23.已知,若与的夹角为,则在上的投影向量为( )A .B .C .D .4.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量、放电时间和放电电流之间关系的经验公式:,其中为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为时,放电时间为;当放电电流为时,放电时间为,则该蓄电池的Peukert 常数约为(参考数据:,)( )A .1.12B .1.13C.1.14D .1.155.已知,且,,则( ) A . B . C . D .6.已知函数恒成立,则实数的最小值为( )A .B .C .D .7.函数与函数的图象交点个数为( )A .6B .7C .8D .98.斐波拉契数列因数学家斐波拉契以兔子繁殖为例而引入,又称“兔子数列”. 这一数列如下定义:设为斐波拉契数列,,其通项公式为.{}215=∈<N M x x {}05⋃=≤<M N x x N {}4{}45≤<x x {}05<<x x {}5<x x 232022202320241i i i i +i i z =-+-++- z =2b a = a b 60︒2a b - b 12br 12b- 32b- 32b C t I C I t λ=λ7.5A 60h 25A 15h λlg 20.301≈lg 30.477≈,(0,π)αβ∈cos α=sin()αβ+=αβ-=4π34π4π-34π-2()()ln 0f x x ax b x =++≥a 2-1-12()ln 1f x x =-()πsin 2g x x ={}n a ()*12121,1,3,N n n n a a a a a n n --===+≥∈,设是的正整数解,则的最大值为( )A .5B .6C .7D .8二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.给出下列命题,其中正确命题为( )A .已知数据,满足:,若去掉后组成一组新数据,则新数据的方差为168B .随机变量服从正态分布,若,则C .一组数据的线性回归方程为,若,则D .对于独立性检验,随机变量的值越大,则推断“两变量有关系”犯错误的概率越小10.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有( ) A .动点B .与不可能垂直C .三棱锥体积的最小值为D .当三棱锥的体积最大时,其外接球的表面积为11.已知抛物线的焦点为,准线交轴于点,直线经过且与交于两点,其中点A 在第一象限,线段的中点在轴上的射影为点.若,则( )A .B .是锐角三角形C .四边形D .三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12.若“使”为假命题,则实数的取值范围为___________.13.在中,,∠,D 为线段AB 靠近点的三等分点,E 为线段CD 的中点,若,则的最大值为________.14.将这七个数随机地排成一个数列,记第i 项为,若,n nn a ⎤⎥=-⎥⎦n 2log 1(14(x x x ⎡⎤⎣⎦-<+n 12310x x x x 、、、、()12210i i x x i --=≤≤110x x 、X ()21,,( 1.5)0.34N P x σ>=()0.34P x a <=0.5a =()(),1,2,3,4,5,6i i x y i = 23y x =+6130i i x ==∑6163i i y ==∑2χ1111ABCD A B C D -E 1DD F 11C CDD 1//B F 1A BE F 1B F 1A B 11B D EF -1311B D DF -25π22:2(0)C y px p =>F x D l F C ,A B AF M y N MN NF =l ABD △MNDF 22||BF FA FD ⋅>[]01,4x ∃∈20040x ax -+>a ABC ∆BC =3A π=A 14BF BC =AE AF ⋅ 1,2,3,4,5,6,7()1,2,,7i a i = 47a =,则这样的数列共有个.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知的内角,,的对边分别为,,,若.(1)求的值;(2)若,求周长的取值范围.16.已知正项数列的前项和为,且.(1)求数列的通项公式;(2)设,若数列满足,且数列的前n 项和为,若恒成立,求的取值范围.17.如图所示,半圆柱与四棱锥拼接而成的组合体中,是半圆弧上(不含)的动点,为圆柱的一条母线,点在半圆柱下底面所在平面内,.(1)求证:;(2)若平面,求平面与平面夹角的余弦值;(3)求点到直线距离的最大值.123567a a a a a a ++<++ABC △A B C a b c ()4sin sin sin -=-A b B c A B a ABC△ABC △{}n a n n S 222n n n a a n S +-={}n a 21na nb =-{}nc 11n n n n b c b b ++=⋅{}n c n T ()12n T n λ-+≤λ1OO A BCDE -F BC ,B C FG A 122,OB OO AB AC ====CG BF ⊥//DF ABE FOD GOD G OD18.已知双曲线的中心为坐标原点,渐近线方程为,点在双曲线上. 互相垂直的两条直线均过点,且,直线交于两点,直线交于两点,分别为弦和的中点.(1)求的方程;(2)若直线交轴于点,设.①求;②记,,求.19.如果函数 F (x )的导数为,可记为 ,若 ,则表示曲线 y =f (x ),直线 以及轴围成的“曲边梯形”的面积. 如:,其中 为常数; ,则表及轴围成图形面积为4.(1)若 ,求 的表达式;(2)求曲线 与直线 所围成图形的面积;(3)若 ,其中 ,对 ,若,都满足,求 的取值范围.E y =(2,1)-E 12,l l ()(,0n n P p p )*n ∈N 1l E ,A B 2l E ,C D ,M N AB CD E MN x ()()*,0n Q t n ∈N 2nn p =n t n a PQ =()*21n b n n =-∈N 211(1)nkk k k k b b a +=⎡⎤--⎣⎦∑()()F x f x '=()()d f x x F x ⎰=()0f x ≥()()()baf x dx F b F a =-⎰x a x b ==,x 22d x x x C ⎰=+C ()()222204xdx C C =+-+=⎰0,1,2x x y x ===x ()()()e 1d 02xf x x f =⎰+=,()f x 2y x =6y x =-+()[)e 120,xf x mx x ∞=--∈+,R m ∈[)0,a b ∞∀∈+,a b >()()0d d a bf x x f x x >⎰⎰m()()32024+1232022022022024241i 1i ()1+1i 1i 1i 11i i iiiii z i =-+----⨯-+====--+-+++()0f x ≥2()g x x ax b =++1x >()0g x ≥01x <<()0g x <(1)0(0)0g g =⎧⎨≤1010a b a b b ++=⇒=--⎧⎨≤1a ≥-1.C2.C 【详解】6.B 【详解】∵恒成立,设,则当时,时,∴,即,∴4x ≥()()ln 1ln 31f x x g x =-≥>≥24x <<()ln 1ln10f x x g =-≥=>2x =()ln 1ln10sin πf x x =-===①当时,点,②当时,③当时,,02p F ⎛⎫ ⎪⎝⎭x 11,,0,242x y p M N ⎛⎫⎛+ ⎪ ⎝⎭⎝MNF V MN l 11.ABD 【详解】由题意可知:抛物线的焦点为,准线为则可知为等边三角形,即且∥x 轴,可知直线[5,)+∞00040x ax -+>[]1,4x ∀∈240x ax -+≤4≥+a x x[]1,4()4f x x x=+[]1,2[]2,4()()145f f ==()max 5f x =5a ≥a [5,)+∞11812345621+++++=310S ≤333310360A A ⨯⨯=4=at ()0>t ABC △2sin =⋅a R A 2sinB =⋅b R 2sin =⋅c R C ()22sin sin sin sin -=-t A B C A B ABC △()sin sin =+C A B ()()22sin sin sin sin -=+-t A B A B A B ()()()221sin sin cos2cos2sin sin 2+-=--=-A B A B A B A B 2222sin sin sin sin -=-t A B A B 1=t 4=a 12. 【详解】因为“使”为假命题,所以“,”为真命题,其等价于在上恒成立,又因为对勾函数在上单调递减,在上单调递增,而,所以,所以,即实数的取值范围为.13.14.360【解析】∵,∴,列举可知:①(1,2,3)……(1,2,6)有4个;②(1,3,4),……,(1,3,6)有3个;③(1,4,5)有1个;④(2,3,4),(2,3,5) 有2个;故共有10个组合,∴共计有个这样的数列。
2024-2025学年高三数学第一学期9月月考试卷一、单项选择题:本题共 8小题,每小题 5分,共 40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,( )A .B .C . D. 2.已知函数,则下列区间中含零点的是( )A. B. C. D. 3若,,,则,,的大小关系为( )A. B. C. D. 4. 函数的图象大致是( )A. B. C. D.5.已知等差数列的公差不为0,且,,成等比数列,其前项和为,则( )A .B.C .D .6.已知把物体放在空气中冷却时,若物体原来的温度是,空气的温度是,则 min 后物体的温度满足公式(其中是一个随着物体与空气的接触状况而定的正常数).某天小明同学将温度是80℃的牛奶放在20℃空气中,冷却2 min 后牛奶的温度是50℃,则{}2,1,0,1,2M =--202x N xx ⎧⎫+=≥⎨⎬-⎩⎭M N = {}2,1,0,1--{}0,1,2{}2-{}2,2-()()2ln 16f x x x =++-()f x ()0,1()1,2()2,3()3,40.302a =.0.20.3b =0.5log 0.3c =a b c c a b <<b a c<<a b c<<a c b<<ln(2)()1x f x x +=-{}n a 11a =2a 4a 8a n n S 20234045a =5434a a a a <119462a a a a +=+1112n S n n ++=+℃1θ℃0θt ℃θkt e --+=)(010θθθθk下列说法正确的是( )A .B .C .牛奶的温度降至35℃还需4 minD .牛奶的温度降至35℃还需2 min7.在数字通信中,信号是由数字0和1组成.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05,若发送信号0和1是等可能的,则接受信号为1的概率为( )要求.全部选对的得 6分,部分选对的得部分分,有选错的得 0分.9.下列说法正确的是( )A .样本数据4,4,5,5,7的平均数为6B .若随机变量满足,则C .若随机变量服从两点分布,,则D .若随机变量X 服从正态分布,且,则10. 若正数,满足,则( )A. B. C. D. 11.已知定义在上的偶函数和奇函数满足,则()A .的图象关于点对称B .是以8为周期的周期函数2ln =k 2ln 2=k ζ()2E ζ=()213ζ-=E ζ()304ζ==P ()316ζ=D ()22,N σ()120.3P X <<=()30.2P X >=a b 1a b +=22log log 2a b +≤-22a b +≥ln 0+<a b 2212a b +≤R ()f x ()g x ()()21f x g x ++-=()f x ()2,1()f xC .D .存在函数,使得对,都有三、填空题:本题共 3小题,每小题 5分,共 15分.12.已知的展开式中,的系数为__________.13.已知函数在区间上单调递减,则的最小值为__________.14.如下图,正方形 A 1B 1C 1D 1 的边长为 14 cm ,A 2 ,B 2 ,C 2,D 2 依次将 A 1B 1 ,B 1C 1 ,C 1D 1,D 1A 1 分为3:4的两部分得到正方形A 2B 2 C 2D 2,依照相同的规律,得到正方形A 3B 3 C 3D 3 、A 4B 4 C 4D 4 、 …、A n B n C n D n . 一只蚂蚁从A 1 出发,沿着路径A 1A 2A 3…A n 爬行,设其爬行的长度为x ,K 为正整数,且x 与K 恒满足不等式 x ≤K ,则K 的最小值是______________.四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{a n }是公差为3的等差数列,数列{b n }是公比为2的等比数列,且a 2+a 4=b 4+2, a 1+a 3=b 2+b 3.(1)求数列{a n }、{b n }的通项公式;(2)设数列的前n 项和为,求证:.16.(13分)我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.已知函数.(1)证明:函数是奇函数,并写出函数的对称中心;(2)判断函数的单调性(不用证明),若,求实数的取值范围.17.(15分)大学毕业生入职某国企需要笔试,笔试题目分为A ,B 两种类型,且两种类型的题目数量20241(42)2024k f k =-=∑()h x x R ∀∈()()||hg x x =32)1)(1(-++x x x 4x )2(2)(x x x f -=),[+∞a a }9{1+n n a a n S 121<≤n S ()y f x =()y f x =()y f x =(),P a b ()y f x a b =+-()1212xf x -=+1)1()(-+=x f x g )(x f ()f x 0)24()1(2>-+--a g a g a相同,每个笔试者选择2题作答,第1题从A ,B 两类试题中随机选择1题作答,笔试者若答对第1题,则第2题选择同一类试题作答的概率为,若答错第1题,则第2题选择同一类试题作答的概率为,试题不重复选择.已知甲答对A 类试题的概率均为,答对B 类试题的概率均为,且每道试题答对与否相互独立.(1)求甲两题均选择A 类试题作答的概率;(2)若甲第1题选择B 类试题作答,设甲答对的试题数为,求的分布列与期望.18.(17分)设函数,(1) 当时,求曲线在点处的切线方程;(2) 讨论函数的单调性;(3) 设,当时,若对任意,存在,使,求实数取值范围.19.(17分)代数基本定理是数学中最重要的定理之一,其内容为:任何一元次复系数多项式方程至少有一个复数根.由代数基本定理可以得到:任何一元次复系数多项式在复数集中可以分解为个一次因式的乘积.进而,一元次复系数多项式方程有个复数根(重根按重数计).例如: 对于一元二次实系数方程,在时的求根公式为;在时的求根公式为.所以由代数基本定理,任意一个一元二次实系数多项式可以因式分解为.(1) 在复数集中解方程:;23131223X X ()()e 0mxf x x m =≠1=m ()y f x =()()1,1f ()f x ()224g x x bx =-+1m =1R x ∈[]21,2x ∈()()12f x g x ≥b ()*N n n ∈()0f x =()*N n n ∈()f x n ()*N n n ∈n 20(a 0)++=≠ax bx c 0∆≥x =0∆<ai ac b b x 242⋅--±-=)(2(0)ax bx c a ++≠()()212++=--ax bx c a x x x x C 210x x ++=(2)(i )在复数集中解方程:;(ii )写出一个以、、、为根的一元六次实系数多项式方程;(结果表示为不超过二次的实系数的多项式的乘积,不需要写证明过程);(3) 已知一元十次实系数多项式满足,求的值.C 4322x x x +-=12-13i +1i -2()f x )10,,2,1,0(11)( =+=k k k f ()11f2024-2025学年高三数学第一学期9月月考试卷参考答案12.-2 13.1 14.2115.解:(1)由题意得,解得:……………………………4分因为数列{a n }是公差为3,数列{b n }是公比为2,所以, …………………………6分(2)由(1)得: ……………………………8分……………………………10分易知在上单调递增,故当时,取最小值,又恒成立,所以,. ………………………………………13分16.解(1):由题意,令, …………………1分显然函数的定义域为全体实数,它关于原点对称,…………………2分且, …………………4分所以函数是奇函数, …………………5分所以函数的图象关于点对称. …………………6分(2)由复合函数单调性可知在上单调递增(定义域不写也可以), ……………9分由(1)知函数是奇函数, ………………11分又,即,,所以,函数在上单调递增,所以,,, …………………13分解得,所以实数的取值范围为.…………………15分17.(1)若甲第1题选择类试题作答并且答错,则第2题选择类试题作答的概率, 题号1234567891011答案CCCDCDBDBCDABCABC⎩⎨⎧=++=+111166228122b a b a 2,311==b a nn n b n a 2,3==111)1(1)1(33991+-=+=+⋅=+n n n n n n a a n n 111111)4131()3121()2111(+-=+-++-+-+-=n n n S n )( 111+-=n y *N 1=n n S 21)(1*N n S n ∈<121<≤n S ()1212x f x -=+()()211112xg x f x -=+-=-+()g x ()()12222112012122112x x x x xg x g x +-⎛⎫⎛⎫+-=-+-=+-= ⎪ ⎪++++⎝⎭⎝⎭()2112xg x -=-+()f x ()1,1()1212x f x -=+R ()2112xg x -=-+)42()24(-=--a g a g 0)24()1(2>-+--a g a g )42()1(2->--a g a g ()2112xg x -=-+R 4212->--a a 2230a a +-<31a -<<a ()3,1-A A 1111122312P =⨯⨯=若甲第1题选择类试题作答并且答对,则第2题选择类试题作答的概率,故甲2题均选择类试题作答的概率; ...........................................6分(2)由题可知,的所有可能取值为0,1,2,则, .......................................8分, .......................................10分, .......................................12分故的分布列为:012...................................................13分则. ...................................................15分18.(1) , .................................................1分所以,切线斜率,切点坐标为 .................................................3分则曲线在点处的切线方程为,即,............................................4分(2)令,所以,当时,,此时在上单调递减,在上单调递增;.......................................6分当时,,此时在上单调递增,在上单调递减........................................8分A A 211212236P =⨯⨯=A 1111264P =+=X 1111214(0)33333227P X ==⨯⨯+⨯⨯=2212111121214(1)3333323333329P X ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=22221111(2)33333227P X ==⨯⨯+⨯⨯=X XP427491127441134()0122792727E X =⨯+⨯+⨯=x xe x f =)(x e x x f )1()('+=e f k 2)1('==),1(e ()y f x =()()1,1f )1(2-=-x e e y 02=--e y ex ()()1e 0mxf x mx '=+>10mx +>0m >1x m>-()f x 1,m ⎛⎫-∞- ⎪⎝⎭1,m ⎛⎫-+∞ ⎪⎝⎭0m <1x m <-()f x 1,m ⎛⎫-∞- ⎪⎝⎭1,m ⎛⎫-+∞ ⎪⎝⎭(3)当时,在上单调递减,在上单调递增,所以对任意,有,.......................................9分又已知存在,使, 所以,即存在,使,.......................................10分解法1:函数的对称轴,①当时,在区间上单调递增,所以,,,不存在;.......................................12分②当时,在区间上单调递减,在区间上单调递增,所以,,,不存在;....................................14分③当时,在区间上单调递减,所以,,; ....................................16分综上,实数的取值范围是........................................17分解法2:分离参数得:,设,.......................................11分因为, .......................................12分所以,当时,,;当时,或,即函数的减区间为,,所以,当时,函数为减函数,(直接先写出函数在区间上导数为负,也可以).......................................14分1m =()f x (),1∞--()1,-+∞1R x ∈()11(1)ef x f ≥-=-[]21,2x ∈()()12f xg x ≥()221,[1,2]eg x x -≥∈[]1,2x ∈21()24eg x x bx =-+≤-)(x g b x =1≤b )(x g ]2,1[e b g x g 125)1()(min -≤-==1215>+≥ee b b 21<<b )(x g ),1[b ]2,(b e b b g x g 14)()(2min -≤-==214>+≥eb b 2≥b )(x g ]2,1[e b g x g 148)2()(min -≤-==2412>+≥eb b 12,4e ⎡⎫++∞⎪⎢⎣⎭14e 2b x x -+≥+14e y x x-+=+()211224e 4e 1x y x x---++'=-=0'>y x >x <)+∞(,-∞0'<y 0x <<0x <<()([1,2]x ∈14e y x x-+=+]2,1[所以,,所以,,即实数取值范围是. .......................................16分所以,实数的取值范围是........................................17分19.(1)方程,则,所以、即原方程在复数集.......................................4分(2)(i )因为,所以,即,即,所以,,,即原方程在复数集中解为,.......................................6分(ii )因为为该方程(实系数)为根,则也为方程的根,为该方程(实系数)为根,则也为方程的根,又与可为方程的两个虚根;与可为方程的两个虚根;所以以、、、为根的一元六次实系数多项式方程可以为........................................8分(3)依题意可得,令,因为十一次多项式方程有个根, ............................10分令, ......................................12分所以, 令,可得,所以, 所以, .......................................14分14e 11[1,2],4,52e e x x x -+⎡⎤∈+∈++⎢⎥⎣⎦1242e b ≥+b 124eb ≥+b 12,4e ⎡⎫++∞⎪⎢⎣⎭210x x ++=214113∆=-⨯⨯=-1x =2x =C 4322x x x +-=()()3220x x x +-+=()()3210x x +-=()()()22110x x x x +-++=32x =-41x =5x =6x =C 2-11i +1i -2i -2i +1i +1i -2220x x +=-2i -2i +2450x x -+=12-131i +2i -()()()()22213122450x x x x x x +--+-+=()()()1100,1,2,,10k f k k +-== ()()()11g x x f x =+-()()()110g x x f x =+-=110,1,2,,10x = ()()()()1210g x ax x x x =--- ()0a ≠()()()()()111210x f x ax x x x +-=--- =1x -()()()()112311a -=-⨯-⨯-- 111!a =()()()()1121011!g x x x x x =---所以,, .......................................15分因为,,所以, ......................................17分()()()()()1111121011111!f x g x x x x x x x ⎡⎤=+=---+⎡⎤⎣⎦⎢⎥++⎣⎦()11111101111!g =⨯⨯⨯⨯= 61)1)11((121)11(=+=g f。
