七年级上册数学 第二章 整式的加减 单元练习题 (19)-200807(解析版)
- 格式:docx
- 大小:26.84 KB
- 文档页数:7
人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n )[10m+(10﹣n )]=100m (m+1)+n (10﹣n ) (2)解:∵左边=(10m+n )(10m ﹣n+10), =(10m+n )[10(m+1)﹣n],=100m (m+1)﹣10mn+10n (m+1)﹣n 2 , =100m (m+1)﹣10mn+10mn+10n ﹣n 2 , =100m (m+1)+n (10﹣n )=右边,∴(10m+n )[10m+(10﹣n )]=100m (m+1)+n (10﹣n ) 成立 21.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1 所以(2)中所写的等式一定成立人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y-的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷= C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b +空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0 B .1- C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 ,a+2b=-3+2=-1,所以B选项是正确的.9.设P是关于x的五次多项式,Q是关于x的三次多项式,则()A.P+Q是关于x的八次多项式B.P-Q是关于x的二次多项式C.P+Q是关于x的五次多项式D.P Q是关于x的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误;B、P−Q人教版数学七年级上册第2章整式的加减单元检测卷(含答案解析)一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=.5.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=.6.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3 10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣112.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣113.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?人教版数学七年级(上册)第2章整式的加减单元检测卷参考答案一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7.【分析】根据多项式的项的概念和降幂排列的概念解答即可.【解答】解:多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7,故答案为:﹣2x3+x2y﹣5xy+7.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为3x2+.【分析】首先表示出x2的3倍、y的倒数,然后求其和即可.【解答】解:依题意得3x2+.故答案是:3x2+.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为26.【分析】把x的值代入运算程序进行计算即可得解.【解答】解:x=3时,32×3﹣2=27﹣1=26.故答案为:26.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=16.【分析】已知等式相加即可求出原式的值.【解答】解:∵x2﹣3xy=6,3xy+y2=10,∴x2+y2=x2﹣3xy+3xy+y2=10+6=16,故答案为:165.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=10.【分析】所求式子合并同类项得到最简结果,将a与b的值代入计算即可求出值.【解答】解:a2+ab﹣b2+a﹣a2﹣ab+b+b2=a+b,当a=3.6,b=6.4时,原式=3.6+6.4=10.故答案为:106.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是2.【分析】把3x+3﹣x=2两边平方即可求解.【解答】解:把3x+3﹣x=2两边平方得:32x+3﹣2x+2•3x+3﹣x=4,即32x+3﹣2x=2.故答案是2.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式【分析】根据多项式的有关概念,以及单项式的系数的定义即可作出判断.【解答】解:A、x是单项式,正确;B、3x4是四次单项式,正确;C、的系数是,错误;D、x3﹣xy2+2y3是三次多项式,正确;故选:C.9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3【分析】设最小的整数为n﹣1,根据连续的整数只是相差1,知另外的两个整数分别是n,n+1.由等量关系这三个连续整数的积是0,列出方程.然后根据三个因式的积是0,则每一个因式都可能是0,分情况讨论.【解答】解:设最小的整数为n﹣1,根据题意得(n﹣1)•n•(n+1)=0,解得n﹣1=0或n=0或n+1=0,当n﹣1=0时,n=1,这三个数分别是0,1,2,这三个数的和是3;当n=0时,这三个数分别是﹣1,0,1,这三个数的和是0;当n+1=0时,n=﹣1,这三个数是﹣2,﹣1,0,这三个数的和是﹣3.故选:D.10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、3x3y2﹣2x2y,无法合并,故此选项错误;C、3x2+2x3,无法合并,故此选项错误;D、4x2y﹣7yx2=﹣3x2y,正确.故选:D.11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣1【分析】根据单项式、多项式的定义即可判断;【解答】解:A、x2是二次单项式;正确,本选项不符合题意.B、x3﹣2xy2+y3是三次三项式;正确,本选项不符合题意.C、0是单项式;正确,本选项不符合题意.D、﹣的系数是﹣1;错误,系数应该是﹣,本选项符合题意.故选:D.12.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.13.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:原式=(2+3﹣4)(x+y)=x+y,故选:A.15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:×3×a=2.4a(元),∵2.2a<2.4a,∴甲比乙优惠,故选:A.三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)【分析】合并同类项就是系数和系数相加作为系数,字母和字母的指数不变.【解答】解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.【分析】按要求先化简再求值.注意去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.【解答】解:(1)原式=3x2﹣x,当x=﹣3时,原式=30;(2)原式==﹣,当x=6,y=﹣1时,原式=﹣2.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.【分析】此题要抓住同类项的定义“所含字母相同,相同字母的指数相同”去列方程:|2a ﹣1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式ab﹣3(﹣b)﹣+6化简,将a,b的值代入即可.【解答】解:由题意可知|2a﹣1|=