高三9月月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1、已知集合{}Z x x x A ∈<=,3,{}N x x x B ∈>=,1,则B A ⋂=( )A .φB .}{3,2,2,3-- C.}{2 D .}{2,2-2.(5分)2、若复数,,则的实部为( )A .B .C .D .3.(5分)3、函数4log 3)(21++-=x x f x 的零点所在的区间为( )A .)3,2(B .)4,3(C .)2,1(D .)1,0(4.(5分)4、直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b =( ) A .ln2+1 B .ln2﹣1 C .ln3+1D .ln3﹣15.(5分)5、在ABC ∆中,若满足)2cos()2sin(A B b a -+=ππ,则该三角形的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.(5分)6、函数)82lg()(2--=x x x f 的单调递增区间是( )A .)2,(--∞B .)1,(-∞C .),1(+∞D .),4(+∞7.(5分)7、某数学兴趣小组从商标中抽象出一个函数图象如图,其对应的函数)(x f 可能是( )A .11)(-=x x f B .11)(-=x x f 12z i =-()23z i i =-12z z +1234C .xx f 2tan11)(π-=D .11)(2+=x x f 8.(5分)8)9.(5分)9、已知)(x f 是奇函数,且当时42)(-=x x f ,则不等式0)2(>-x f 的解集为( )A .}{40><x x x 或B .}{420><<x x x 或 C .}{20><x x x 或 D .}{22>-<x x x 或10.(5分)10、已知平面向量a ,b 2=,向量a 与b -a 的夹角为 150的最大值为( ) A .32B .3C .4D .334 11.(5分)11、圣·索菲亚教堂(英语:SAINT SOPHIA CATHEDRAL )坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑.1996年经国务院批准,被列为第四批全国重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美.小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为m )15315(-,在它们之间的地面上的点(D M B ,,三点共线)处测得楼顶,教堂顶C 的仰角分别是15和60,在楼顶处测得塔顶C 的仰角为 30,则小明估算索菲亚教堂的高度为( )0x >M A AA .m 20B .m 30C .m 320D .m 33012.(5分)12、已知在函数x x x f ln )(2+=与函数ax x x g -=22)(的图象上存在关于y 轴对称的点,则实数的取值范围为( )A .⎥⎦⎤ ⎝⎛-∞-e 1, B .⎥⎦⎤ ⎝⎛-∞-21, C .(]e -∞-, D .(]1,-∞-二、 填空题 (本题共计4小题,总分20分) 13.(5分)13,,,的夹角为在方向上的数量投影为__________14.(5分)14、在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,A bc C A c b sin )sin()(22=+-,且3π=B ,则C 的大小为________.15.(5分)15,下列说法正确的是①图像关于②的最小正周期为 ③在区间 ④图像关于a 1a =2b =a b a b +a ()f x ()f x 2π()f x ()f x16.(5分)16、当[)+∞∈,1x 时,1ln -≥+x x xae x恒成立,则实数的取值区间..为______.三、 解答题 (本题共计7小题,总分80分)17.(12分)17、已知向量)2,cos 3(),1,(sin x b x a =-=,函数2)()(b a x f +=.(1)求函数)(x f 的最小正周期;(2)若⎥⎦⎤⎢⎣⎡-∈2,4ππx ,求函数)(x f 的值域. 18.(12分)18、已知三棱柱111C B A ABC -中,BC AB ⊥,O 为的中点,⊥O A 1平面ABC ,21===AA BC AB ,M 为11B A 的中点.(1)求证://1O A 平面MBC ; (2)求三棱锥C BB M 1-的体积.19.(12分)19、已知等比数列{}n a 的公比1≠q ,321=a ,且22a 、33a 、成等差数列.(1)求数列{}n a 的通项公式;(2)设n n a b 2log =,求数列{}n b 的前n 项和n T .20.(12分)20、某大型商场举办店庆十周年抽奖答谢活动,凡店庆当日购物满1000元的顾客可从装有4个白球和2个黑球的袋子中任意取出2个球,若取出的都是黑球获奖品a AC 44aA ,若取出的都是白球获奖品B ,若取出的两球异色获奖品C. (1)求某顾客抽奖一次获得奖品B 的概率;(2)若店庆当天有1500人次抽奖,估计有多少人次获得奖品C.21.(12分)21、已知函数)(ln )(R a xax x f ∈+=. (Ⅰ)讨论函数)(x f 的单调性; (Ⅱ)求出函数)(x f 零点的个数.22.(10分)22、在平面直角坐标系xOy 中,点P 是曲线⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x C 11:1(t 为参数)上的动点,以坐标原点O 为极点,X 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若点P 在y 轴右侧,点Q 在曲线2C 上,求PQ 的最小值.23.(10分)23、已知函数b x a x x f -+-=)(,R b a ∈,.(1)当1=b 时,对任意的R m ∈,关于x 的不等式22)(2+-<m m x f 总有解,求实数a 的取值范围.(2)当0,0=>b a 时,求不等式2)(<x f 的解集.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1、【答案】C【解析】分析:直接求得即可.故选:C.2.(5分)2、【答案】C【解析】因为,,所以,则的实部为.3.(5分)3、【答案】C在上为减函数,,,则,因此,函数的零点所在的区间为.故选:C.4.(5分)4、【答案】B【解析】解:求导得:y∵直线y +b 是曲线y =ln x (x >0)的一条切线,x =2,把x =2代入曲线方程得:y =ln2,把切点(2,ln2)代入直线方程得:ln2=1+b , 解得:b =ln2﹣1, 故选:B .5.(5分)5、【答案】D【解析】分析:由题设条件和正弦定理化简得,得到,求得或.A B 12i z =-213z i =+1232i z z +=+12z z +3()0,∞+()110f =>()260f =-<()()120f f ⋅<()f x ()1,2sin cos sin cos A A B B =sin 2sin 2A B =A B =,即,可得, 因为,所以或所以为等腰三角形或直角三角形. 故选:D.6.(5分)6、【答案】D【解析】对于函数,,解得或,所以,函数的定义域为.内层函数在区间上单调递减,在区间上单调递增,外层函数为增函数,因此,函数的单调递增区间为.故选:D.7.(5分)7、【答案】A【解析】选项A :函数的图象的渐近线为 或与原图象相符;选项B :选项C :时,函数无意义与原图不相符; 选项D :故选:A8.(5分)8、【答案】C【解析】由,得,则9.(5分)9、【答案】B【解析】当时 ,又是奇函数,图象关于原点对称,即可画出函数图象如下所示,sin cos sin cos A A B B =sin 2sin 2A B =,(0,)A B π∈A B =ABC ()()2ln 28f x x x =--2280x x -->2x <-4x >()()2ln 28f x x x =--()(),24,-∞-+∞228u x x =--(),2-∞-()4,+∞ln y u =()()2ln 28f x x x =--(4)+∞,1x =1x =-1x =-3x =1x =0x >()24x f x =-()f x要使,结合图象可得或,解得或故不等式的解集为,故选:.10.(5分)10、【答案】C【解析】分析:利用向量的位置关系,利用几何意义,在圆中表示出向量,从而求得最大模长.详解:设,,则,,又向量与的夹角为,则,即C 点的轨迹为优弧上的点, 则圆心角,三角形AOB 为正三角形,圆半径,则当取圆O 的直径向量4.故选:C. 【点睛】方法点睛:利用向量满足的条件,抽象成几何意义,来求得向量模长的最值.11.(5分)11、【答案】D【解析】分析:由正弦得出,再结合正弦定理得到,进而能求. 详解:由题意知:,所以()20f x ->22x ->220x -<-<4x >02x <<{}|024x x x <<>或B a →b AB →→=a AC →→=2AB =b a CB →→→-=a →b a →→-150︒30ACB ∠=AB 60AOB ∠=2OA AB ==a AC →→='AC AM CM CD 45CAM ∠=︒105AMC ∠=︒30ACM ∠=︒在中,在中,由正弦定理得 所以,在中,故选:D12.(5分)12、【答案】D【解析】 由题可得在有解,即在有解,在有解,令所以在单调递减,且,所以当时,,则,单调递增,当时,,则,单调递减,所以,故.故选:D.二、 填空题 (本题共计4小题,总分20分)13.(5分)13、【答案】 2【解析】由已知得,在方向上的数量投影为,,,的夹角为,所以数量投影为2。
绝密★启用并使用完毕前高考针对性训练数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设12i2iz -=+,则z =()A .iB .i-C .4i 5+D .4i 5-2.若sin cos αα-=,则tan α=()A .1B .1-C .2D .2-3.()6111x x ⎛⎫+- ⎪⎝⎭展开式中2x 的系数为()A .5-B .5C .15D .354.已知{}n a 是等比数列,且27844a a a a =-=-,则3a =()A .B .C .2-D .2±5.某单位设置了a ,b ,c 三档工资,已知甲、乙、丙三人工资各不相同,且甲的工资比c 档高,乙的工资比b 档高,丙领取的不是b 档工资,则甲、乙、丙领取的工资档次依次为()A .a ,b ,cB .b ,a ,cC .a ,c ,bD .b ,c ,a6.三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥.若该三棱锥的最长的棱长为9,最短的棱长为3,则该三棱锥的最大体积为()A B C .18D .367.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P在C 上,且2122PF PF a ⋅= ,PO = ,则C 的离心率为()A B C .3D .28.已知函数()f x 的定义域为R ,且()()()yf x xf y xy x y -=-,则下列结论一定成立的是()A .()11f =B .()f x 为偶函数C .()f x 有最小值D .()f x 在[]0,1上单调递增二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学投篮两次,第一次命中率为23.若第一次命中,则第二次命中率为34;若第一次未命中,则第二次命中率为12.记()1,2i A i =为第i 次命中,X 为命中次数,则()A .22()3P A =B .4()3E X =C .4()9D X =D .123(|)4P A A =10.已知ABC △内角A ,B ,C 的对边分别为a ,b ,c ,外接圆半径为R .若1a =,且()sin sin sin A b B c b C -=+,则()A .3sin 2A =B .ABC △面积的最大值为34C .3R =D .BC 边上的高的最大值为611.已知函数()sin ln f x x x =⋅,则()A .曲线()y f x =在πx =处的切线斜率为ln πB .方程()2024f x =有无数个实数根C .曲线()y f x =上任意一点与坐标原点连线的斜率均小于1eD .2()2x y f x =-在()1,+∞上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.数列{}n a 满足22n n a a +-=,若11a =,44a =,则数列{}n a 的前20项的和为______.13.在正四棱柱1111ABCD A B C D -中,4AB =,16AA =,M ,N 分别是AB ,AD 的中点,则平面1MNC 截该四棱柱所得截面的周长为______.14.已知抛物线22x y =与圆()()22240x y rr +-=>相交于四个不同的点A ,B ,C ,D ,则r 的取值范围为______,四边形ABCD 面积的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)近年来,我国众多新能源汽车制造企业迅速崛起.某企业着力推进技术革新,利润稳步提高.统计该企业2019年至2023年的利润(单位:亿元),得到如图所示的散点图.其中2019年至2023年对应的年份代码依次为1,2,3,4,5.(1)根据散点图判断,y a bx =+和2y c dx =+哪一个适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果,建立y 关于x 的回归方程;(3)根据(2)的结果,估计2024年的企业利润.参考公式及数据;1221ˆni ii ni i x ynx ybx nx==-=-∑∑,ˆˆay bx =-,52155i i x ==∑,541979ii x ==∑,51390i i y ==∑,511221i i i x y ==∑,5214607.9i i i x y ==∑16.(本小题满分15分)如图,在三棱台ABC DEF -中,平面ABC ⊥平面BCFE ,AF DE ⊥,45ABC CBF ∠=∠=︒,1AC AB >=.(1)求三棱台ABC DEF -的高;(2)若直线AC 与平面ABF 所成角的正弦值为155,求BC .17.(本小题满分15分)已知函数()22xxf x a =+-,其中0a >且1a ≠.(1)若()f x 是偶函数,求a 的值;(2)若0x >时,()0f x >,求a 的取值范围.18.(本小题满分17分)已知点21,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆2222:1(0)x y E a b a b +=>>上,A 到E的两焦点的距离之和为.(1)求E 的方程;(2)过抛物线()2:1C y x m m =->上一动点P ,作E 的两条切线分别交C 于另外两点Q ,R .(ⅰ)当P 为C 的顶点时,求直线QR 在y 轴上的截距(结果用含有m 的式子表示);(ⅱ)是否存在m ,使得直线QR 总与E 相切.若存在,求m 的值;若不存在,说明理由.19.(本小题满分17分)高斯二项式定理广泛应用于数学物理交叉领域.设,y q ∈R ,*n ∈N ,记[]11n n q q-=++⋅⋅⋅+,[][][][]!11n n n =⨯-⨯⋅⋅⋅⨯,并规定[]0!1=.记1(,)()()()()n n q F x n x y x y x qy x q y -=+=++⋅⋅⋅+,并规定()0,0()1q F x x y =+=.定义[][][](,),0(,)11(),1,2,,kqn kq F x n k D F x n n n n k x y k n-=⎧⎪=⎨-⋅⋅⋅-++=⋅⋅⋅⎪⎩(1)若1y q ==,求(),2F x 和1(,2)q D F x ;(2)求[][]!(0,)!k qn k D F n n -;(3)证明:[]0(0,)(,)!k nq k k D F n F x n x k ==∑.2024年5月济南市高三模拟考试数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案ABACBCDC二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDADBCD三、填空题:本题共3小题,每小题5分,共15分.12.21013.14.4);四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)2y c dx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:52211()115i i x x ===∑,511785i i y y ===∑,52215222221553905()4607.95317.9550.8537455()5()9795ˆ5i ii ii xy x ydx x ==-⨯-⨯⨯====⎛⎫-⨯-⨯ ⎪⎝⎭∑∑,239055()0.8568.655ˆ5ˆcy d x =-⨯=-⨯=,所以,268.65ˆ0.85y x =+.(3)令6x =,268.650.85699.25ˆy=+⨯=,估计2024年的企业利润为99.25亿元.另解(此种解法酌情给分):(1)y a bx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:1234535x ++++==,511785i i y y ===∑,()()515222151221537851 5.13ˆ555105i ii i i x yx ybx x==-⨯-⨯⨯====-⨯-⨯∑∑,()78 5.1362.7ˆˆa y b x =-⨯=-⨯=,所以,7ˆ62. 5.1yx =+.(3)令6x =,62.7 5.1693.3ˆy=+⨯=,估计2024年的企业利润为93.3亿元.16.【解析】解:(1)作FO BC ⊥于点O ,因为平面ABC ⊥平面BCFE ,所以FO ⊥平面ABC ,FO 即为三棱台ABC DEF -的高.又因为AB ⊂平面ABC ,所以FO AB ⊥.连接AO ,因为AB DE ∥,AF DE ⊥,所以AB AF ⊥,FO AF F = ,所以AB ⊥平面AFO ,又AO ⊂平面AFO ,所以AB AO ⊥.45ABC CBF ∠=∠=︒,1AB =.所以1AO =,BO FO ==ABC DEF -.(2)以O 为原点,在面ABC 内,作OG BC ⊥,以OG ,OB ,OF 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O xyz -,则,22A ⎛⎫ ⎪ ⎪⎝⎭,B,F,,,022AB ⎛⎫=- ⎪ ⎪⎝⎭,FB =,设平面ABF 的法向量为(),,n x y z =则022n FB n AB x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可取()1,1,1n = ,设BC BO λ=,则22,022AC ⎛⎫=-- ⎪ ⎪⎝⎭,设直线AC 与平面ABF 所成角为α,15sin cos ,5AC n α===,化简得281890λλ-+=,解得32λ=或34λ=(舍去,因为AC AB >,所以1λ>),所以BC =.17.【解析】(1)由题意,()()11f f -=,即112222a a +-=+-,解得,12a =或2a =-(舍)又经检验,12a =时,()f x 是偶函数.所以,a 的值为12.(2)当12a =时,0x ∀>,1()22202x xf x ⎛⎫=+->= ⎪⎝⎭成立;当12a >且1a ≠时,0x ∀>,1()22222xx x xf x a ⎛⎫=+->+- ⎪⎝⎭,又12202xx⎛⎫+-> ⎪⎝⎭已证,故此时符合题意;当102a <<时,()ln 2ln 2x xf x a a '=+,易知,此时()f x '在R 上单调递增,且(0)ln(2)0f a =<'.故存在00x >,使得当0(0,)x x ∈时,()0f x '<,从而()f x 单调递减,所以,存在02x >,使得0(0)02x f f ⎛⎫<= ⎪⎝⎭,故此时不合题意.综上所述,12a ≥且1a ≠.18.【解析】(1)由题意2a =,得a =又21,2A ⎛⎫ ⎪ ⎪⎝⎭在E 上,得221112a b +=,从而1b =.故E 的方程为2212x y +=.(2)(ⅰ)当P 为C 的顶点时,()0,P m ,不妨设R 在第一象限,直线PR 的方程为y kx m =-,联立E 的方程为2212x y +=可得222(21)4220k x kmx m +-+-=.由22222Δ(4)4(21)(22)8(21)0km k m k m =-+-=-+=可得2221k m +=.联立直线PR 的方程y kx m =-与抛物线2:C y x m =-的方程可得x k =,则R 点的纵坐标为22212122R m m m y k m m ---=-=-=,由对称性知2212Q m m y --=,故直线QR 在y 轴上的截距为2212m m --.(ⅱ)要使(2)中的直线QR 与E 相切,必有22112m m b --==,即2230m m --=,解得3m =或1-(舍去).设()11,P x y ,()22,Q x y ,()33,R x y ,则2113y x =-,2223y x =-,2333y x =-.直线PQ 的方程为211121()y y y y x x x x --=--,即1212()3y x x x x x =+--.联立椭圆方程2212x y +=可得222121212122()14()(3)2(3)20x x x x x x x x x x ⎡⎤++-++++-=⎣⎦.由[]22212121212Δ4()(3)42()12(3)2x x x x x x x x ⎡⎤⎡⎤=++-+++-⎣⎦⎣⎦22221212128(2228)0x x x x x x =+---=可得222212*********x x x x x x +---=,即121212250x x y y y y ++++=.同理可得131313250x x y y y y ++++=.因为直线1112(1)50x x y y y ++++=同时经过点QR ,所以QR 的直线方程为1112(1)50x x y y y ++++=.联立椭圆方程2212x y +=可得222111118(1)8(5)16480x y x x y x y ⎡⎤++++++=⎣⎦,于是[]2222211111111Δ8(5)48(1)(1648)64(1)(3)0x y x y y y x y ⎡⎤=+-+++=+--=⎣⎦.故直线QR 与椭圆相切,因此3m =符合题意.19.【解析】(1)若1y q ==,222(,2)()()(1)(1)F x x y x qy x q xy y x =++=+++=+,而[]11(,2)2()(1)()2(1)q q D F x x y q x y x =+=++=+.(2)当0k =时,[][](1)2!(0,)(0,)(0,)!n n k n q q n k D F n D F n F n q y n --===.当0k ≠时,由[][][](0,)11(0)kn kq qD F n n n k y -=-⋅⋅⋅++[][][][][]()(1)()(1)/22!11!n k n k n k n k n kn k n n n n k qyqy n k --------=-⋅⋅⋅-+=-,可得[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=.因此[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=,0,1,2,,k n = .(3)要证[]0(0,)(,)!k nq k k D F n F x n x k ==∑,只需证[][][][][]1()(1)/2(1)/200!!()()()![]!!!nnn n k n k n k kk k n k k k k n n x y x qy x qy q y x q x y n k k n k k -------==++⋅⋅⋅+==--∑∑.令1()()()()nn k k k G y x y x qy x q y a y -==++⋅⋅⋅+=∑,一方面,110101()()()()n nkkk k k n n k k k n k k x y G qy x y a q y xa xq a q a y a q y -+-==+=+=+++∑∑,另一方面,10101()()()()n nnnkn k n n k k k n k k x q y G y x q y a y xa xa q a y a q y +-==+=+=+++∑∑,当1q ≠且0x ≠时,由于()()()()nx y G qy x q y G y +=+,比较两式中ky 的系数可得111k k n k k k k xq a q a xa q a ---+=+,则[]1111(1)[]k n k k kk q n k a q q a x q x k ----+-==-⋅,由0na x =可知[][][](1)1120120!!!k k n k k k k k k n a a a a a q x a a a n k k -----=⋅⋅⋅⋅⋅=-.当1q =时,由[]11n n q qn -=++⋅⋅⋅+=,[]!!n n =可知()[][]00!C ![]!nn nn k k k n k kn k k n x y y x yx n k k --==+==-∑∑,此时命题也成立.当0x =时,[](1)/2(0,)(,)(0,)!k nq n n nk qk D F n F x n qy D F n x k -====∑也成立.综上所述,()()[]00,,!knq k k D F n F x n x k ==∑.。
高三数学入学考试注意事项:1.答题前,考生务必将自已的姓名、考生号、考场号、座位号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则(){}{}2450,42M x x x N x x =--=-∣∣ M N ⋃=A.B.C.D.[]4,2-[]1,3-[]4,5-[]1,2-2.若,则( )211i z z -=+z =A. B.11i 22--11i 22+C. D.11i 22-+11i 22-3.2024年1月至5月重庆市八大类商品和服务价格增长速度依次为,3.1%,2.5%,1.9%,则该组数据的第75百分位数为( )1.0%,0.8%,0.5%,0.1%,2.6%--A.B.C.D.1.0% 1.9% 2.2% 2.5%4.甲同学每次投篮命中的概率为,在投篮6次的实验中,命中次数的均值为2.4,则的方差为( p X X )A.1.44B.1.24C.1.2D.0.965.已知函数,且的图象不经过第一象限,则函数的图象不()2(0x f x a a =->1)a ≠()()1log 2ag x x =+经过( )A.第一象限 B.第二象限C.第三象限D.第四象限6.已知椭圆的左、右焦点分别为,点在上,为的中点,且2222:1(0)x y M a b a b +=>>12,F F P M Q 2PF ,则的离心率为()121,F Q PF F Q b⊥=MB.D.13127.已知正四面体的高等于球的直径,则正四面体的体积与球的体积之比为()O O8.在中,,且,则( )ABC()sin sin sin A C C B-+=BC A.ABC B.ABCC.ABCD.ABC 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知点到抛物线准线的距离为4,则的值可能为( )()1,22:C x my =m A.8B.C.24D.8-24-10.将函数图象所有点的横坐标缩短为原来的,纵坐标不变,得到函数的图()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭12()g x 象,则()A.为偶函数π3f x ⎛⎫+ ⎪⎝⎭B.的最小正周期为()g x 4πC.与在上均单调递减()f x ()g x π2π,33⎛⎫⎪⎝⎭D.函数在上有5个零点()()y f x g x =-[]0,2π11.若函数,则()()32f x x ax bx c=+++A.可能只有1个极值点()f x B.当有极值点时,()f x 23a b>C.存在,使得点为曲线的对称中心a ()()0,0f ()y f x =D.当不等式的解集为时,的极小值为()0f x <()(),11,2∞-⋃()f x 427-三、填空题:本题共3小题,每小题5分,共15分.12.若向量,且,则__________.()()2,3,1,2a b m =-=+ a ∥b m =13.已知是等比数列,,则数列的前项和为__________.{}3n a +122,1a a =-=-{}n a n 14.甲、乙玩一个游戏,游戏规则如下:一个盒子中装有标号为的6个大小质地完全相同的小球,1,2,3,4,5,6甲先从盒子中不放回地随机取一个球,乙紧接着从盒子中不放回地随机取一个球,比较小球上的数字,数字更大者得1分,数字更小者得0分,以此规律,直至小球全部取完,总分更多者获胜.甲获得3分的概率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,在正方体中,点分别在上,且.1111ABCD A B C D -,,E F G 11,,AB CC DD 13BE CF DG AB ===(1)若,证明:平面.2FH HG =EF ∥1AHD (2)求平面与平面夹角的余弦值.1D EF ABCD 16.(15分)为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢运动有关联?0.1α=(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.()170,100X N ~假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).[]170,200附:,其中.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++α0.10.050.01x α2.7063.8416.635若,则,()2,X N μσ~()()0.6827,220.9545P X P X μσμσμσμσ-+≈-+≈ .()330.9973P X μσμσ-+≈ 17(15分)已知函数,且曲线在点处的切线斜率为.()()2e 2x f x a b x =-++()y f x =()()0,0f 22a -(1)比较和的大小;a b (2)讨论的单调性;()f x (3)若有最小值,且最小值为,求的最大值.()f x ()g a ()g a 18.(17分)已知平面内一动点到点的距离与点到定直线的轨迹P ()2,0F -P 32x =-P 为曲线.C(1)求曲线的方程.C (2)在直线上有一点,过点的直线与曲线相交于两点.设y x=M M l C ,A B ,证明:只与有关.()2:3l x my n m =->MA MB m 19.(17分)若数列满足,且,则称数列为“稳定数列”.{}n a 2122n n n n n a a a a a +++++ 0n a >{}n a (1)若数列为“稳定数列”,求的取值范围;,,2m m m(2)若数列的前项和,判断数列是否为“稳定数列”,并说明理由;{}n b n ()218n S n n =+{}n b (3)若无穷数列为“稳定数列”,且的前项和为,证明:当时,.{}n c {}n c n n T 2n 22n T T n ++ 高三数学入学考试参考答案1.C 由题意得,所以.[]1,5M =-[]4,5M N ⋃=-2.B 由题意得,则.121i z -=+()()11i 11i 1i 1i 1i 22z +===+--+3.C 因为,所以该组数据的第75百分位数为.875%6⨯= 1.9% 2.5%2.2%2+=4.A 由题意得,则,所以.()6 2.4E X p ==0.4p =()()61 1.44D X p p =-=5.D 当时,的图象经过第一、三、四象限,不经过第二象限,1a >()2x f x a =-当时,的图象经过第二、三、四象限,不经过第一象限,01a <<()2x f x a =-则,得,所以的图象经过第一、二、三象限,不经过第四象限.01a <<11a >()()1log 2a g x x =+6.D 由题意得,则.在中,由1122PF F F c==()22111222QF PF a PF a c ==-=-12QF F,得,则,得2221212F Q QF F F +=222()4b a c c +-=2222224a c a ac c c -+-+=,解得,所以的离心率为.()()22220a ac c a c a c --=-+=2a c =M 12c a=7.C 设正四面体的边长为,球的半径为,易得正四面体的高,则a O Rh ==.正四面体的体积,球的体积R =23111sin6032V a =⨯= O,所以333244πππ33V R a ⎫==⨯=⎪⎪⎭12V V =8.D 设的内角的对边分别为.由题意得C ),得ABC ,,A B C ,,a b c ()sin sin sin(A C C A -+=+,得.因为,所以sin cos sin cos sin sin cos sin cosA C C A C A C C A -+=+2sin cos sin C A C =sin 0C ≠,即.由得,则1cos 2A =π3A =22211sin 222cos ,ABC S bc A a a b c bc A ⎧==⎪⎨⎪=+-⎩222,,a bc a b c bc=⎧⎨=+-⎩,得(当且仅当时,等号成立),所以,22222b c b c bc bcbc =+-- 1bc 1b c ==ABC S =则ABC S 9.AD 由题意得的准线方程为,则,解得或.C 4m y =-244m --=8m =24-10ACD 为偶函数,A 正确.ππ2sin 2cos 32f x x x⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭由题意得的最小正周期,B 错误.()()π2sin 2,6g x x g x ⎛⎫=+ ⎪⎝⎭2ππ2T ==由,得,所以与在上均单调递减,π2π,33x ⎛⎫∈ ⎪⎝⎭ππ5ππ5π3π,,2,626662x x ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭()f x ()g x π2π,33⎛⎫⎪⎝⎭C 正确.当时,函数和的图象如图所示,函数和的图象有5个交点,所[]0,2πx ∈()f x ()g x ()f x ()g x 以函数在上有5个零点,D 正确.()()y f x g x =-[]0,2π11.BCD 由题意得.当,即时,,在()2232,Δ412f x x ax b a b=++=-'Δ0 23a b ()0f x ' ()f x 上单调递增,无极值点.当,即时,设是方程的两个解,则R Δ0>23a b >()1212,x x x x <()0f x '=在上单调递增,在上单调递减,有2个极值点.综上,不可能()f x ()()12,,,x x ∞∞-+()12,x x ()f x ()f x 只有1个极值点,当有极值点时,,A 错误,B 正确.当时,()f x 23a b >0a =,则点为曲线的对称中心,C 正确.当不等式()()()220f x f x c f +-==()()0,0f ()y f x =的解集为时,易得的零点为1和2,且1为0的二重根,则()0f x <()(),11,2∞-⋃()f x ()f x =,则.易知在,上单调递增,在()()2(1)2f x x x =--()()()135f x x x =--'()f x (),1∞-5,3∞⎛⎫+ ⎪⎝⎭上单调递减,所以的极小值为,D 正确.51,3⎛⎫⎪⎝⎭()f x 54327f ⎛⎫=-⎪⎝⎭12. 由题意得,解得.73-()314m +=-73m =-13. 设等比数列的公比为,则,得,231n n --{}3na +q 21323a q a +==+()11332n n a a -+=+⋅则,所以的前项和为123n n a -=-{}n a n 0212123232323323121n n n n n ---+-+-++-=-=--- 14. 若甲获得3分,则甲必取中6号球,乙必取中1号球.18当甲小球上的数字为时,甲获得3分的概率为;6,5,4333366A A 1A 20=当甲小球上的数字为时,甲获得3分的概率为;6,5,3336622A 1A 30⨯⨯=当甲小球上的数字为时,甲获得3分的概率为;6,5,233662A 1A 60=当甲小球上的数字为时,甲获得3分的概率为;6,4,333662A 1A 60=当甲小球上的数字为时,甲获得3分的概率为.6,4,23366A 1A 120=综上,甲获得3分的概率为.1111122030601208++⨯+=15.(1)证明:且四边形是平行四边形,FC GD = FC ∥,GD ∴CDGF且.CD FG ∴=CD ∥FG ,且,且,23FH CD = FH ∥2,3CD AE CD=AE ∥CD ,且,AE FH ∴=AE ∥FH 四边形是平行四边形,.∴AEFH EF ∴∥AH 平面平面平面EF ⊄ 1,AHD AH ⊂1,AHD EF ∴∥1AHD (2)解:以为原点,为3个单位长度,所在直线分别为轴、轴、轴,建立如图D DA 1,,DA DC DD x y z 所示的空间直角坐标系,则.()()()()()1110,0,3,3,2,0,0,3,1,3,2,3,0,3,2D E F D E D F =-=-设平面的法向量为,则,取,则,得1D EF (),,n x y z =113230,320,n D E x y z n D F y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ 5x =6,9y z ==.()5,6,9n =易得平面的一个法向量为,ABCD ()0,0,1m =平面与平面夹角的余弦值为.∴1DEF ABCDn m n m ⋅=16.解:(1)零假设为:学生的性别和是否喜欢运动无关.0H 根据列联表中的数据,计算得到,22100(35203510)7002.357 2.70670304555297χ⨯⨯-⨯==≈<⨯⨯⨯根据的独立性检验,没有充分的证据推断不成立,0.1α=0H 因此可以认为成立,即学生的性别和是否喜欢跳绳无关.0H (2)设经过训练后,该校学生每分钟的跳绳个数为,则.Y ()180,100,180,10Y N μσ~==由题意得,()(170180)(180)2P Y P Y P Y μσμσσμ-+<=-<=,()()()2218020022P Y P Y P Y μσμσμμσ-+=+= 则.()()()221702000.81862P Y P Y P Y μσμσμσμσ-++-+=≈ 因为,10000.8186818.6⨯=所以预估经过训练后该校每分钟的跳绳个数在内的人数为819.[]170,20017.解:(1)由题意得,()()22e x f x a b =-+'则,()()0222f a b a=-+=-'得.a b =(2)由题意得的定义域为.()f x ()2,2e 2x f x a=-'R 当时,,则在上单调递增.0a ()0f x '>()f x R 当时,令,得,令,得,0a >()0f x '>1ln 2x a >()0f x '<1ln 2x a <则在上单调递减,在上单调递增.()f x 1,ln 2a ∞⎛⎫- ⎪⎝⎭1ln ,2a ∞⎛⎫+ ⎪⎝⎭(3)由(2)可知当时,没有最小值,0a ()f x 则,()min 10,()ln ln 22a g a f x f a a a a ⎛⎫>===-+ ⎪⎝⎭得.()ln g a a'=-当时,单调递增,01a <<()()0,g a g a '>当时,单调递减,1a >()()0,g a g a '<所以.()max ()13g a g ==18.(1)解:设,(),Px y =化简得曲线的方程为.C 2213x y -=(2)证明:设.()()1122,,,A x y B x y 联立得,22,1,3x my n x y =+⎧⎪⎨-=⎪⎩()2223230m y mny n -++-=因为,所以,所以23m >230m ->()()()22222Δ(2)4331230,mn m n m n =---=+->则1222122233.3mn y y m n y y m -⎧+=⎪⎪-⎨-⎪=⎪-⎩联立得.,,x my n y x =+⎧⎪⎨=⎪⎩0y =,1MA y==-同理可得,2MB y =-所以()()()222010*******11MA MB m y y y y m y y y y y y =+--=+-++((223113n mm m -=+=+-.()22313m m +=-故只与有关.MA MBm 19.(1)解:由题意得,得.222m m m ++ 21m - 因为,所以的取值范围为.0m >m (]0,1(2)解:(方法一)数列不是“稳定数列”.{}n b 理由如下:当时,;1n =1114b S ==当时,(也成立).2n 114n n n b S S n-=-=1b由题意得,()22212211111(1)(2)(2)24716164416n n n n n b b b b b n n n n n n n ++++--=+++--+=--当时,,即.4n ()21247016n n -->2122n n n n n b b b b b ++++>+故数列不是“稳定数列”.{}n b (方法二)数列不是“稳定数列”.{}n b 理由如下:当时,;1n =1114b S ==当时,(也成立).2n 114n n n b S S n -=-=1b 当时,,4n =254646252469101616416b b b b b +--=+--=>即.254646b b b b b +>+故数列不是“稳定数列”.{}n b (3)证明:由,得,2122n n n n n c c c c c +++++ ()()212221111n n n n n n n c c c c c c c ++++-+--=-- 假设,得,则.121,1n n c c ++>>21210,10n n c c ++->->10n c ->因为,所以,0n c >20111n n c c +<-<<+所以,即.①()()()()2212222111111n n n n n n c c c c c c +++++---<+-=- 12n n c c ++<由,得.()()()()212211111n n n n n c c c c c +++---=-- ()()2231111n n n c c c +++--- 因为,所以,22110,10n n c c ++->->310111n n c c ++<-<<+则,即.②()()()()22231111111111n n n n n n c c c c c c ++++++---<+-=- 21n n c c ++<①与②相互矛盾,则不能同时大于1.12,n n c c ++当时,假设,则,则,2n 11n c +>21,1n n c c + ()()21210,110n n n c c c ++->-- 得,不符合题意,所以.()()212111n n n c c c ++->--11n c + 故当时,.2n 123121222211222n n T c c c c c c c c n T n +=++++++++++=++-+=+。
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
2024-2025学年第一学期东莞外国语学校高三段考一命题人:夏俊东 审题人:龚建兵一、单选题(每题5分,共40分)1. 设集合{}24Ax x=≥,{}2B x x a =<,若A B A = ,则a 的取值范围是( )A. (],4−∞−B. (],1−∞−C. [)1,+∞D. [)4,+∞【答案】A 【解析】【分析】先解一元二次不等式再根据集合间的关系求参. 【详解】(][),22,A ∞∞=−−∪+,,2a B ∞=−; 由A B A = 可以推出B A ⊆,所以22a≤−, a 的取值范围是(,4⎤-∞-⎦. 故选:A.2. 命题“N m ∃∈,N ”的否定是( ) A. N m ∀∈N B. N m ∀∉N C N m ∃∈N D. N m ∀∈N【答案】D 【解析】【分析】利用命题否定的定义求解即可. 【详解】由命题否定的定义得命题“N m ∃∈,N ”的否定是N m ∀∈N ,故D 正确.故选:D3. 某公司为了调查员工的健康状况,由于女员工所占比重大,按性别分层,用按比例分配的分层随机抽样的方法抽取样本,若样本中有女员工39人,男员工21人,女员工的平均体重为50kg ,标准差为6,男员工的平均体重为70kg ,标准差为4.则所抽取的所有员工的体重的方差为( ) A. 29B. 120C. 100D. 112.【答案】B 【解析】【分析】求出样本平均数,再根据分层抽样方差计算公式求出样本的方差. 【详解】依题意,样本中所有员工的体重的平均值为392150705739213921×+×=++,则样本中所有员工的体重的方差222223921[6(5057)][4(7057)]12039213921s =×+−+×+−=++. 故选:B4. 二项式5212x x +−展开式中,含2x 项的系数为( )A. 20B. 20−C. 60−D. 80【答案】A 【解析】【分析】利用展开式的意义可求含2x 项的系数.【详解】5212x x +−表示5个因式212x x +−的乘积,要得到含2x 项,需有1个因式取2x ,其余的4个因式都取2−,系数为()415C 2−, 或者需有2个因式取2x 项,需有2个因式取1x,其余的1个因式都取2−,系数为()22532C C −, 故含2x 项的系数为()()42215352C C C 220−+−=. 故选:A.5. 函数()f x ax x =,经过点(1,1)−,则关于x 的不等式2(3)(40)f x f x +−<解集为( ) A. (,1)(4,)−∞−+∞ B. (1,4)− C. (,4)(1,)∞∞−−∪+ D. (4,1)−【答案】B 【解析】【分析】根据图象经过点(1,1)−得到解析式,再判断函数单调性及奇偶性,由此求解不等式即可. 【详解】由函数()f x ax x =的图象经过点(1,1)−,得1a =−, 则ff (xx )=−xx |xx |=�xx 2,xx ≤0−xx 2,xx >0, 所以函数()f x 在(,0]−∞上单调递减,在(0,+∞)上单调递减,所以()f x 在R 上单调递减,又()||||()f x x x x x f x −=−==−,即函数()f x 是奇函数, 不等式2223)))(3)(40()(4(4f x f x f x f x f x +−=<⇔<−−−, 则243x x −<,即2340x x −−<,解得14x −<<, 所以原不等式的解集为(1,4)−. 故选:B.6. 若函数()f x 是定义在R 上的奇函数,()()()2,12f x f x f −==,则()()()1230f f f +++=( ) A. 2 B. 0C. 60D. 62【答案】A 【解析】【分析】根据题意得出函数的周期性、对称性,进一步得出()()()()12340f f f f +++=即可得解. 【详解】由题意()()()()22f x f x f x f x −==−−=−−,所以()f x 的周期为4, 且()f x 关于直线1x =对称,而()()()())()()()()()12340112200f f f f f f f f f f +++=++−+===,所以()()()()()()()()()123029*********f f f f f f f f f +++=+=+=+=+= . 故选:A.7. 如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有( )A. 96种B. 64种C. 32种D. 16种【答案】B 【解析】【分析】分3步完成,每步中用排列求出排法数,再利用分步计数原理即可求出结果. 【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有222A 4=种排法;第二步,排第一步中剩余的一组数,共有1142A A 8=种排法; 第三步,排数字5和6,共有22A 2=种排法;由分步计数原理知,共有不同的排法种数为48264××=. 故选:B.8. 已知实数x ,y ,满足2ln e ln 2x y y y x =−,则y 的最小值为( )A. eB.e2C.2eD.【答案】A 【解析】【分析】化简变形后可设()e t f t t =,知其在(1,)+∞上单调递增,若()(ln 2)2f xy f x =,则22e x xy =,对2e 2xy x=求导可得到极值点也是最值点,故可得结果.【详解】由已知有2ln ln 2e x y y y x +=,即2ln 2e x y xy =,即ln 22ln 2e 2e xy x xy x ⋅=,因为20x >,令()e t f t t =,0t >,()()1e 0t f t t +′=>易知()f t 在(0,)+∞上单调递增,因()(ln 2)2f xy f x =,所以ln 22xy x =,故22e xxy =,即2e 2xy x=. 所以22(21)e 2x x y x −′=,令22(21)e 02xx y x−′==,可得12x =, 又因22(21)e 2x x y x−′=在10,2上小于零,故y 在10,2 单调递减, 22(21)e 2x x y x−′=在1,2∞ + 上大于零,故y 在1,2∞ + 单调递增, 故当时12x =,y 取极小值也是最小值为e. 故选:A二、多选题(每题6分,共18分,部分选对得部分分,错选得0分)9. 已知正数x ,y 满足21x y +=,则下列说法正确的是( )A. xy 的最大值为18B. 224x y +的最小值为12C.的最大值为D.13x y+的最小值为7+【答案】ABD 【解析】【分析】利用已知条件、基本不等式逐项判断可得答案.【详解】对于A :∵0x >,0y >,21x y +=. ∴222112224+ ⋅≤==x y x y ,18xy ≤. 当且仅当221x y x y =+=,即12x =,14y =,取“=”,∴A 正确; 对于B :2224(2)414x y x y xy xy +=+−=−,由(1)知18xy ≤,∴142xy −≥−. ∴2211414122x y xy +=−≥−=.∴B 正确;对于C :22112112=++=+≤++=+=x y x y .≤,∴C 错误;对于D :()132******** ++=+++=++≥+y x y xx y x y x y x y 当且仅当23y xx y =,即222321y x x y = +=,取“=”,∴D 正确. 故选:ABD.10. 从某加工厂生产的产品中抽取200件作为样本,将它们进行某项质量指标值测量,并把测量结果x 用频率分布直方图进行统计(如图).若同一组中数据用该组区间的中点值作代表,则关于该样本的下列统计量的叙述正确的是( )A. 指标值在区间[)205,215的产品约有48件B. 指标值的平均数的估计值是200C. 指标值的第60百分位数是200D. 指标值的方差估计值是150 【答案】ABD 【解析】【分析】根据给定的频率分布直方图,利用各组的频率结合频数及百分位数的意义计算判断AC ;利用频率分布直方图求估算平均数、方差的方法计算判断BD 作答.【详解】指标值[)205,215x ∈的样本频率是100.0240.24×=,指标值在区间[205,215)的产品约有2000.2448×=件,A 正确;1700.021800.091900.222000.332100.242200.082300.02200x =×+×+×+×+×+×+×=, 2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =−×+−×+−×+×+×+×+×=,BD 正确;由直方图得,从第一组至第七组的频率依次是0.02,0.09,0.22,0.33,0.24,0.08,0.02,所以指标值的第60百分位数m 在[)195,205内,()()1950.0330.60.020.090.22m −×=−++,解得203.18m ≈,C 错误.故选:ABD11. 已知函数()f x ,()g x 的定义域为R ,()g x 的导函数为()g x ′,且()()5f x g x ′+=,()()155f x g x −′−−=,若()g x 为偶函数,则下列说法正确的是( )A. ()05f =B.()2024110120n f n ==∑C. 若存在0x 使()f x 在()00,x 上单调递增,在()02x ,上单调递减,则()g x 的极小值点为()4Z k k ∈D. 若()f x 为偶函数,则满足题意的()f x 唯一,满足题意的()g x 不唯一 【答案】ABD 【解析】【分析】代入求得()05f =判断A ;利用函数的周期判断B ;利用已知条件和函数的周期性判断C ;根据函数的奇偶性结合已知条件求出()5f x =,()0g x ′=判断D .【详解】对A ,因为()g x 为偶函数,所以()g x ′是奇函数,所以()00g ′=,又()()5f x g x ′+=,所以()()()00505f g f ′+=⇒=,故A 对;对B ,由()()5f x g x ′+=,()()155f x g x −′−−=,得()()45f x g x ′−−=, 所以()()410f x f x −+=,所以()()1310f f +=,()()245f f ==,又()()()()554f x g x g x f x ′′=−=+−=+,所以()f x 是周期为4的函数,()g x ′也是周期为4的函数,所以()()()()12320242050610120f f f f ++++=×= ,故B 对; 对C ,()f x 在()00,x 上严格增,在()02x ,上严格减,由()()410f x f x −+=,()y f x =的图象关于()2,5对称且()25f =, 由A 可得()05f =,故()f x 在[)00,x 上严格增,在(]0,2x 上严格减, 可知()f x 在[)02,4x −严格递减,在(]04,4x −严格递增, 又()f x 的周期为4, 所以()f x 在(]0,0x −严格递增, 所以()g x ′在(]0,0x −严格递减,在[)00,x 严格递减,又()00g ′=,所以0是()g x 的极大值点,()g x ′是周期为4的函数, 所以则()g x 的极大值点为()4Z k k ∈,故C 错;对D ,若()f x 为偶函数,由于()g x ′是奇函数,()()5f x g x ′+=,则()()5f x g x +′−−=,即()()5f x g x −′=,所以()5f x =,()0g x ′=,所以()f x 唯一,()g x 不唯一,故D 对. 故选:ABD.【点睛】关键点点睛:本题关键是充分利用导数与函数单调性和极值的关系,并结合函数的奇偶性和周期性分析.三、填空题(每题5分,共15分)12. 已知随机变量X 服从正态分布()31N ,,且()240.6827P X ≤≤=,则()4P X >=______.(精确到小数点后第五位) 【答案】0.15865 【解析】【分析】根据正态分布对称性结合题意求解即可.【详解】由于X 服从正态分布()31N ,,所以正态曲线的对称轴为直线3x =, 所以()()42P X P X >=<, 故()()12440.158652P X P X −≤≤>==.故答案为:0.15865.13. 已知()f x 是定义R 在上的奇函数,当0x >时,()222xxf x −=+,当0x <时,()22x x f x m n −=⋅+⋅,则m n +=________【答案】5− 【解析】【分析】根据奇函数可求得0x <的解析式,从而可求得4m =−,1n =−,进而可得答案. 【详解】令0x <,则0x −>,所以()222xx f x −+−+.因为()f x 是定义在R 上的奇函数,所以()()f x f x −=−, 所以()222422xx x x f x +−−=−−=−×−,所以4m =−,1n =−,所以5m n +=−. 故答案为:5−14. 设a ∈R ,对任意实数x ,用ff (xx )表示22,35x x ax a −−+−中的较小者.若函数()f x 至少有3个零点,则a 的取值范围为______.的的【答案】10a ≥ 【解析】【分析】设()235g x x ax a =−+−,()2h x x =−,分析可知函数()g x 至少有一个零点,可得出0∆≥,求出a 的取值范围,然后对实数a 的取值范围进行分类讨论,根据题意可得出关于实数a 的不等式,综合可求得实数a 的取值范围. 【详解】设()235g x x ax a =−+−,()2h x x =−,由20x −=可得2x =±.要使得函数()f x 至少有3个零点,则函数()g x 至少有一个零点,则212200a a ∆=−+≥, 解得2a ≤或10a ≥.①当2a =时,()221g x x x =−+,作出函数()g x 、()h x 的图象如下图所示:此时函数()f x 只有两个零点,不合乎题意;②当2a <时,设函数()g x 的两个零点分别为1x 、()212x x x <, 要使得函数()f x 至少有3个零点,则22x ≤−,所以,()2224550ag a <− −=+−≥,解得a ∈∅; ③当10a =时,()21025g x x x =−+,作出函数()g x 、()h x 的图象如下图所示:由图可知,函数()f x 的零点个数为3,合乎题意;④当10a >时,设函数()g x 的两个零点分别为3x 、()434x x x <,要使得函数()f x 至少有3个零点,则32x ≥,可得()222450a g a > =+−≥,解得4a >,此时10a > 综上所述,实数a 的取值范围是[)10,+∞. 故答案为:[)10,+∞.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题15. 已知函数()ln af x x x=−. (1)当1a =−时,求()f x 的极值;(2)若()0f x ≥恒成立,求实数a 的取值范围; 【答案】(1)极小值1,无极大值 (2)1a e≤− 【解析】【分析】(1)利用求导判断函数单调性,即可求得极值;(2)由()0f x ≥恒成立,转化为ln a x x ≤恒成立,继而结合求导得出()ln g x x x =的最小值即可. 【小问1详解】当1a =−时,()1ln f x x x=+,定义域为(0,+∞), 则()22111x f x x x x=′−=−, 当01x <<时,ff ′(xx )<0,当1x >时,ff ′(xx )>0, 则()f x 在(0,1)上单调递减,在(1,+∞)上单调递增,所以()f x 有极小值()11f =,无极大值. 【小问2详解】.因为()0f x ≥恒成立,得0x ∀>,ln a x x ≤, 令()ln g x x x =,0x >,则()1ln g x x =′+, 当10e x <<,()0g x ′<,当1ex >时,()0g x ′>, 即函数()g x 在10,e上递减,在()e,∞+上递增,因此()min 11e e g x g ==−,则1a e ≤−, 所以a 的取值范围为1a e≤−.16. 随着中国科技的迅猛发展和进步,中国民用无人机行业技术实力和国际竞争力不断提升,市场规模持续增长.为了适应市场需求,我国某无人机制造公司研发了一种新型民用无人机,为测试其性能,对其飞行距离与核心零件损坏数进行了统计,数据如下: 飞行距离x (千千米) 56 63 71 79 90 102 110 117 核心零件损坏数y (个) 617390105119136149163(1)据关系建立y 关于x 的回归模型 ˆˆˆybx a =+求y 关于x 的回归方程(ˆb 精确到0.1,ˆa 精确到1). (2)为了检验核心零件报废是否与保养有关,该公司进行第二次测试,从所有同型号民用无人机中随机选取100台进行等距离测试,对其中60台进行测试前核心零件保养,测试结束后,有20台无人机核心零件报废,其中保养过的占比30%,请根据统计数据完成2×2列联表,并根据小概率值0.01α=的独立性检验,能否认为核心零件的报废与保养有关保养未保养合计报废20未报废合计60100附:回归方程 ˆˆˆybx a =+中斜率和截距的最小二乘原理估计公式 121()()ˆ()nii i nii xx y y b xx ==−−=−∑∑,()()()()()22,,.ˆˆn ad bc ay bx K n a b c d a b c d a c b d −=−==+++++++20()P K k ≥0. 250. 10. 050.025 0. 01 0. 0010k1.3232.7063.841 5.0246.635 10.828参考数据:8821186,112,82743,62680i ii i i x y x y x ======∑∑【答案】(1)1.626ˆy x =−; (2)表格见解析,核心零件是否报废与是否保养有关. 【解析】【分析】(1)根据给定数据,利用最小二乘法求出回归直线方程. (2)完善22×,求出2K 的观测值并与临界值比对即可得解. 【小问1详解】依题意,881188222211ˆ6()()8827438861121.62680886()8i i i ii i i ii i x x y y x y xybx x x x ====−−−−××==≈−×−−∑∑∑∑, ˆ112 1.68626ˆay bx =−=−×≈−, 所以y 关于 x 的线性回归方程为1.626ˆy x =−. 【小问2详解】依题意,报废机核心零件中保养过的有2030%6×=台,未保养的有20614−=台, 则22×列联表如下:保养 未保养 合计 报废 6 14 20 未报废542680合计 60 40 100零假设0H :核心零件是否报废与保养无关,则22100(6261454)9.375 6.63520406080K ××−×==>×××,根据小概率值0.01α=的独立性检验,推断0H 不成立,即认为核心零件报废与是否保养有关,此推断的错误概率不大于0.01.17. 甲、乙两人准备进行台球比赛,比赛规定:一局中赢球的一方作为下一局的开球方.若甲开球,则本局甲赢的概率为23,若乙开球,则本局甲赢的概率为13,每局比赛的结果相互独立,且没有平局,经抽签决定,第1局由甲开球.(1)求第3局甲开球的概率;(2)设前4局中,甲开球的次数为X ,求X 的分布列及期望. 【答案】(1)59(2)分布列见解析,()7427E x = 【解析】【分析】(1)设第i 局甲胜为事件i A ,则第3局甲开球为事件1212A A A A +,结合条件概率公式计算即可. (2)由X 的取值,根据对应的事件,求相应的概率,得分布列,由公式求解期望. 【小问1详解】设第i 局甲胜为事件i A ,则第i 局乙胜为事件i A ,其中1,2,3,i = 则“第3局甲开球”为事件2A ,()()()()()()()212121211212211533339P A P A A P A A P A P A A P A P A A =+=+=⋅+⋅=. 【小问2详解】 依题意1,2,3,4X =,()()1231224133327P X P A A A ===⋅⋅=,()()()()1231231232121111217233333333327P X P A A A P A A A P A A A ==++=⋅⋅+⋅⋅+⋅⋅=, ()()()()1231231232212111128333333333327P X P A A A P A A A P A A A ==++=⋅⋅+⋅⋅+⋅⋅=, ()()1232228433327P X P A A A ===⋅⋅=,X ∴的分布列为则()47887412342727272827E x =×+×+×+×=. 18. 已知函数1()e ln ln x f x a x a −−+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围. 【答案】(1)21e −(2)[1,)+∞ 【解析】【分析】(1)利用导数的几何意义求出在点()()1,1f 切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数()f x 的单调性,当a =1时,由()10f ′=得()()11minf x f ==,符合题意;当a >1时,可证1()(1)0f f a′′<,从而()f x ′存在零点00x >,使得0101()0x f x ae x −′=−=,得到min ()f x ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得()1f x ≥恒成立;当01a <<时,研究()1f .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)()ln 1x f x e x =−+ ,1()xf x e x′∴=−,(1)1k f e ′∴==−. (1)1f e =+ ,∴切点坐标(1,1+e ),∴函数()f x 在点(1,f (1)处的切线方程为1(1)(1)y e e x −−=−−,即()12y e x =−+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e −−, ∴所求三角形面积为1222||=211e e −××−−. (2)[方法一]:通性通法 1()ln ln x f x ae x a −−+ ,11()x f x ae x−′∴=−,且0a >. 为设()()g x f x =′,则121()0,x g x ae x −′=+> ∴g(x )在(0,)+∞上单调递增,即()f x ′在(0,)+∞上单调递增, 当1a =时,(1)0f ′=,∴()()11minf x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e −<∴,111()(1)(1)(1)0a f f a e a a−′′∴=−−<,∴存在唯一00x >,使得01001()0x f x ae x −′=−=,且当0(0,)x x ∈时()0f x ′<,当0(,)x x ∈+∞时()0f x ′>,011x ae x −∴=,00ln 1ln a x x ∴+−=−, 因此01min 00()()ln ln x f x f x aex a −==−+001ln 1ln 2ln 12ln 1a x a a a x =++−+≥−++>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞). [方法二]【最优解】:同构由()1f x ≥得1e ln ln 1x a x a −−+≥,即ln 1ln 1ln a x e a x x x +−++−≥+,而ln ln ln x x x e x +=+,所以ln 1ln ln 1ln a x x e a x e x +−++−≥+.令()m h m e m =+,则()10m hm e +′=>,所以()h m 在R 上单调递增. 由ln 1ln ln 1ln a x x e a x e x +−++−≥+,可知(ln 1)(ln )h a x h x +−≥,所以ln 1ln a x x +−≥,所以max ln (ln 1)a x x ≥−+.令()ln 1F x x x =−+,则11()1xF x x x−′=−=. 所以当(0,1)x ∈时,()0,()F x F x ′>单调递增; 当(1,)x ∈+∞时,()0,()F x F x ′<单调递减.所以max[()](1)0F x F ==,则ln 0a ≥,即1a ≥.所以a 的取值范围为1a ≥. [方法三]:换元同构由题意知0,0a x >>,令1x ae t −=,所以ln 1ln a x t +−=,所以ln ln 1a t x =−+. 于是1()ln ln ln ln 1x f x ae x a t x t x −=−+=−+−+.由于()1,ln ln 11ln ln f x t x t x t t x x ≥−+−+≥⇔+≥+,而ln y x x =+在(0,)x ∈+∞时为增函数,故t x ≥,即1x ae x −≥,分离参数后有1x x a e−≥.令1()x x g x e −=,所以1112222(1)()x x x x x e xe e x g x e e−−−−−−−==′. 当01x <<时,()0,()g x g x >′单调递增;当1x >时,()0,()g x g x <′单调递减. 所以当1x =时,1()x x g x e−=取得最大值为(1)1g =.所以1a ≥.[方法四]:因为定义域为(0,)+∞,且()1f x ≥,所以(1)1f ≥,即ln 1a a +≥. 令()ln S a a a =+,则1()10S a a=′+>,所以()S a 在区间(0,)+∞内单调递增. 因为(1)1S =,所以1a ≥时,有()(1)S a S ≥,即ln 1a a +≥.下面证明当1a ≥时,()1f x ≥恒成立.令1()ln ln x T a ae x a −−+,只需证当1a ≥时,()1T a ≥恒成立. 因为11()0x T a ea−=+>′,所以()T a 在区间[1,)+∞内单调递增,则1min [()](1)ln x T a T e x −==−. 因此要证明1a ≥时,()1T a ≥恒成立,只需证明1min [()]ln 1x T a e x −=−≥即可.由1,ln 1x e x x x ≥+≤−,得1,ln 1x e x x x −≥−≥−.上面两个不等式两边相加可得1ln 1x e x −−≥,故1a ≥时,()1f x ≥恒成立. 当01a <<时,因为(1)ln 1f a a =+<,显然不满足()1f x ≥恒成立. 所以a 的取值范围为1a ≥.【整体点评】(2)方法一:利用导数判断函数()f x 的单调性,求出其最小值,由min 0f ≥即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成ln 1ln ln 1ln a x x e a x e x +−++−≥+,再根据函数()m h m e m =+的单调性以及分离参数法即可求出,是本题的最优解;方法三:通过先换元,令1x ae t −=,再同构,可将原不等式化成ln ln t t x x +≥+,再根据函数ln y x x =+的单调性以及分离参数法求出;方法四:由特殊到一般,利用(1)1f ≥可得a 的取值范围,再进行充分性证明即可.19. 无穷数列1a ,2a ,…,n a ,…的定义如下:如果n 是偶数,就对n 尽可能多次地除以2,直到得出一个奇数,这个奇数就是n a ﹔如果n 是奇数,就对31n +尽可能多次地除以2,直到得出一个奇数,这个奇数就是n a .(1)写出这个数列的前7项;(2)如果n a m =且m a n =,求m ,n 的值; (3)记()n a f n =,*n ∈N ,求一个正整数n ,满足()()()()()()2024fn f n f f n f f f n <<<<个 .【答案】(1)11a =,21a =,35a =,41a =,51a =,63a =,711a =; (2)1m n ==; (3)202521n k −(答案不唯一,满足()*212025,,m n k m m k =−≥∈N 即可)【解析】【分析】(1)根据数列{aa nn }的定义,逐一求解;(2)根据数列{aa nn }的定义,分1n =和1n >分别求解;(3)根据数列{aa nn }的定义,写出()f n 的值,即可求解. 【小问1详解】 根据题意,()1311221a ×+÷÷,2221a =÷=,()333125a =×+÷=,44221a =÷÷=,()4535121a =×+÷=,6623a =÷=,()7371211a =×+÷=.【小问2详解】由已知,m ,n 均为奇数,不妨设m n ≤.当1n =时,因为11a =,所以1m =,故1m n ==;当1n >时,因为314n n m +<≤,而n 为奇数,n a m =,所以312n m +=. 又m 为奇数,m a n =,所以存在*k ∈N ,使得312km n +=为奇数. 所以()33195231122k n n n m ++=+=+=. 而95462n n n +<<,所以426k n n n <<,即426k <<,*k ∈N ,无解. 所以1m n ==. 【小问3详解】显然,n 不能为偶数,否则()2nf n n ≤<,不满足()n f n <. 所以,n 为正奇数.又()111f a ==,所以3n ≥. 设41n k =+或41n k =−,*k ∈N . 当41n k =+时,()()341131414k f n k k n ++==+<+=,不满足()n f n <; 当41n k =−时,()()341161412k f n k k n −+==−>−=,即()n f n <.所以,取202521nk −,*k ∈N 时,()()()()2025202420242202332113321132132122k k k f f n k −+×−+=×−<==×−()()()()20223202322023332113212k f f f n k ×−+<<==×−()()()()2023220242024332113212k f f f n k ×−+<==×−即()()()()()()2024fn f n f f n f f f n <<<< 个.【点睛】关键点点睛:第(3)问中,发现当41n k =−时,满足()n f n <,从而设202521nk −,*k∈N,验证满足条件.。
高三9月月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.已知集合{}33A x N x =∈-<<,{2,0,2,3}B =-,则A B 是( ) A .{0,2} B .{2} C .{2,0,2}- D .{0,2,3}2.(5分)2.下列图形可表示函数()y f x =图象的只可能是( ) A . B . C . D .3.(5分)3.已知集合111|,|,(,)|A x y B y x C x y y x y x ⎧⎫⎧⎫⎧⎫======⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,则下列结论正确的是( )A .AB = B .AC = C .B C =D .A B C ==4.(5分)4.将“x 2+y 2≥2xy ”改写成全称命题,下列说法正确的是( ) A .∀x ,y ∀R ,都有x 2+y 2≥2xy B .∀x ,y ∀R ,都有x 2+y 2≥2xyC .∀x >0,y >0,都有x 2+y 2≥2xyD .∀x <0,y <0,都有x 2+y 2≤2xy5.(5分)5.已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 的取值范围( )A .[]1,1-B .[1,)(,1]+∞-∞-C .[]{}1,10-D .{}[)1,,10(]+∞-∞-6.(5分)6.“M N >”是“ln ln M N >”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分又不必要7.(5分)7.已知函数25,1(),1x ax x f x a x x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[)3,0-B .(],2-∞-C .[]3,2--D .(),0-∞8.(5分)8.若命题“2,10x R x ax ∃∈-+≤”是假命题,则实数a 的取值范围是( ). A .2{|}2a a -≤≤ B .{|2a a ≤-或}2a ≥ C .2{|2}a a -<< D .{2|a a <-或}2a >9.(5分)9.设0.5log 0.7a =, 1.4log 0.8b =,0.81.4c =,则下列说法中正确的是( ) A .b a c << B .b c a << C .a b c << D .a c b <<10.(5分)10.函数()f x 在(),-∞+∞上单调递减,且为奇函数.若()11f =-,则满足()111f x -≤-≤的x 的取值范围是( ) A .[]22-,B .[]1,1-C .[]0,2D .[]1,311.(5分)11.下列式子中,错误的是( )A .()13123270310a .a a -÷= B .221111333333a b a b a b ⎛⎫⎛⎫-÷+=- ⎪ ⎪⎝⎭⎝⎭C.()()1222331⎡⎤=-⎢⎥⎣⎦ D=12.(5分)12.已知222,0()1,0x tx t x f x x t x x ⎧-+≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,则实数t 的取值范围为( )A .[1,2]-B .[1,0]-C .[0,2]D .[1,2]二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设集合2{|8200},[5,13)A x x x B =--<=,则()R A B ⋂=___________(用区间表示).14.(5分)14.函数()244,143,1x x f x x x x -≤⎧=⎨-+>⎩的图像和函数()2log g x x =的图像有________个交点.15.(5分)15.设集合U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=,若全集U =R ,{}13X x x =≤≤,{}24Y x x =<<,则X Y *=___________.16.(5分)16.若函数()()()3f x x ax b =-⋅-为偶函数,且在()0,∞+上单调递增,则()20f x ->的解集为__________.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)化简下列各式:(1)12133113344x y z x y z ---⎛⎫⎛⎫⋅⋅⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭; (2)214⎛⎫ ⎪⎝⎭+13--0(1.03)×⎛ ⎝⎭. 18.(12分)18(12分).求下列函数值域.(1)f (x )=3x -1,x ∀[-5,2); (2)5142x y x -=+; (3)()f x = 19.(12分)19(12分).已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ∀U A ,求实数a 的取值范围.20.(12分)20.(12分)已知函数()()()221log 2log f x x x =++.(1)求函数()f x 的最小值; (2)求()2f x =时x 的值.21.(12分)21(12分).已知命题p :方程220x m -+=有两个不相等的实数根;命题q :128m +<.(1)若p 为真命题,求实数m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求实数m 的取值范围.22.(12分)22(12分).已知函数()21x f x x =+的定义域为()1,1-, (1)判断并证明函数()f x 的单调性;(2)解不等式:()()10f t f t -+<.答案一、 单选题 (本题共计12小题,总分60分)1.(5分)1.A2.(5分)2.D3.(5分)3.A4.(5分)4.A5.(5分)5.D解:由题意,原问题转化为方程220ax x a -+=至多只有一个根,当0a =时,方程为20x -=,解得0x =,此时方程只有一个实数根,符合题意; 当0a ≠时,方程220ax x a -+=为一元二次方程,所以2440a ∆=-≤,解得1a ≤-或1a ≥.综上,实数a 的取值范围为{}(][,11),0-∞-+∞.6.(5分)6.Bln ln M N >,一定有M N >,但M N >时,不一定有ln ln M N >,如1,2M N =-=-,ln ,ln M N 都不存在,因此题中是必要不充分条件.7.(5分)7.C 解:若25,1(),1x ax x f x a x x ⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则应满足21201151a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤,即[]3,2a ∈--. 8.(5分)8.C命题“2,10x R x ax ∃∈-+≤”是假命题,等价于不等式210x ax -+≤无解,所以240a ∆=-<,由此即可求出结果.9.9.(5分)A解:因为0.5log y x =在(0,)+∞上为减函数,且0.50.71<<,所以0.50.50.5log 0.5log 0.7log 1>>,即0.51log 0.70>>,即01a <<, 因为 1.4log y x =在(0,)+∞上为增函数,且0.81<,所以 1.4 1.4log 0.8log 10<=,即0b <, 因为 1.4x y =在R 上为增函数,且0.80>,所以0.801.4 1.41>=,即1c >,综上,c a b >> 10.10.(5分)C因为()f x 为奇函数,且()11f =-,所以()()111f f -=-=,所以()111f x -≤-≤等价于()()()111f f x f ≤-≤-,由函数()f x 在(),-∞+∞上单调递减,可得111x -≤-≤,解得:02x ≤≤, 所以满足()111f x -≤-≤的x 的取值范围是[]0,211.(5分)11.C对于A ,原式()13123103033103a .a a a a -⎡⎤=÷=⨯=⎣⎦,A 正确; 对于B ,原式11113333113311113332211333a b a b a b a b a b a b ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭===-++⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,B 正确; 对于C,原式()(()(()(11122222223333331⎡⎤⎡⎤⎡⎤=-=-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, C 错误;对于D,原式=D 正确.12.(5分)12.C因为0x ≤时,()()2222f x x tx t x t =-+=-,所以要使()0f 是()f x 的最小值,则0t ≥;又当0x >时,()12f x x t t t x =++≥=+(1x =时,取等号), 所以()20t f +≥,即220t t --≤,又0t ≥,所以02t ≤≤.二、 填空题 (本题共计4小题,总分20分)13.(5分)13.(,5)[10,)-∞+∞【分析】由题意,集合2{|8200}{|210}A x x x x x =--<=-<<,可得[5,10)A B ⋂=, 所以(){|5R A B x x ⋂=<或10}(,5)[10,)x ≥=-∞+∞.故答案为:(,5)[10,)-∞+∞.14.(5分)14.在同一坐标系中作出函数()y f x =与()y g x =的图像,如图,由图可知,两个函数的图像有3个交点.15.(5分)15.{2x x ≤或3}x > 由条件可知{}23X Y x x ⋂=<≤,(){2U X Y X Y x x *=⋂=≤或3}x >. 故答案为:{2x x ≤或3}x >16.(5分)16.∀()()()()2333f x x ax b ax a b x b =-⋅-=-++为偶函数,∀()()()223333f x ax a b x b ax a b x b -=+++=-++,∀30a b +=,即3b a =-, ∀()()2299f x ax a a x =-=-,∀()f x 在()0,∞+上单调递增,∀0a >, ∀()()()2150f x a x x -=--->, ∀()()150x x +->,解得1x <-或5x >,∀不等式的解集为()(),15,-∞-+∞三、 解答题 (本题共计6小题,总分70分)17.(10分)17(1)原式2111134413x y z x y z ---=⋅⋅⋅⋅⋅2111113344x y z +---⋅⋅=2xz -=;(2)原式13321116-⎡⎤⎛=++-⨯⎢⎥ ⎢⎥⎝⎭⎣⎦1516=+8116=+. 18.(12分)18.(1)(1)∀x ∀[-5,2),∀-15≤3x <6,∀-16≤3x -1<5,∀函数f (x )=3x -1,x ∀[-5,2)的值域是[-16,5).(2)()57742542242442x y x x +-==-++,72042x ≠+ ∀y ≠54,∀函数5142x y x -=+的值域为{y ∀R |y ≠54}. (3)由题意可得,x ∀[2,4],因为()0f x ,[]2()22,4f x x =+∈,[]2680,1x x -+-∈所以f 2(x )∀[2,4],故函数f (x )的值域为2].19.(12分)19.由题意得U A ={x |x ≥-1},∀若B =∅,则a +3≤2a ,即a ≥3,满足B ∀U A ;∀若B ≠∅,则由B ∀U A ,得2a ≥-1且2a <a +3,即132a -≤<. 综上可得,实数a 的取值范围是:12a ≥-. 20. 20.(12分)(1)∀()()()221log 2log f x x x =++ 令2log t x =,则232y t t =++, 根据二次函数的性质可知,当32t =-即322x -=时,函数取得最小值14- (2)∀()()()221log 2log 2f x x x =++=,即()22log 3log 0x x +=,∀2log 0x =或2log 3x =- ∀1x =或18x 21.(12分)21.解:(1)若p 为真命题,则有880m ∆=->,解得1m <; (2)若q 为真命题,则有13m +<,即2m <,因为p q ∨为真命题,p q ∧为假命题,则p 、q 一真一假.∀当p 真q 假时,有12m m <⎧⎨≥⎩,解得m ∈∅, ∀当p 假q 真时,有12m m ≥⎧⎨<⎩,解得12m ≤<, 综上,m 的取值范围是[)1,2.22.(12分)22.(1)设1211x x -<<<,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++1211x x -<<<120x x ∴-<,1210x x ->,()()2212110x x ++>()()()()22110f x f x f x f x ∴-<⇒< 则函数()f x 在区间()1,1-上单调递增. (2)()()21x f x f x x -=-=-+,且定义域关于原点对称 则函数()f x 为奇函数 所以()()()()()()1011f t f t f t f t f t f t -+<⇔-<-⇔-<- 因为()f x 在区间()1,1-单调递增所以111111t t t t -<-⎧⎪-<-<⎨⎪-<-<⎩,解得:102t << 则原不等式解集为10,2⎛⎫ ⎪⎝⎭.。
2024年9月绵阳南山中学2024-2025学年秋高三上9月月考试题数 学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}2A x =∈≤,{}23B x x =-≤≤,则A B =( )A .{}03x x ≤≤B .{}24x x -≤≤C .{}0,1,2,3D .{}2,1,0,1,2,3,4--2.若命题p :x R ∃∈,2220x x ++≤,则命题p 的否定是( ) A .x R ∃∈,2220x x ++> B .x R ∀∈,2220x x ++< C .x R ∀∈,2220x x ++>D .x R ∀∈,2220x x ++≤3.若0a b c <<<,则下列不等式一定成立的是( )A .11c c a b-<- B .2a b c +>C .2ab c >D .ac bc >4.记等差数列{}n a 的前n 项和为n S ,若57a =,102a =,则14S =( ) A .49B .63C .70D .1265.已知函数1()ln(1)f x x x b=+-为偶函数,则b =( ) A .0 B .14C .12D .16.已知把物体放在空气中冷却时,若物体原来的温度是1θ℃,空气的温度是0θ℃,则mi n t 后物体的温度θ℃满足公式()010e ktθθθθ-=+-(其中k 是一个随着物体与空气的接触状况而定的正常数).某天小明同学将温度是80℃的牛奶放在20℃空气中,冷却2min 后牛奶的温度是50℃,则下列说法正确的是( )A .ln2k =B .牛奶的温度从50℃降至35℃还需4minC .2ln2k =D .牛奶的温度从50℃降至35℃还需2min 7.根据变量Y 和x 的成对样本数据,由一元线性回归模型()()20,Y bx a eE e D e σ=++⎧⎨==⎩得到经验回归模型ˆy bx a =+,求得残差图.对于以下四幅残差图,满足一元线性回归模型中对随机误差假设的是( )A .B .C .D .8.已知函数22,0,()414,0,x x f x x x ⎧⎪=⎨-++<⎪⎩…若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为( ) A .{2,1,0,1}--B .{2,1,0}--C .{1,0,1,2}-D .{1,0,1}-二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.) 9.下列函数中,是增函数的是( ) A .()22xxf x -=-B .()1f x x=-C .()3f x x x =+D .()cos f x x x =-10.某制药公司为了研究某种治疗高血压的药物在饭前和饭后服用的药效差异,随机抽取了200名高血压患者开展试验,其中100名患者饭前服药,另外100名患者饭后服药,随后观察药效,将试验数据绘制成如图所示的等高条形图,已知22()()()()()n ad bc a b c d a c b d χ-=++++,且()26.6350.01P χ>=,则下列说法正确的是( )A .饭前服药的患者中,药效强的频率为45B .药效弱的患者中,饭后服药的频率为710C .在犯错误的概率不超过0.01的条件下,可以认为这种药物饭前和饭后服用的药效有差异D .在犯错误的概率不超过0.01的条件下,不能认为这种药物饭前和饭后服用的药效有差异11.已知函数()f x (x R ∈)是奇函数,()g x 是()f x 的导函数(x R ∈),()12f =且有()f x 满足()()222f x f x +=-,则下列说法正确的是( )A .(2022)0f =B .函数()g x 为偶函数C .(1)1g =D .函数()g x 的周期为4 三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.) 12.若1cos 3α=,()0,α∈π,则sin 2α= . 13.函数1()2sin (440)f x x x x x=--≤≤≠且的所有零点的和等于 . 14.对任意的(0,)x ∈+∞,不等式()2ln2100x x a x ax a ⎛⎫-+-++≤ ⎪⎝⎭恒成立,则实数 a = .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.) 15.(13分)ABC V 中,内角,,A B C 的对边分别为,,a b c ,且5,7a b ==. (1)若8c =,求B ;(2)若ABC V 的面积为,求c .16.(15分)在数列{}n a 中,n S 是其前n 项和,且364n n S a -=. (1)求数列{}n a 的通项公式;(2)若n +∀∈N ,144n S λλ-<≤+恒成立,求λ的取值范围.17.(15分)某生物兴趣小组研究某种植物的生长,每天测量幼苗的高度,设其中一株幼苗从观察之日起,第x 天的高度为 c m y ,测得一些数据图如下表所示:(1)由表中数据可看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以证明; (2)求y 关于x 的回归直线方程,并预测第7天这株幼苗的高度. 参考数据:()5521140, 5.53i i i i i x y y y ===-=∑∑.参考公式:相关系数()()niix x y y r --=∑ˆy bx a =+ 中斜率和截距的最小二乘估计公式分别为()()()121ˆˆˆ,nii nii ix x yy bay bx x x ==--==--∑∑.18.(17分)函数32()231f x x ax =-+.(1)若a =1,求函数()f x 在1x =-处的切线方程;(2)证明:存在实数a 使得曲线()y f x =关于点(1,3)-成中心对称图形; (3)讨论函数()f x 零点的个数.19.(17分)已知()21e 4e 52x x f x ax =-+--.(1)当3a =时,求()f x 的单调递增区间; (2)若()f x 有两个极值点1x ,2x . (i )求a 的取值范围;(ii )证明:()()12120f x f x x x +++<.数学参考答案及评分标准二、 多选题12、913、0 14四、解答题 15.(1)由余弦定理知2221cos 22a cb B ac +-== …………………………………………………….……..3分又()0,B ∈π故3B π=; ……………………………………………………….…..6分(2)由三角形的面积公式1sin 2S ab C ==从而sin C =…………………………………….……..8分若(0,)2C π∈,1cos 7C ==,8c ==……………10分若(,)2C π∈π,1cos 7C ==-,c ==12分从而8 c =或 …………………………………..13分 16.(1)因为364n n S a -=,当1n =时,11364S a -=,解得132a =;………………………………………………...2分当2n ≥时,11364n n S a ---=,所以11330n n n n S a S a ----=+,所以112n n a a -=-;………4分所以 是以32为首项,12-为公比的等比数列,所以11322n n a -⎛⎫=⨯- ⎪⎝⎭. …………………………………………………………………….6分(2)由(1)可得6411,326464113326411,32n nn n n n a S n ⎧⎡⎤⎛⎫-⎪⎢⎥ ⎪⎝⎭⎡⎤⎪⎢⎥+⎣⎦⎛⎫==--=⎢⎥⎨ ⎪⎝⎭⎡⎤⎢⎥⎪⎣⎦⎛⎫+⎢⎥ ⎪⎪⎝⎭⎢⎥⎣⎦⎩为偶数为奇数, 又12x y ⎛⎫= ⎪⎝⎭在R 上单调递减,则12xy ⎛⎫=- ⎪⎝⎭在R 上单调递增,所以当n 为偶数时,264164111163232n ⎡⎤⎡⎤⎛⎫⎛⎫-≥-=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,当n 为奇数时,64164111323232n⎡⎤⎡⎤⎛⎫⎛⎫+≤+=⎢⎥ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦,………………………………………10分 所以当1n =时n S 取得最大值为32,当2n =时n S 取得最小值为16, 因为n +∀∈N ,144n S λλ-<≤+恒成立,所以1163244λλ-<⎧⎨≤+⎩,解得717λ≤<,………………………………………………… …...14分所以λ的取值范围为[)7,17. …………………………………………………………...15分17.(1)由1(12345)35x =++++=,1(1.3 1.7 2.2 2.8 3.5) 2.35y =++++=,()52110ii x x =-=∑,……………………… …….3分所以()()55niii ix x y y x y xyr ---==∑∑5.50.9955.53==≈≈ ……………………………………....7分因为r 与1非常接近,故可用线性回归模型拟合y 与x 的关系.(2)由题意可得:()515215 5.50.55, 2.30.5530.6510ˆˆˆi ii ii x y xyba y bx x x ==-====-=-⨯=-∑∑,….11分所以y 关于x 的回归直线方程为ˆ0.550.65yx =+. ………………………………………….…………..13分 当7x =时,ˆ0.5570.65 4.5y=⨯+=, 由此预测当年份序号为第7天这株幼苗的高度为4.5cm ……………………………..…15分 18.(1)2()666(1)f x x x x x '==--(1)12,(1)4f f '-=-=-………………………………………………………………..….2分故()f x 在1x =-处的切线方程为412(1)y x +=+,即128y x =+…………………4分 (2) (1)33f a =-,若存在这样的a ,使得(1,3)-为()f x 的对称中心,则333a -=-,2a = …………………………………………………….……6分 现在只需证明当2a =时()(2)6f x f x +-=-,事实上,32322()(2)2612(2)6(2)1(1212)(2424)6f x f x x x x x x x +-=+++-+-+=-+--于是()(2)6f x f x +-=-………………………………………………………………….8分 即存在实数2a =使得(1,(1))f 是()f x 的对称中心. ………………………………………. .9分 (3)2()666()f x x ax x x a '=-=-, 3.1)当0a >时,()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减, ………………………………………………..10分则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,而(1)130f a -=--<,根据零点存在定理()f x 在(,0)-∞上有一个零点; i)若01a <<,即3()10f a a =->, ()f x 在(0,)+∞无零点,从而()f x 在R 上有1个零点;………………………………………………………….11分 ii)若1a >,即3()10f a a =-<,(0)()0f f a <,()f x 在(0,)a 有一个零点,3(4)1610,()(4)0f a a f a f a =+><,故()f x 在(,)a +∞有一个零点,从而()f x 在R 上有3个零点;……………………………………………………………12分 iii)若1a =,即3()10f a a =-=,()f x 在(0,)+∞有一个零点,从而()f x 在R 上有2个零点;……………………………………………………………..13分 3.2)当0a =时,()f x 在R 上单调递增,(0)10f =>, x →-∞时,()f x →-∞,从而()f x 在R 上有一个零点; …………………………………………………….....14分3.3)当0a <时,()(),0,x a ∈-⋃+∞∞时()0f x '>,故()f x 在()(),,0,a -+∞∞上单调递增,(,0)x a ∈时,()0f x '<,()f x 单调递减. ………………………….15分 而3()10f a a =->,(0)0f >,故()f x 在(,)a +∞无零点,又2(21)(21)(2)1f a a a -=--+,由2(21)1,22a a ->-<-,故(21)0f a -<,(21)()0f a f a -<,从而()f x 在(,)a -∞有一个零点,从而()f x 在R 上有一个零点.………………………………………………..…..16分 综上:当1a <时,()f x 在R 上只有1个零点;1a =时,()f x 在R 上有2个零点;1a >时()f x 在R 上有3个零点。
高三数学(完卷时间:120分钟 满分:150分)一、填空题(4×6+5×6)1.已知集合,则__________.2.已知,且,则__________.3.函数的定义域为__________.4.已知正实数满足,则的最小值等于__________.5.在一次战役中,某医疗组现有3名医生和2名护士,需派遣其中两名医护人员去执行任务,则“至少有一名医生”的概率为__________.6.已知常数的二项展开式中项的系数是60,则的值为__________.7.函数的单调减区间是__________.8.若函数为奇函数,则实数的值为__________.9.已知函数,则__________.10.若关于的方程在实数范围内有解,则实数的取值范围__________.11.若对任意,均有,则实数的取值范围为__________.12.若函数的图像上点与点、点与点分别关于原点对称,除此之外,不存在函数图像上的其它两点关于原点对称,则实数的取值范围是__________.二、选择题(4×2+5×2)13.已知都是自然数,则“是偶数”是“都是偶数”的( )条件A.充分而不必要B.必要而不充分C.充要D.既不充分也不必要14.已知非零实数满足,则下列不等式中恒成立的是().{}{}2,1A xx B x x =≤=≥-∣∣A B ⋂=ππ2θ<<4cos 5θ=-sin θ=y =a b 、1ab =4a b +60,m m x x ⎛⎫>+ ⎪⎝⎭2x m ()ln f x x x =()()ln 1ln 1y x a x =+--a ()()2223ln 9f x f x x x ⋅+'=-()1f =x 13xm ⎛⎫+= ⎪⎝⎭m []1,2x ∈22x a x a x x -++=+a 32,0e ,0x x x y ax x ⎧≥⎪=⎨⎪<⎩A B C D a ,a b a b +,a b ,a b a b >A.B.C.D.15.已知函数,若,则实数的取值范围是( )A. B.C.D.16.已知函数,其导函数为,有以下两个命题:①若为偶函数,则为奇函数;②若为周期函数,则也为周期函数.那么()A.①是真命题,②是假命题B.①是假命题,②是真命题C.①、②都是真命题D.①、②都是假命题三、解答题(14×3+18×2)17.在直四棱柱中,.(1)求证:平面;(2)求点到平面的距离.18.已知集合,集合.(1)当时,求;(2)若“”是“”的充分条件,求实数的取值范围.19.某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:22a b >11a b>22a b ab >22a b b a >()2210log 0x x f x xx ⎧+-≤=⎨>⎩()1f a ≤a ][(),42,∞∞--⋃+[]1,2-[)(]4,00,2-⋃[]4,2--()()y f x x =∈R ()y f x ='()y f x ='()y f x =()y f x ='()y f x =1111ABCD A B C D -AB ∥1,1,2,CD AB AD D D CD AB AD ====⊥BC ⊥1D DB D 1BCD 212xA xx ⎧⎫=<⎨⎬+⎩⎭{}2B xx a =-≤∣1a =-A B ⋃x B ∈x A ∉a①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:)与游玩时间(小时)满足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,并求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游玩时间的比值称为“玩家愉悦指数”,记作;若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.20.已知函数在定义域上是严格增函数.(1)若的值域;(2)若的值域为,求的值;(3)若,且对定义域内任意自变量均有成立,试求的解析式.21.已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)当时,若在区间上的最小值为,求的取值范围;(3)若对于任意,且恒成立,求的取值范围.E exp t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a ()f x D ()f x =()f x ()[]12241log ,,(04)214x x xf x D t t t x+-=++=-<<++[],m n m n +()0,D ∞=+D x ()()11f x f f x x ⎛⎫⋅+= ⎪⎝⎭()f x ()()22ln f x ax a x x =-++a ∈R 1a =()y f x =()()1,1f 0a >()y f x =[]1,e 2-a ()12,0,x x ∞∈+()()121122,22x x f x x f x x <+<+a高三数学(完卷时间:120分钟 满分:150分)一、填空题(4×6+5×6)1.【答案】:2.【答案】:3.【答案】:4.【答案】:45.【答案】:6.【答案】:27.【答案】:8.【答案】:19.【答案】:10.【答案】: 11.【答案】:12.【答案】:二、选择题(4×2+5×2)13.【答案】:B14.【答案】:D15.【答案】:D16.【答案】:D三、解答题(14×3+18×2)17.【答案】:(1)证明见详解;(2【详解】:(1)证明:取的中点,连接,因为该几何体为直四棱柱,所以平面,所以,因为,所以,因为所以四边形为正方形,所以,所以,因为,所以因为平面,所以平面;{}12xx -≤≤∣35()1,∞+91010,e ⎛⎫ ⎪⎝⎭169[)3,∞-+[]1,1-1,0e⎛⎫- ⎪⎝⎭CD E BE 1D D ⊥ABCD 1D D BC ⊥,1AD AB AB AD ⊥==BD =AB ∥,1,DE AB DE AD AB ==⊥ABCD BE CE ⊥BC =222BD BC CD +=BC BD⊥111,,,,DD BC BC BD DD BD D DD BD ⊥⊥⋂=⊂1D DB BC ⊥1D DB(2)设点到平面的距离为,由图可得:由(1)中证明知:平面,所以,所以又,所以,即点到平面18.【答案】:(1);(2).【详解】:(1).当时,.因为,所以.(2)因为,所以或.因为“”是“”的充分条件,所以,所以或,解得:或.所以实数的取值范围为.19.【答案】:.(2).【详解】:(1),D 1BCD d 111122233D DBC D D BC V V --==⨯=BC ⊥1D DB 1BC BD ⊥112BCD S ==V 1113D D BC BCD V S d -=⨯⨯V d =D 1BCD {32}xx -≤<∣][(),44,∞∞--⋃+{}{}21{22},2222xA xx x B x x a x a x a x ⎧⎫=<=-<<=-≤=-≤≤+⎨⎬+⎩⎭∣‖∣∣1a =-{}31B xx =-≤≤∣{22}A xx =-<<∣{32}A B x x ⋃=-≤<∣{22}A xx =-<<∣{2A x x =≤-∣U ð2}x ≥x B ∈x A ∉U B C A ⊆22a +≤-22a -≥4a ≤-4a ≥a ][(),44,∞∞--⋃+22016,03()85,35,35; 33550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩1,4∞⎡⎫+⎪⎢⎣⎭()22016,0385,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩时,;(2)时,,①;②;综上,实数的取值范围为.20.【答案】:(1);(2)4;(3).【详解】:(1)由题得,,解得因为在定义域上是严格增函数,所以,所以的值域为;(2)由题得,,则,因为因为函数在定义域上是严格增函数,所以,所以;(3)因为,且对定义域内任意自变量均有成立,6t =()635E =03t <≤()1620aH tt t=++()16244aH tt t≥⇒+≥03194164a ⎧<≤⎪⇒≤≤⎨≥⎪⎩391616343a a⎧>⎪⇒>⎨+≥⎪⎩a 1,4∞⎡⎫+⎪⎢⎣⎭2⎡⎤⎣⎦()f x =22010x x +≥⎧⎨-≥⎩11x -≤≤()f x =[]1,1D =-()()min max ()1()12f x f f x f =-===()f x 2⎡⎤⎣⎦[],x t t ∈-[],x t t -∈-()()112224241log 1log 214214x x x x x xf x f x x x+-+--++-=++++++++-2222442log 4212144x x x x x x x ⋅-+⎡⎤=+++⋅=⎢⎥+++-⎣⎦()f x D ()(),f t m f t n -==()()4m n f t f t +=-+=()0,D ∞=+D x ()()11f x f f x x ⎛⎫⋅+= ⎪⎝⎭所以,因为,所以因为函数在定义域上是严格增函数,所以,即,解得或,因为函数在定义域上是严格增函数,所以.21.【答案】:(1);(2);(3).【详解】:当时,因为所以切线方程为(2)函数的定义域为.当时,,令,即,所以或当,即时,在上单调递增,所以在上的最小值是;当时,在上的最小值是,不合题意;当时,在上单调递减,()()()11111f f x f f f x x x f x x ⎛⎫ ⎪⎛⎫⎛⎫+⋅++=⎪ ⎪ ⎪⎝⎭⎝⎭⎪+⎝⎭()()11f x f f x x ⎛⎫⋅+= ⎪⎝⎭()()()111f f f x f x x f x x ⎛⎫ ⎪⎛⎫++= ⎪ ⎪⎝⎭ ⎪+⎝⎭()f x D ()()111f f x xx f x x⎛⎫++= ⎪⎝⎭+()()111xf x f x x+=+()f x =()f x =()f x D ()f x =2y =-[)1,∞+[]0,81a =()()213ln ,23f x x x x f x x x=-+-+'=()()10,12f f ==-'2y =-()()22ln f x ax a x x =-++()0,∞+0a >()()()()22211220ax a x f x ax a x x x'-++=-++=>()0f x '=()()()()22212110ax a x x ax f x xx'-++--===12x =1x a=101a<≤1a ≥()f x []1,e ()f x []1,e ()12f =-11e a <<()f x []1,e ()112f f a ⎛⎫<=- ⎪⎝⎭1e a≥()f x []1,e所以在上的最小值是,不合题意.综上,的取值范围是(3)设,则,对于任意,且恒成立,等价于在上单调递增.而,当时,,此时在单调递增;当时,只需在恒成立,因为,只要,则需要,对于函数,过定点,对称轴,只需,即综上,的取值范围是.()f x []1,e ()()e 12f f <=-a [)1,∞+()()2g x f x x =+()2ln g x ax ax x =-+()12,0,x x ∞∈+()()121122,22x x f x x f x x <+<+()g x ()0,∞+()21212ax ax g x ax a x x-+=-+='0a =()10g x x'=>()g x ()0,∞+0a ≠()0g x '≥()0,∞+()0,x ∞∈+2210ax ax -+≥0a ≥221y ax ax =-+()0,1104x =>2Δ80a a =-≤08a <≤a []0,8。
2017届高三数学跨越一本线问题三 含参数的常用逻辑用语问题通过多年的高考试卷看,求参数的取值范围问题一直是高考考查的重点和热点,同时也是一个难点.考生有时会感到难度较大,与简易逻辑问题有关的参数问题,需要正确理解充分条件和必要条件的定义,弄懂逻辑联接词的含义以及全称量词、特称量词包含的数学理论,本文从各方面多角度地阐述与简易逻辑有关的问题,以飨读者.一、与充分条件、必要条件有关的参数问题充分条件和必要条件的理解,可以翻译成“若p 则”命题的真假,或者集合与集合之间的包含关系,尤其转化为集合间的关系后,利用集合知识处理.【例1】【2017湖南省郴州市上学期第一次质量监测】设集合2{|21,03}A y y x x x ==-+≤≤,集合2{|(21)(1)0}B x x m x m m =--+-≤.已知命题:p x A ∈,命题:q x B ∈,且命题p 是命题的必要不充分条件,求实数m 的取值范围.【分析】先化简给定集合,再利用p 是的必要不充分条件⇔⊂B A ≠解题 【解析】由已知得{|04}A y y =≤≤,{|1}B x m x m =-≤≤. ∵p 是的必要不充分条件,∴A B ⊂≠.则有104m m -≥⎧⎨≤⎩.∴14m -≤≤,故m 的取值范围为[1,4].【点评】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.【小试牛刀】设p :114≤-x ;:2(21)(1)0x a x a a -+++≤.若p ⌝是q ⌝的必要而不充分条件,求实数的取值范围. 【答案】⎥⎦⎤⎢⎣⎡-0,21. 【解析】由114≤-x 得,1141≤-≤-x , 故210≤≤x 由2(21)(1)0x a x a a -+++≤()()10x a x a ⇔--+≤⎡⎤⎣⎦1a x a ⇔≤≤+若p ⌝是q ⌝的必要而不充分条件,∴p 是q 的必要而不充分条件,即[]1,21,0+⊂⎥⎦⎤⎢⎣⎡a a ⎪⎩⎪⎨⎧≥+≤⇒2110a a 021≤≤-⇒a ,故所求的取值范围是⎥⎦⎤⎢⎣⎡-0,21. 二、与逻辑联接词有关的参数问题逻辑联接词“或”“且”“非”与集合运算的并集、交集、补集有关,由逻辑联接词组成的复合命题的真假与组成它的简单命题真假有关,其中往往会涉及参数的取值范围问题.根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)然后再求出每个命题是真命题时参数的取值范围;(3)最后根据每个命题的真假情况,求出参数的取值范围.【例2】【2017宁夏育才中学月考】已知命题函数321()3f x mx x x =++在区间(1,2)上单调递增;命题:q 函数C 的图象上任意一点处的切线斜率恒大于1,若“()p q ∨⌝”为真命题,“()p q ⌝∨”也为真命题,求实数m 的取值范围.【分析】先确定p 真值相同.再根据p ,同真时或同假确定实数m 的取值范围.【点评】含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要首先考虑简单命题为真时参数的范围.然后再根据复合命题的真假列不等式(组)求参数范围【小试牛刀】已知命题:p 方程2222220x y mx m m +-+-=表示圆;命题q :双曲线2215y x m-=的离心率(1,2)e ∈,若命题“p q ∧”为假命题,“p q ∨”为真命题,求实数m 的取值范围.【答案】215m ≤<【解析】若命题p 为真命题 ,则2240D E F +->,即22(2)4(22)0m m m --->整理得220m m -<,解得02m <<.若命题为真命题,则25(1,4)5me +=∈,解得015m << 因为命题p q ∧为假命题,p q ∨为真命题,所以p q 、中一真一假,若p 真假,则m ∈∅ ; 若p 假真,则215m ≤<,所以实数m 的取值范围为215m ≤<.三、与全称命题、特称命题真假有关的参数问题全称命题和特称命题从逻辑结构而言,是含义相反的两种命题,利用正难则反的思想互相转化,达到解题的目的.【例3】若命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则实数m 的取值范围是( )(A )[10,6]- (B )(6,2]- (C )[2,10]- (D )(2,10)-【分析】命题“0,R ∃∈x 使得2002+50++<x mx m ”的否定是真命题,故将本题转化为恒成立问题求解.【解析】由命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则命题“x R ∀∈使得22+50x mx m ++≥”为真命题.所以24(25)0,210m m m =-+≤∴-≤≤ .故选(C ). 【点评】已知命题为假命题,则其否定是真命题,故将该题转化为恒成立问题处理.【小试牛刀】【2017山东潍坊2017届高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,()212log 11x mx -+<-成立,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【答案】12m <或32m =. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立,设()222f x x x =--,配方得()()213f x x =--,∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,解得1322m ≤≤,∴p 为真时:1322m ≤≤;若为真:[]1 2x ∃≤,,212x mx -+>成立,∴21x m x -<成立.设()211x g x x x x-==-,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为()322g =,∴32m <,∴为真时,32m <, ∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩,∴32m =,当p 假真时132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或,∴12m <,综上所述,m 的取值范围是12m <或32m =.四、与全称量词、特称量词有关的参数问题全称量词“∀”表示对于任意一个,指的是在指定范围内的恒成立问题,而特称量词“”表示存在一个,指的是在指定范围内的有解问题,上述两个问题都利用参变分离法求参数取值范围.【例3】已知命题p :“0],2,1[2≥-∈∀a x x ”,命题:“022,2=-++∈∃a ax x R x ”. 若命题“p 且”是真命题,则实数的取值范围为( ) A .2-≤a 或1=a B .2-≤a 或21≤≤a C .1≥a D .12≤≤-a【分析】若命题“p 且”是真命题,则命题,p q 都是真命题,首先将命题,p q 对应的参数范围求出来,求交集即可.【点评】命题p 是恒成立问题,命题是有解问题.【小试牛刀】已知2:(0,),1p x x mx ∀∈+∞+≥-恒成立,:q 方程222128x y m m +=+表示焦点在轴上的椭圆,若命题“p 且”为假,求实数m 的取值范围. 【答案】(,4]-∞.【解析】由题意:若p 为真,则有1()m x x ≥-+对(0,)x ∈+∞恒成立.12(1x x x+≥= 取“=”)2m ∴≥-若为真,则有2280m m >+>,即42m -<<-或4m >,由p 且为假,则p 、中至少一个为假.若p 、均为真,则4m >,∴p 且为假,实数m 的取值范围是(,4]-∞【迁移运用】1.【2017四川双流中学高三模拟】已知命题p ⌝:存在()2,1∈x 使得0>-a e x,若p 是真命题,则实数a 的取值范围为( )A .()e ,∞-B .(]e ,∞-C .()+∞,2e D .[)+∞,2e 【答案】D【解析】若存在)2,1(∈x ,使得0>-a e x ,则2max ()x a e e <=,若p 为真命题,则p ⌝为假命题,实数a 的取值范围为),[2+∞e .故本题正确答案为D . 2.【2017河南南阳一中高三上学期月考】已知“x k >”是“,则的取值范围是( )A .[2,)+∞B .[1,)+∞C .(2,)+∞D .(,1]-∞- 【答案】A 可得1x <-或2x >,因为“x k >”是“条件,所以“x k >”是“1x <-或2x >”的真子集,所以2k ≥,故选A.3.【2017使得0122<+-x x λ成立”是假命题,则实数λ的取值范围为( )A .3=λ【答案】A4.函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数的必要不充分条件是( )A .2≥aB .6=aC .3≥aD .0≥a 【答案】D .【解析】函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数则2≥a ;选项A 是充要条件;选项B 、C 是充分不必要条件;故选D .5.命题“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”为真命题的一个必要不充分条件是( )A .4a ≥B .4a ≤C .3a ≥D .3a ≤ 【答案】C【解析】即由“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”可推出选项,但由选项推不出“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”.因为x [1,2]∈,所以2[1,4]x ∈,20x a -≤恒成立,即2x a ≤, 因此4a ≥;反之亦然.故选C .6.已知2()(ln )f x x x a a =-+,则下列结论中错误的是( ) A .0,0,()0a x f x ∃>∀>≥ B .000,0,()0a x f x ∃>∃>≤. C .0,0,()0a x f x ∀>∀>≥ D .000,0,()0a x f x ∃>∃>≥ 【答案】C .7.【2017广东郴州高三第二次教学质量监测】若命题:p “020223x x R a a ∃∈-≤-,”是假命题,则实数的取值范围是________. 【答案】[1,2]【解析】“020223x x R a a ∃∈-≤-,”是假命题等价于2223x x R a a ∀∈->-,,即223a a -≥-,解之得12a ≤≤,即实数的取值范围是[1,2].8.已知关于的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数的取值范围是__________.. 【答案】-2,0].【解析】由“x A ∈”是“x B ∈”的充分不必要条件,可知A B,因此a≥-2且a +2≤2 解得a∈-2,0]9.已知命题:p R x ∈∃,0122≤++ax ax .若命题⌝p 是真命题,则实数的取值范围是 .【答案】)1,0[【解析】若命题⌝p 是假命题,即对于012,2>++∈∀ax ax R x ,当0=a 时,显然成立,当0≠a 时,则100<<⇒⎩⎨⎧<∆>a a ,综上)1,0[∈a .10.由命题“x∈R,x 2+2x +m≤0”是假命题,求得实数m 的取值范围是(a,+∞),则实数a =. 【答案】1.【解析】由题意得命题“∀x∈ R,x 2+2x +m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.11.【2015学年江苏省涟水中学高三12月月考数学试卷】已知命题:“2(1,4),0x x ax a ∃∈-+<”为真命题,则实数的取值范围是. 【答案】a>4.【解析】2(1,4),0x x ax a ∃∈-+<⇔当(1,4)x ∈时,20x ax a -+<有解⇔(1,4)x ∃∈,使得21x a x >-,设2(x)1x f x =-,则222(x 1)(x)0(1)x x f x --'==-解得x=0,2,当(1,2)x ∈(x)0,(x)f f '<单调递减,当(2,4)x ∈(x)0,(x)f f '>单调递赠,所以2(x)1x f x =-的最小值为(2)4f =,所以a>4.12.【2015届江苏省如东高中高三上学期第8周周练理科数学试卷】若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是. 【答案】3441≤≤m . 【解析】因为不等式的102x m x m -+<-成立的充分非必要条件是1132x <<,所以111||0322x m x x x x m -+⎧⎫⎧⎫<<⊂<⎨⎬⎨⎬-⎩⎭⎩⎭,当12m m -<即1m >-时,不等式的102x m x m -+<-解集为{|12}x m x m -<<, 由11|{|12}32x x x m x m ⎧⎫<<⊂-<<⎨⎬⎩⎭得:1131221m m m ⎧-≤⎪⎪⎪≥⎨⎪>-⎪⎪⎩,解之得:3441≤≤m ,当12m m -=即1m =-时,不等式102x m x m-+<-解集为∅;当12m m ->即1m <-时,不等式102x m x m-+<-解集为{|21}x m x m <<-由11|{|21}}32x x x m x m ⎧⎫<<⊂<<-⎨⎬⎩⎭得:1231121m m m ⎧≤⎪⎪⎪-≥⎨⎪<-⎪⎪⎩,此时m 无解,所以m 的取值范围为3441≤≤m . 13.设命题p :实数满足22430x ax a -+<,其中0a >;命题:实数满足2560x x -+≤. (1)若1a =,且p q ∧为真,求实数的取值范围; (2)若p 是成立的必要不充分条件,求实数的取值范围. 【答案】(1) [)2,3(2)()1,214.已知命题P :在R 上定义运算⊗:.)1(y x y x -=⊗不等式1)1(<-⊗x a x 对任意实数恒成立;命题Q :若不等式2162≥+++x ax x 对任意的*N x ∈恒成立.若P Q ∧为假命题,P Q ∨为真命题,求实数的取值范围. 【答案】123>-<<-∴a a 或.【解析】由题意知,x a x x a x )1)(1()1(--=-⊗若命题P 为真,01)1()1(2>+---x a x a 对任意实数恒成立,∴①当01=-a 即1=a 时,01>恒成立,1=∴a ;②当01≠-a 时,⎩⎨⎧<---=∆>-0)1(4)1(012a a a ,13<<-∴a , 综合①②得,13≤<-a若命题Q 为真,0>x ,01>+∴x ,则有)1(2)6(2+≥++x ax x 对任意的*N x ∈恒成立 , 即2)4(++-≥x x a 对任意的*N x ∈恒成立,令2)4()(++-=xx x f ,只需max )(x f a ≥, 224242)(-=+-=+⋅-≤xx x f ,当且仅当)(4*N x x x ∈=即2=x 时取“=”,2-≥∴aP Q ∧为假命题,P Q ∨为真命题,Q P ,∴中必有一个真命题,一个假命题,(1)若P 为真Q 为假,则⎩⎨⎧-<≤<-213a a ,23-<<-a ,(2)若P 为假Q 为真,则⎩⎨⎧-≥>-≤213a a a 或,1>∴a ,综上:123>-<<-∴a a 或.15.设命题p :实数满足22430x ax a -+<,其中0a >,命题:实数满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(1)若1,a =且p q ∧为真,求实数的取值范围; (2)若p ⌝是⌝的充分不必要条件,求实数的取值范围. 【答案】(1) (2,3) (2) (]1,2【解析】(1)当1a =时,{}:13p x x <<,{}:23q x x <≤, 又p q ∧为真,所以p 真且真, 由1323x x <<⎧⎨<≤⎩,得23x <<所以实数的取值范围为(2,3)(2) 因为p ⌝是⌝的充分不必要条件, 所以是p 的充分不必要条件, 又{}:3p x a x a <<,{}:23q x x <≤,所以0233a a a >⎧⎪≤⎨⎪>⎩,解得12a <≤所以实数的取值范围为(]1,216.【2016湖北省襄阳市四校高三上学期期中联考】设:p 实数满足:03422<+-a ax x (0>a ),:q 实数满足:121-⎪⎭⎫⎝⎛=m x ,()2,1∈m()I 若41=a ,且q p ∧为真,求实数的取值范围; ()II 是p 的充分不必要条件,求实数的取值范围.【答案】(Ⅰ)⎭⎬⎫⎩⎨⎧<<4321x x;(Ⅱ)11[,]32.()II 是p 的充分不必要条件,记⎭⎬⎫⎩⎨⎧<<=121x x A ,{}0,3><<=a a x a x B则A 是B 的真子集 ⎪⎩⎪⎨⎧>=∴1321a a 或⎪⎩⎪⎨⎧≥<1321a a … 得2131≤≤a ,即的取值范围为1132⎡⎤⎢⎥⎣⎦,… 17. 【2017河北省冀州中学上学期第二次阶段考试】设命题:p 实数满足22430x ax a -+<,0a ≠;命题:q 实数满足302x x-≥-. (Ⅰ)若1a =,p q ∧为真命题,求的取值范围;(Ⅱ)若p ⌝是q ⌝的充分不必要条件,求实数的取值范围.18.已知命题p :“方程230x ax a -++=有解”,q:“11042x xa +->∞在[1,+)上恒成立”,若p 或q 为真命题,p 且q 为假命题,求实数的取值范围.【答案】206a a -<≤≥或【解析】:26p a a ≤-≥或.令21,2xt t t a =+> 02t <≤ ,:0q a ∴≤.∵pq 一真一假,∴260a a a ≤-≥⎧⎨>⎩或 或260a a -<<⎧⎨≤⎩ 得:206a a -<≤≥或19.命题p 实数满足03422<+a ax -x (其中0a >),命题实数满足⎪⎩⎪⎨⎧>+≤02321x-x x- (1)若1a =,且p q ∧为真,求实数的取值范围;(2)若p ⌝是⌝的充分不必要条件,求实数的取值范围.【答案】(1)()2,3.;(2)(1,2].【解析】由:03422<+a ax -x (其中0a >),解得3a x a <<, 记(,3)A a a = 由⎪⎩⎪⎨⎧>+≤02321x-x x-,得132,3或x x x -≤≤⎧⎨><-⎩,即23x <≤,记(]2,3B =. (1)若1a =,且p q ∧为真,则(1,3)A =,(]2,3B =,又p q ∧为真,则1323x x <<⎧⎨<≤⎩,所以23x <<,因此实数的取值范围是()2,3.(2)∵p ⌝是q ⌝的充分不必要条件,∴p 是的必要不充分条件,即B A ≠⊂,(]2,3(,3)a a ≠⊂,则只需3302a a >⎧⎨<≤⎩,解得12a <≤,故实数a 的取值范围是(1,2].20.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是21.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是。
2015-2016学年某某省某某市文华高中高一(上)9月月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是()A.正三角形 B.等腰三角形C.不等边三角形 D.等腰直角三角形2.集合{1,2,3}的子集共有()A.5个B.6个C.7个D.8个3.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是()A.0 B.0 或1 C.1 D.不能确定5.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣2} B.{x|x<2} C.{x|﹣2<x<2} D.{x|﹣2≤x<2}6.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1 B.2 C.3 D.47.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=8.函数的定义域是()A.(﹣∞,3)B.(3,+∞)C.(﹣∞,3)∩(3,+∞)D.(﹣∞,3)∪(3,+∞)9.设集合M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为()A.11 B.10 C.16 D.1510.设U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B11.函数f(x)=x2﹣2x∈{﹣2,﹣1,0,1}的值域是()A.{2,﹣1,﹣2} B.{2,﹣1,﹣2,﹣1} C.{4,1,0,﹣1} D.[2,﹣1,﹣2]12.已知f(x)=3x2+1,则f[f(1)]的值等于()A.25 B.36 C.42 D.49二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.{x|x>3}用区间表示为,{x|﹣2≤x≤5}用区间表示为,{x|﹣2≤x<5}用区间表示为.14.0N,Q,N*, Z.15.如图,全集为U,A和B是两个集合,则图中阴影部分可表示为.16.若A={1,4,x},B={1,x2},且A∩B=B,则x=.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,某某数a的取值集合.18.设A={x|a≤x≤a+3},B={x|x<﹣1或x>5},当a为何值时,①A∩B=∅;②A∩B≠∅;③A⊆B.19.已知函数(1)求函数的定义域(2)求f(4)20.已知函数,(1)点(3,14)在函数的图象上吗?;(2)当x=4时,求g(x)的值;(3)当g(x)=2时,求x的值.21.已知f(x)=,求f(f(3))的值.22.已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},C U N={x|0<x<2}.求:(1)集合N;(2)集合M∩(C U N);(3)集合M∪N.2015-2016学年某某省某某市文华高中高一(上)9月月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是()A.正三角形 B.等腰三角形C.不等边三角形 D.等腰直角三角形【考点】集合的确定性、互异性、无序性.【专题】阅读型;集合思想;分析法;集合.【分析】由集合中元素的互异性可知,a,b,c互不相等,又a,b,c是△ABC的三边长,由此可得三角形的形状.【解答】解:由集合中元素的互异性可知,a,b,c互不相等,又a,b,c是△ABC的三边长,∴该三角形是不等边三角形.故选:C.【点评】本题考查集合中元素的互异性,考查了三角形形状的判断,是基础题.2.集合{1,2,3}的子集共有()A.5个B.6个C.7个D.8个【考点】子集与真子集.【专题】计算题.【分析】集合{1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:集合{1,2,3}的子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}共8个.故选:D.【点评】本题考查集合的子集个数问题,对于集合M的子集问题一般来说,若M中有n个元素,则集合M的子集共有2n个.3.已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【专题】集合.【分析】先化简集合N,得N={﹣1,0},再看集合M,可发现集合N是M的真子集,对照韦恩(Venn)图即可选出答案.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、一元二次方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.4.如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是()A.0 B.0 或1 C.1 D.不能确定【考点】元素与集合关系的判断.【专题】分类讨论.【分析】从集合A只有一个元素入手,分为a=0与a≠0两种情况进行讨论,即可得到正确答案.【解答】∵A={x|ax2+2x+1=0}中只有一个元素,当a=0时,A={x|2x+1=0},即A={}.当a≠0时,需满足△=b2﹣4ac=0,即22﹣4×a×1=0,a=1.∴当a=0或a=1时满足A中只有一个元素.故答案为:B【点评】本题考查了元素与集合的关系,需分情况对问题进行讨论,为基础题.5.已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥﹣2} B.{x|x<2} C.{x|﹣2<x<2} D.{x|﹣2≤x<2}【考点】交集及其运算;函数的定义域及其求法.【专题】集合.【分析】求出f(x)的定义域确定出M,求出g(x)的定义域确定出N,找出M与N的交集即可.【解答】解:由f(x)=,得到2﹣x>0,即x<2,∴M={x|x<2},由g(x)=,得到x+2≥0,即x≥﹣2,∴N={x|x≥﹣2},则M∩N={x|﹣2≤x<2},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A.1 B.2 C.3 D.4【考点】集合的含义.【专题】阅读型.【分析】据“∈”于元素与集合;“∩”用于集合与集合间;判断出①⑤错,∅是不含任何元素的集合且是任意集合的子集判断出②④的对错;据集合元素的三要素判断出③对【解答】解:对于①,“∈”是用于元素与集合的关系故①错对于②,∅是任意集合的子集,故②对对于③,集合中元素的三要素有确定性、互异性、无序性故③对对于④,因为∅是不含任何元素的集合故④错对于⑤,因为∩是用于集合与集合的关系的,故⑤错故选C【点评】本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.7.下列各组函数f(x)与g(x)的图象相同的是()A.f(x)=x,g(x)=()2B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.f(x)=|x|,g(x)=【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】两个函数的定义域相同,对应关系也相同,这样的函数是同一函数,它们的图象相同.【解答】解:对于A,f(x)=x(x∈R),与g(x)=()2=x(x≥0)的定义域不同,∴不是同一函数,图象不同;对于B,f(x)=x2(x∈R),与g(x)=(x+1)2(x∈R)的对应关系不同,∴不是同一函数,图象不同;对于C,f(x)=1(x∈R),与g(x)=x0=1(x≠0)的定义域不同,∴不是同一函数,图象不同;对于D,f(x)=|x|=,与g(x)=的定义域相同,对应关系也相同,∴是同一函数,图象相同.故选:D.【点评】本题考查了判断两个函数是否为同一函数的问题,是基础题目.8.函数的定义域是()A.(﹣∞,3)B.(3,+∞)C.(﹣∞,3)∩(3,+∞)D.(﹣∞,3)∪(3,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】利用分式函数的定义域求解.【解答】解:要使函数有意义,则x﹣3≠0,所以x≠3,即函数的定义域为(﹣∞,3)∪(3,+∞).故选D.【点评】本题主要考查分式函数的定义域,比较基础.9.设集合M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为()A.11 B.10 C.16 D.15【考点】并集及其运算.【专题】集合思想;分析法;集合.【分析】直接由M={x|x∈Z且﹣10≤x≤﹣3},N={x|x∈Z且|x|≤5 },找出M、N中的元素,则M∪N中元素的个数可求.【解答】解:∵M={x|x∈Z且﹣10≤x≤﹣3}={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3},N={x|x∈Z且|x|≤5 }={﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5},∴M∪N={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3}∪{﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5}={﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5}.则M∪N中元素的个数为:16.故选:C.【点评】本题考查了并集及其运算,是基础题.10.设U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,3∉B B.3∉A,3∈B C.3∈A,3∉B D.3∈A,3∈B【考点】交、并、补集的混合运算.【专题】计算题.【分析】利用集合间的关系画出韦恩图,结合韦恩图即可得到答案.【解答】解:因为:U={1,2,3,4,5},A,B为U的子集,若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},对应的韦恩图为:故只有答案C符合.故选:C.【点评】本题考查集合的表示法,学会利用韦恩图解决集合的交、并、补运算.11.函数f(x)=x2﹣2x∈{﹣2,﹣1,0,1}的值域是()A.{2,﹣1,﹣2} B.{2,﹣1,﹣2,﹣1} C.{4,1,0,﹣1} D.[2,﹣1,﹣2] 【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件,x取﹣2,﹣1,0,1时,可以求出对应的f(x)的值为2,﹣1,﹣2,﹣1,这样便可得出f(x)的值域.【解答】解:x∈{﹣2,﹣1,0,1};∴f(x)∈{2,﹣1,﹣2};∴f(x)的值域为{2,﹣1,﹣2}.故选A.【点评】考查函数值域的概念,定义域为孤立点函数的值域的求法,以及列举法表示集合.12.已知f(x)=3x2+1,则f[f(1)]的值等于()A.25 B.36 C.42 D.49【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】直接利用函数的解析式求解函数值即可.【解答】解:f(x)=3x2+1,则f(1)=3+1=4,f[f(1)]=f(4)=3×42+1=49.故选:D.【点评】本题考查函数值的求法,解析式的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.{x|x>3}用区间表示为(3,+∞),{x|﹣2≤x≤5}用区间表示为[﹣2,5],{x|﹣2≤x<5}用区间表示为[﹣2,5).【考点】区间与无穷的概念.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用区间的表示求解即可.【解答】解:{x|x>3}用区间表示为:(3,+∞);{x|﹣2≤x≤5}用区间表示为:[﹣2,5];{x|﹣2≤x<5}用区间表示为:[﹣2,5);故答案为::(3,+∞);[﹣2,5];[﹣2,5);【点评】本题考查区间与集合的表示,是基础题.14.0∈N,∉Q,∈N*,∉ Z.【考点】元素与集合关系的判断.【专题】集合思想;演绎法;集合.【分析】分析给定元素的分类,进而可得元素与集合的关键.【解答】解:0是自然数,故0∈N,是无理数,故∉Q,=4是正整数,故∈N*,是分数,故∉Z;故答案为:∈,∉,∈,∉【点评】本题考查的知识点是元素与集合关系的判断,熟练掌握各种数集的字母表示,是解答的关键.15.如图,全集为U,A和B是两个集合,则图中阴影部分可表示为C U(A∪B).【考点】Venn图表达集合的关系及运算.【专题】应用题;数形结合;定义法;集合.【分析】根据所给图形知,阴影部分所表示的集合代表着不在集合A∪B中的元素组成的.【解答】解:∵图中阴影部分所表示的集合中的元素为不在集合A∪B中元素,即为C U(A∪B),故答案为:C U(A∪B).【点评】本小题主要考查Venn图表达集合的关系及运算等基础知识,考查数形结合思想.属于基础题.16.若A={1,4,x},B={1,x2},且A∩B=B,则x= 0,2,或﹣2 .【考点】交集及其运算.【专题】计算题.【分析】由A∩B=B转化为B⊆A,则有x2=4或x2=x求解,要注意元素的互异性.【解答】解:∵A∩B=B∴B⊆A∴x2=4或x2=x∴x=﹣2,x=2,x=0,x=1(舍去)故答案为:﹣2,2,0【点评】本题主要考查集合的子集运算,及集合元素的互异性.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,某某数a的取值集合.【考点】集合的包含关系判断及应用.【专题】计算题;集合.【分析】利用子集的定义,即可解得实数a的取值集合.【解答】解:∵集合A={x|1≤x<4},B={x|x<a},且满足A⊊B,∴a≥4∴实数a的取值集合为{a|a≥4}.【点评】本题主要考查了集合的包含关系判断及应用,属于以不等式为依托,求集合的子集的基础题,也是高考常会考的题型.18.设A={x|a≤x≤a+3},B={x|x<﹣1或x>5},当a为何值时,①A∩B=∅;②A∩B≠∅;③A⊆B.【考点】交集及其运算.【专题】计算题;集合.【分析】①由A与B,以及A与B的交集为空集,确定出a的X围即可;②由A与B,以及A与B的交集不为空集,确定出a的X围即可;③由A与B,以及A是B的子集,确定出a的X围即可.【解答】解:①∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A∩B=∅,∴,解得:﹣1≤a≤2;②∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A∩B≠∅,∴a<﹣1或a>2;③∵A={x|a≤x≤a+3},B={x|x<﹣1或x>5},A⊆B,∴a+3<﹣1或a>5,解得:a<﹣4或a>5.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.19.已知函数(1)求函数的定义域(2)求f(4)【考点】函数的定义域及其求法;函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】(1)利用分母不为0,开偶次方被开方数非负,列出不等式组求解即可.(2)利用函数的解析式直接求解函数值即可.【解答】解:(1)要使函数有意义,自变量的取值需要满足.函数的定义域为:(0,+∞).(2)=.【点评】本题考查函数的定义域的求法,函数值的求法,是基础题.20.已知函数,(1)点(3,14)在函数的图象上吗?;(2)当x=4时,求g(x)的值;(3)当g(x)=2时,求x的值.【考点】函数的值;函数的图象.【专题】计算题;函数的性质及应用.【分析】(1)把x=3代入g(x),求出g(3)的值,即可作出判断;(2)把x=4代入g(x),求出g(x)的值即可;(3)根据g(x)=2,求出x的值即可.【解答】解:(1)把x=3代入得:g(3)==﹣≠14,则点(3,14)不在函数的图象上;(2)把x=4代入得:g(4)==﹣3;(3)根据g(x)=2,得到=2,解得:x=14.【点评】此题考查了函数的值,以及函数的图象,熟练掌握运算法则是解本题的关键.21.已知f(x)=,求f(f(3))的值.【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数化简求值即可.【解答】解:f(x)=,f(f(3))=f(32+1)=f(10)=10﹣5=5,∴f(f(3))=5.【点评】本题考查分段函数的应用,函数值的求法,是基础题.22.已知集合U={x|﹣3≤x≤3},M={x|﹣1<x<1},C U N={x|0<x<2}.求:(1)集合N;(2)集合M∩(C U N);(3)集合M∪N.【考点】并集及其运算;交集及其运算;补集及其运算.【专题】常规题型;转化思想.【分析】(1)由集合U={x|﹣3≤x≤3},C U N={x|0<x<2},利用数轴即可解答;(2)由M={x|﹣1<x<1},C U N={x|0<x<2}结合数轴即可获得解答;(3)结合(1)由数轴即可获得解答..【解答】解:(1)∵U={x|﹣3≤x≤3},C U N={x|0<x<2}.∴N={x|﹣3≤x≤0或2≤x≤3};(2)∵M={x|﹣1<x<1},C U N={x|0<x<2}.∴M∩(∁U N)={x|0<x<1};(3)由(1)知N={x|﹣3≤x≤0或2≤x≤3}又∵M={x|﹣1<x<1}∴M∪N={x|﹣3≤x<1或2≤x≤3}.【点评】本题考查的是集合的交集、并集、补集及其运算.在解答的过程当中充分体现了数形结合的思想以及集合交并补的运算.值得同学们体会反思.。
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
高三9月月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.已知集合A ={x |log 2(x -1)<0},B ={x |x ≤3},则∁R A ∩B =( )A .(-∞,1)B .(2,3)C .(2,3]D .(-∞,1]∪[2,3]2.(5分)2.已知i 为虚数单位,且复数z 满足z -2i =11-i ,则复数z 在复平面内的点到原点的距离为( )A.132B.262C.102 D.523.(5分)3.已知x 、y 取值如下表:x 0 1 4 5 6 8 y1.3m5.66.17.49.3 从所得的散点图分析可知:y 与x 线性相关,且y =0.95x +1.45,则m =( ) A .1.5 B .1.55 C .1.8 D .3.54.(5分)4已知cos ⎝ ⎛⎭⎪⎫α+π2=35,-π2<α<π2,则sin 2α的值等于( )A.1225 B .-1225 C .-2425 D .24255.(5分) 5.已知互不重合的直线a ,b ,互不重合的平面α,β,给出下列四个命题,错误的命题是( )A .若a ∥α,a ∥β,α∩β=b ,则a ∥bB .若α⊥β,a ⊥α,b ⊥β则a ⊥bC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β 6.(5分)6.“a ≤-2”是“函数f (x )=|x -a |在[-1,+∞)上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.(5分)7.已知O 为△ABC 内一点,且AO →=12(OB →+OC →),AD →=tAC →,若B ,O ,D 三点共线,则t 的值为( )A.14B.13C.12D.238.(5分)8.执行如图所示的程序框图,若输出的S 值为-2,则①中应填( )A .n <98?B .n <99?C .n <100?D .n <101?9.(5分)9.已知点F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线左支上存在点P 与点F 2关于直线y =bax 对称,则该双曲线的离心率为( )A.2B.52 C .2 D.5 10.(5分)10.若实数x 、y 满足xy >0,则x x +y +2y x +2y的最大值为( ) A .2-2 B .2+2 C .4-22 D .4+22 11.(5分)11.曲线y =ln x 上的点到直线2x -y +3=0的最短距离是( ) A.4-ln 25 B.4+ln 25 C.4-ln 25D.4+ln 2512.(5分)12.已知三棱锥P ABC 的棱AP 、AB 、AC 两两垂直,且长度都为3,以顶点P 为球心,以2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A .3π B.3π2 C.4π3 D.5π6 二、 填空题 (本题共计4小题,总分20分)13.(5分)13.已知等比数列{a n }的前n 项和为S n ,前n 项积为T n ,若S 3=a 2+4a 1,T 5=243,则a 1的值为____________.14.(5分)14.已知点Q 在圆C :x 2+y 2+2x -8y +13=0上,抛物线y 2=8x 上任意一点P 到直线l :x =-2的距离为d ,则d +|PQ |的最小值等于________. 15.(5分)15.“克拉茨猜想”又称“3n +1猜想”,是德国数学家洛萨·克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数n ,如果n 是偶数,就将它减半;如果n 为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数m 经过6次运算后得到1,则m 的值为________. 16.(5分)16.已知偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[0,1]时,f (x )=x 2,若关于x 的方程f (x )=|log a |x ||(a >0,a ≠1)在[-2,3]上有5个根,则a 的取值范围是________.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(本小题满分10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设m =⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+A ,cos 2A -cos 2B ,n =⎝ ⎛⎭⎪⎫1,cos ⎝ ⎛⎭⎪⎫π6-A ,且m ∥n .(1)求角B 的值;(2)若△ABC 为锐角三角形,且A =π4,外接圆半径R =2,求△ABC 的周长. 18.(12分)18.(本小题满分12分)甲、乙两俱乐部举行乒乓球团体对抗赛.双方约定:①比赛采取五场三胜制(先赢三场的队伍获得胜利,比赛结束);②双方各派出三名队员,前三场每位队员各比赛一场.已知甲俱乐部派出队员A 1、A 2、A 3,其中A 3只参加第三场比赛,另外两名队员A 1、A 2比赛场次未定;乙俱乐部派出队员B 1、B 2、B 3,其中B 1参加第一场与第五场比赛,B 2参加第二场与第四场比赛,B 3只参加第三场比赛.根据以往的比赛情况,甲俱乐部三名队员对阵乙俱乐部三名队员获胜的概率如下表:(1)12得取胜的概率最大?(2)若A 1参加第一场与第四场比赛,A 2参加第二场与第五场比赛,各队员每场比赛的结果互不影响,设本次团体对抗赛比赛的场数为随机变量X ,求X 的分布列及数学期望E (X ).19.(12分)19.(本小题满分12分)如图,在四棱锥P ABCD 中,底面四边形ABCD 内接于圆O ,AC 是圆O 的一条直径,P A ⊥平面ABCD ,P A =AC =2,E 是PC 的中点,∠DAC =∠AOB .(1)求证:BE ∥平面P AD ;(2)若二面角P CD A 的正切值为2,求直线PB 与平面PCD 所成角的正弦值. 20.(12分)20.(本小题满分12分)已知圆E :x 2+⎝⎛⎭⎫y -122=94经过椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点F 1,F 2且与椭圆C 在第一象限的交点为A ,且F 1,E ,A 三点共线.直线l 交椭圆C 于M ,N 两点,且MN →=λOA →(λ≠0).(1)求椭圆C 的方程;(2)当△AMN 的面积取到最大值时,求直线l 的方程.21.21.(12分)(本小题满分12分)已知椭圆C 1:x 26+y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,点F 2也为抛物线C 2:y 2=8x 的焦点,过点F 2的直线l 交抛物线C 2于A ,B 两点. (1)若点P (8,0)满足|P A |=|PB |,求直线l 的方程;(2)T 为直线x =-3上任意一点,过点F 1作TF 1的垂线交椭圆C 1于M ,N 两点,求|TF 1||MN |的最小值.22.(12分)已知函数f (x )=ax -12x 2-b ln(x +1)(a >0),g (x )=e x -x -1,曲线y =f (x )与y =g (x )在原点处有公共的切线.(1)若x =0为函数f (x )的极大值点,求f (x )的单调区间(用a 表示); (2)若∀x ≥0,g (x )≥f (x )+12x 2,求a 的取值范围.答案一、 单选题 (本题共计12小题,总分60分)1.(5分)1.解析:选D.由集合A ={x |log 2(x -1)<0}={x |1<x <2},则∁R A ={x |x ≤1或x ≥2},又B ={x |x ≤3},所以∁R A ∩B =(-∞,1]∪[2,3].2.(5分)2.解析:选B.由z -2i =11-i ,得z =2i +11-i =2i +1+i (1-i )(1+i )=12+52i ,所以复数z 在复平面内的点的坐标为⎝⎛⎭⎫12,52,到原点的距离为14+254=262.故选B.3.(5分)3.解析:选 C.由题意知x -=0+1+4+5+6+86=4,y -=1.3+m +5.6+6.1+7.4+9.36=29.7+m6,将⎝⎛⎭⎪⎫4,29.7+m 6代入y ^=0.95x +1.45中,得29.7+m 6=0.95×4+1.45,解得m =1.8. 4.(5分)4.解析:选C.因为cos ⎝ ⎛⎭⎪⎫α+π2=35,所以sin α=-35,又-π2<α<π2,所以cos α=45,所以sin 2α=2sin αcos α=2×⎝⎛⎭⎫-35×45=-2425,5.(5分)5.解析:选D. A 中,由线面平行的判定和性质得满足条件的直线a ,b 平行,故正确.B 中,满足条件的直线a ,b 垂直,故正确.C 中,由面面垂直的性质可得,交线a 与α垂直,故正确.D 中,直线a 与β可能平行,也可能在β内,故不正确.综上D 不正确.答案D. 6.(5分)解析:选A.结合图象可知函数f (x )=|x -a |在[a ,+∞)上单调递增,易知当a ≤-2时,函数f (x )=|x -a |在[-1,+∞)上单调递增,但反之不一定成立,故选A.7.(5分)7.解析:选B.设线段BC 的中点为M ,则OB →+OC →=2OM →,因为2AO →=OB →+OC →,所以AO →=OM →,则AO →=12AM →=14(AB →+AC →)=14(AB →+1t AD →)=14AB →+14t AD →,由B ,O ,D 三点共线,得14+14t =1,解得t =13.故选B.8.(5分)8.解析:选B.由题意知,该程序框图的功能是计算S =lg 12+lg 23+…+lgnn +1=-lg(n +1),当n =98时,S =-lg 99>-2;当n =99时,S =-lg 100=-2,跳出循环,故①中应填n <99?故选B.9.(5分)解析:选D.如图所示,点P 与点F 2关于直线y =ba x 对称,所以|OP |=|OF 2|=|OF 1|=c ,所以PF 1⊥PF 2,tan ∠PF 1F 2=ba ,又|F 1F 2|=2c ,所以|PF 2|=2b ,|PF 1|=2a ,又因为点P 在双曲线上,所以|PF 2|-|PF 1|=2a ,即2b -2a =2a ,b =2a ,故e =ca= 5.10.(5分)10.解析:选C. x x +y +2yx +2y =x (x +2y )+2y (x +y )(x +y )(x +2y )=x 2+4xy +2y 2x 2+3xy +2y 2=1+xyx 2+3xy +2y 2=1+1x y +3+2y x ≤1+13+22=4-22,当且仅当x y =2y x ,即x 2=2y 2时取等号. 11.(5分)11.解析:选D.因为直线2x -y +3=0的斜率为2,所以令y ′=1x =2,解得x =12,把x =12代入曲线方程得y =-ln 2,即曲线在点⎝⎛⎭⎫12,-ln 2处的切线斜率为2,⎝⎛⎭⎫12,-ln 2到直线2x -y +3=0的距离d =|1+ln 2+3|22+(-1)2=4+ln 25,故曲线y =ln x 上的点到直线2x -y +3=0的最短距离是4+ln 25.12.(5分)12.解析:选B.如图所示,Rt △P AC ,Rt △P AB 为等腰直角三角形,且AP =AB =AC = 3.以顶点P 为球心,以2为半径作一个球与Rt △P AC 的PC ,AC 分别交于点M ,N ,得cos ∠APN =32,所以∠APN =π6,所以∠NPM =π12,所以MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2×1=π2,又GM ︵是以顶点P 为圆心,以2为半径的圆的周长的16,所以GM ︵=2π×26=2π3, 所以球面与三棱锥的表面相交所得到的四段孤长之和等于π6+π6+π2+2π3=9π6=3π2.故选B.二、 填空题 (本题共计4小题,总分20分)13.(5分)解析:由已知,S 3=a 1+a 2+a 3=a 2+4a 1,则a 3=3a 1,所以q 2=3.又T 5=a 1a 2a 3a 4a 5=a 53=243,所以a 3=a 1q 2=3,a 1=1.故答案为1.14.(5分)解析:抛物线y 2=8x 的焦点为F (2,0),故直线l :x =-2为抛物线的准线,由抛物线的定义可知,d =|PF |.圆C 的方程可变形为(x +1)2+(y -4)2=4,圆心为C (-1,4),半径r =2.如图所示,d +|PQ |=|PF |+|PQ |.显然,|PF |+|PQ |≥|FQ |(当且仅当F ,P ,Q 三点共线,且点P 在点F ,Q 之间时取等号).而|FQ |为圆C 上的动点Q 到定点F 的距离,显然当Q 处在Q ′的位置,P 处在P ′的位置时,|FQ |取得最小值,且最小值为|CF |-r =(-1-2)2+(4-0)2-2= 5-2=3.答案:315.(5分)15.解析:如果正整数m 按照上述规则经过6次运算得到1,则经过5次运算后得到的一定是2;经过4次运算后得到的一定是4;经过3次运算后得到的为8或1;经过2次运算后得到的是16;经过1次运算后得到的是5或32;所以开始时的数为10或64.所以正整数m 的值为10或64.故答案为1,8,10或64.16.(5分)解析:由f (x -1)=f (x +1)得函数f (x )的最小正周期T =2,根据函数的奇偶性、周期性画出函数f (x )在[-2,3]上的图象,然后再画函数g (x )=|log a |x ||的图象,如图所示,使它们有5个交点即可,当a >1时,只要保证log a 3≤1即可,解得a ≥3,当0<a <1时,只要保证-log a 3≤1即可,即log a 3≥-1,解得0<a ≤13, 综上a ∈⎝⎛⎦⎤0,13∪[)3,+∞.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.解:(1)由m ∥n ,得cos 2A -cos 2B =2cos ⎝ ⎛⎭⎪⎫π6+A cos ⎝ ⎛⎭⎪⎫π6-A ,即2sin 2B -2sin 2A =2⎝⎛⎭⎫34cos 2A -14sin 2A ,化简得sin B =32,故B =π3或2π3.(2) 易知B =π3,则由A =π4,得C =π-(A +B )=5π12.由正弦定理a sin A =bsin B =csin C =2R , 得a =4sin π4=22,b =4sin π3=23,c =4sin 5π12=4sin ⎝ ⎛⎭⎪⎫π4+π6=4×⎝⎛⎭⎪⎫22×32+12×22=6+2, 所以△ABC 的周长为6+23+3 2.18.(12分)18.解:(1)设A 1、A 2分别参加第一场、第二场,则P 1=56×23×23=1027,设A 2、A 1分别参加第一场、第二场,则P 2=34×23×23=13,所以P 1>P 2, 所以甲俱乐部安排A 1参加第一场,A 2参加第二场,则甲俱乐部以3∶0取胜的概率最大.(2)比赛场数X 的所有可能取值为3、4、5, P (X =3)=56×23×23+16×13×13=718,P (X =4)=56C 12×23×13×23+16×⎝⎛⎭⎫233+16C 12×13×23×13+56×⎝⎛⎭⎫133=1954,P (X =5)=1-P (X =3)-P (X =4)=727, 所以X 的分布列为X 3 4 5 P7181954727所以E (X )=3×718+4×1954+5×727=20954.19.(12分)19.解:(1)证明:因为∠DAC =∠AOB ,所以AD ∥OB .因为E 为PC 的中点,O 为圆心,连接OE ,所以OE ∥P A ,又OB ∩OE =O ,P A ∩AD =A ,所以平面P AD ∥平面EOB , 因为BE ⊂平面EOB ,所以BE ∥平面P AD .(2)因为四边形ABCD 内接于圆O 且AC 为直径,所以AD ⊥CD ,又P A ⊥平面ABCD ,所以P A ⊥CD ,又P A ∩AD =A ,所以CD ⊥平面P AD ,所以CD ⊥PD ,所以∠PDA 是二面角P CD A 的平面角,因为tan ∠PDA =2,P A =2,所以AD =1, 如图,以D 为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,过点D 且垂直于平面ABCD 的直线为z 轴建立空间直角坐标系D xyz .P A =AC =2,AD =1,延长BO 交CD 于点F ,因为BO ∥AD ,所以BF ⊥CD ,又因为BF =BO +OF ,所以BF =1+12=32,又CD =3,所以DF =32,所以P (1,0,2),B ⎝ ⎛⎭⎪⎫32,32,0, C (0,3,0),设平面PCD 的法向量n =(x ,y ,z ),因为⎩⎪⎨⎪⎧n ·CP →=0,n ·DC →=0.所以⎩⎨⎧(x ,y ,z )·(1,-3,2)=0,(x ,y ,z )·(0,3,0)=0,即⎩⎨⎧x -3y +2z =0,3y =0.令z =1,则x =-2,y =0.所以n =(-2,0,1)是平面PCD 的一个法向量,又PB →=⎝ ⎛⎭⎪⎫12,32,-2,所以|cos 〈PB →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PB →·n |PB →||n |=⎪⎪⎪⎪⎪⎪-1+0-25×5=35, 所以直线PB 与平面PCD 所成角的正弦值为35.20.(12分)20.解:(1)因为F 1,E ,A 三点共线,所以F 1A 为圆E 的直径,所以AF 2⊥F 1F 2.由x 2+⎝⎛⎭⎫0-122=94,得x =±2,所以c =2,|AF 2|2=|AF 1|2-|F 1F 2|2=9-8=1,2a =|AF 1|+|AF 2|=4,所以a =2.因为a 2=b 2+c 2,所以b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由题知,点A 的坐标为(2,1),因为MN →=λOA →(λ≠0),所以直线的斜率为22, 故设直线l 的方程为y =22x +m ,联立⎩⎪⎨⎪⎧y =22x +m x 24+y22=1得,x 2+2mx +m 2-2=0,设M (x 1,y 1),N (x 2,y 2),所以x 1+x 2=-2m ,x 1x 2=m 2-2,Δ=2m 2-4m 2+8>0,所以-2<m <2.又|MN |=1+k 2|x 2-x 1|=1+12(x 1+x 2)2-4x 1x 2=12-3m 2,点A 到直线l的距离d =6|m |3, 所以S △AMN =12 |MN |·d =1212-3m 2×63 |m |=22(4-m 2)m 2≤22×4-m 2+m 22=2,当且仅当4-m 2=m 2,即m =±2时等号成立,此时直线l 的方程为y =22x ± 2. 21.(12分)21.解:(1)由抛物线C 2:y 2=8x 得F 2(2,0),当直线l 的斜率不存在,即l :x =2时,满足题意.当直线l 的斜率存在时,设l :y =k (x -2)(k ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y 2=8x ,y =k (x -2)得k 2x 2-(4k 2+8)x +4k 2=0,所以x 1+x 2=4k 2+8k 2,y 1+y 2=k (x 1+x 2)-4k =8k .设AB 的中点为G ,则G ⎝ ⎛⎭⎪⎫2k 2+4k2,4k ,因为|P A |=|PB |,所以PG ⊥l ,k PG ·k =-1,所以4k -02k 2+4k 2-8·k =-1, 解得k =±2,则y =±2(x -2),所以直线l 的方程为y =±2(x -2)或x =2.(2)因为F 2(2,0),所以F 1(-2,0),b 2=6-4=2,所以椭圆C 1:x 26+y 22=1.设点T 的坐标为(-3,m ),则直线TF 1的斜率kTF 1=m -0-3+2=-m ,当m ≠0时,直线MN 的斜率k MN =1m , 直线MN 的方程是x =my -2,当m =0时,直线MN 的方程是x =-2,也符合x =my -2的形式,所以直线MN 的方程是x =my -2.设M (x 3,y 3),N (x 4,y 4),则联立⎩⎪⎨⎪⎧x 26+y 22=1x =my -2,得(m 2+3)y 2-4my -2=0,所以y 3+y 4=4m m 2+3,y 3y 4=-2m 2+3 .|TF 1|=m 2+1,|MN |=(x 3-x 4)2+(y 3-y 4)2 =(m 2+1)[(y 3+y 4)2-4y 3y 4]=24(m 2+1)m 2+3 .所以|TF 1||MN |=124×(m 2+3)2m 2+1=124⎝ ⎛⎭⎪⎫m 2+1+4m 2+1+4≥33,当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF 1||MN |取得最小值33.22.(12分)22.解:(1)由题意知,f (x )的定义域为x ∈(-1,+∞),且f ′(x )=a -x -b x +1,g ′(x )=e x -1, 因为曲线y =f (x )与y =g (x )在原点处有公共的切线,故f ′(0)=g ′(0),解得a =b ,所以f (x )=ax -12 x 2-a ln(x +1),f ′(x )=a -x -a x +1=-x 2+(a -1)x x +1=-x [x -(a -1)]x +1, 当a =1时,f ′(x )≤0,函数f (x )在定义域上是减函数,故不满足题意;当a ≠1时,因为x =0为函数f (x )的极大值点,故由y =-x 2+(a -1)x 的图象可知a -1<0,由f ′(x )<0得x ∈(-1,a -1)∪(0,+∞),由f ′(x )>0得x ∈(a -1,0),所以函数f (x )的单调递增区间为(a -1,0),单调递减区间为(-1,a -1),(0,+∞).(2)因为g ′(x )=e x -1,且当-1<x <0时,g ′(x )<0,当x >0时,g ′(x )>0,故当x =0时,g (x )取得最小值0,所以g (x )≥0,即e x ≥x +1,从而x ≥ln(x +1).设F (x )=g (x )-f (x )-12x 2=e x +a ln(x+1)-(a +1)x -1,则F ′(x )=e x +a x +1-(a +1), ①当a =1时,因为x ≥0,所以F ′(x )≥x +1+a x +1-(a +1)=x +1+1x +1-2≥0,所以F (x )在[0,+∞)上单调递增,从而F (x )≥F (0)=0,即e x +ln(x +1)-2x -1≥0,所以g (x )≥f (x )+12x 2.②当0<a <1时,由①知e x +ln(x +1)-2x -1≥0,所以g (x )=e x -x -1≥x -ln(x +1)≥a [x -ln(x +1)],故F (x )≥0,即g (x )≥f (x )+12x 2.③当a >1时,令h (x )=e x +a x +1-(a +1),则h ′(x )=e x -a (x +1)2. 显然h ′(x )在[0,+∞)上单调递增,又h ′(0)=1-a <0,h ′(a -1)=e a -1-1>0,所以h ′(x )在(0,a -1)上存在唯一零点x 0,当x ∈(0,x 0)时,h ′(x )<0,所以h (x )在(0,x 0)上单调递减,从而h (x )<h (0)=0,即F ′(x )<0,所以F (x )在(0,x 0)上单调递减,从而当x ∈(0,x 0)时,F (x )<F (0)=0,即g (x )<f (x )+12x 2,不符合题意.综上,实数a 的取值范围为(0,1].。
重庆十一中高2017级高三9月月考数学(文)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1Ux x =≤-或}0x ≥,{}|02A x x =≤≤,{}2|1B x x =>,则集合()U AC B 等于( )A .{}|01x x x ><-或 B .{}|12x x <≤C .{}|01x x ≤≤ D .{}|02x x ≤≤2.i 是虚数单位,复数z=+2﹣3i ,则|z |=( )A .5 B .4C .3D .13.若数列{}n a 的前n 项和n S 满足*()4n n S a n N =-∈,则5a =( )A.16B.116C.8D.184.设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩ 则2(())3f f =( ) A .3 B. 2 C .5 D. 3-5.已知2)tan(-=-απ,则=+αα2cos 2cos 1( )A .3 B.52C .25- D. 3-6. 若向量,的夹角为3π12==,则向量与向量2-的夹角为( ) A.6π B.3π C.32π D.65π7.已知4213332,3,25a b c ===,则( )A. b a c <<B.a b c <<C .b c a <<D. c a b <<8.函数()2sin 1xf x x =+的图象大致为( )9.设奇函数()f x 在()0,+∞上为单调递减函数,且()20f =,则不等式()()3205f x f x x--≤的解集为( ) A.(](],20,2-∞- B.[)[)2,02,-+∞ C.(][),22,-∞-+∞ D.[)(]2,00,2-10.给出以下四个结论,正确的个数为( ) ① 函数x x x f 2cos 2sin 3)(+=图像的对称中心是)0,62(ππ-k Z k ∈; ② 在△ABC 中,“A B >”是“cos 2cos 2A B <”的充分不必要条件;③ 在△ABC 中,“cos cos b A a B =”是“△ABC 为等边三角形”的必要不充分条件; ④ 若将函数()sin(2)3f x x π=-的图像向右平移(0)φφ>个单位后变为偶函数,则φ的最小值是12π. A . 0 B. 2 C .3 D. 111.已知tan α、tan β是方程240x ++=的两根,且(,)22ππαβ∈-、,则αβ+等于 ( ) A.3π B.23π- C.3π或23π- D.3π-或23π 12.已知函数222(1)0()4(3)0x k a x f x x x a x ⎧+-≥=⎨-+-<⎩ ()(),其中a R ∈,若对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则k 的取值范围为( ).08880A k k k k k ≤≥≥≤≤≤ 或 B. C.0 D.二、填空题:本大题有4小题,每小题5分,共20分。
把答案填在答题卷的相应位置。
来13.函数)220)(sin(2)(πϕπωϕω<<->+=,x x f 的部分图象如图所示,则=)4(πf14.已知点)1,1(-P 在曲线ax x y +=2上,则曲线在点P 处的切线方程为 (用直线方程的一般式表示)15.定义在R 上的奇函数)(x f ,对于R x ∈∀,都有)43()43(x f x f -=+,且满足2)4(->f ,mm f 3)2(-=,则实数m 的取值范围是 .16.将两个直角三角形如图拼在一起,当E 点在线段AB 上移动时,若AC AE λ=AD μ+,当λ取最大值时,μλ-的值是 .三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.已知集合{}|(6)(25)0A x x x a =--->,集合{}2|(2)(2)0B x a x a x ⎡⎤=+-⋅-<⎣⎦.、(Ⅰ)若5a =,求集合A B ;(Ⅱ)已知12a >.且“A x ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.18.已知: 、、是同一平面内的三个向量,其中 =(1,2) (Ⅰ)若|c |52=,且//,求的坐标;(Ⅱ)若||=,25且2+与b a -2垂直,求与的夹角θ.D19.在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin sin sin C b ca cA -=B +-.(Ⅰ)求角B ;(Ⅱ)求sin cos C A ⋅的取值范围.20.已知函数()ln 3()f x a x ax a =--∈R . (Ⅰ)当0a >时,求函数()f x 的单调区间;(Ⅱ)若函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,且函数21()()()2g x x nx mf x m n '=++∈R ,当且仅当在1x =处取得极值,其中()f x '为()f x 的导函数,求m 的取值范围;21.已知△ABC 是锐角三角形,cos 22A +sin 2A=1. (Ⅰ)求角A ;(Ⅱ)若BC=1,B=x ,求△ABC 的周长f (x )的单调区间.22.(本小题满分12分) 已知函数错误!未找到引用源。
.(Ⅰ)当错误!未找到引用源。
时,求错误!未找到引用源。
的极值;(Ⅱ)若曲线错误!未找到引用源。
在点错误!未找到引用源。
处切线的斜率为3,且错误!未找到引用源。
对任意错误!未找到引用源。
都成立,求整数错误!未找到引用源。
的最大值.重庆十一中高2017级高三9月月考数学(文)答案一、选择题:1、C2、A3、D4、B5、C6、B7、A8、A9、D 10、B 11、B 12、A 二、填空题:13、1 14、043=+-y x 15、1-<m 或30<<m 162 三、解答题17.解:⑴当5a =时,{}(6)(15)0A x x x =-->={}|156x x orx ><{}{}(27)(10)01027B x x x x x =--<=<<.……4分∴{}1527A B x x ⋂=<<.…6分 ⑵∵12x >,∴256a +>,∴{}625A x x x a =<>+或又a a 222>+,∴{}222+<<=a x a x B .……10分∵“A x ∈”是“x B ∈”的必要不充分条件,∴A B ⊆,∴21226a a ⎧>⎪⎨⎪+≤⎩解之得:122a <≤ 18. 解:(1)设),(y x =,由//和52|=c 可得:⎩⎨⎧2002122=+=⋅-⋅y x x y ∴ ⎩⎨⎧42==y x 或 ⎩⎨⎧42-=-=y x ∴)4,2(=,或)4,2(--=(2) ),2()2(-⊥+ 0)2()2(=-⋅+∴ 即222320,a a b b +⋅-=222||32||0a a b b ∴+⋅-= ∴ 0452352=⨯-⋅+⨯b a , 所以25-=⋅b a ∴ ,1||||c o s -=⋅=b a ba θ ∵ ],0[πθ∈∴ πθ=.19. (Ⅰ)由sin sin sin A b c B C a c -=+-得a b cb c a c-=+-, 2分 化简得:222b c a ac -=-即222ac a c b =+-,所以2221cos 22a c b B ac +-==. 分故3B π=.(Ⅱ)2sin cos sin cos 3A C A A π⎛⎫=- ⎪⎝⎭=1sin cos 2A A A ⎛⎫-+ ⎪ ⎪⎝⎭, =)1sin 21cos 24A A --,=12sin 223A π⎛⎫-+ ⎪⎝⎭, 分由3B π=可知 203A π<<, 所以2222333A πππ-<-<, 故21sin 213A π⎛⎫-≤-≤ ⎪⎝⎭.故1121sin 22232A π⎛⎫-+≤-≤+ ⎪⎝⎭.所以11sin cos 22A C -+≤≤+ 20.解:(1)(1)()(0)a x f x x x-'=>, 当0a >时,令()0f x '>得01x <<,令()0f x '<得1x >,故函数()f x 的单调增区间为(01),,单调减区间为(1)+∞,;(2)函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,则(2)1f '=,即2a =-; 所以212()(2)2g x x nx m x=++-,所以322222()m x nx mg x x n x x ++'=++=,因为()g x 在1x =处有极值,故(1)0g '=,从而可得12n m =--,则322222(1)(22)()x nx m x x mx m g x x x ++---'==,又因为()g x 仅在1x =处有极值,所以2220x mx m --≥在(0)+∞,上恒成立, 当0m >时,由20m -<,即0(0)x ∃∈+∞,,使得200220x mx m --<,所以0m >不成立,故0m ≤,又0m ≤且(0)x ∈+∞,时,2220x mx m --≥恒成立, 所以0m ≤; 21. 【解答】解:(Ⅰ)∵cos 22A +sin 2A=1,∴cos 22A=cos 2A ∴cos2A=±cosA ,∴2cos 2A ﹣1±cosA=0, ∵△ABC 是锐角三角形,∴cosA=,∴A=.(Ⅱ)∵BC=1,B=x , ∴AC=sinx ,AB=cosx+sinx ,∴△ABC 的周长f (x )=1+cosx +sinx=1+sin (x+),∴当﹣+2k π≤x+≤+2k π,(k ∈Z )时,x∈﹣+2k π,+2k π], ∵x ∈(0,)∴f (x )的单调增区间是(0,],单调减区间是,).22. 解:(Ⅰ) 解:(1)错误!未找到引用源。
时,错误!未找到引用源。
∴错误!未找到引用源。
∴错误!未找到引用源。
当x 变化时,错误!未找到引用源。
与错误!未找到引用源。
变化如下表:∴当错误!未找到引用源。
.(2)易求得错误!未找到引用源。
故问题化为错误!未找到引用源。
在错误!未找到引用源。
上恒成立令错误!未找到引用源。
,则错误!未找到引用源。
又令错误!未找到引用源。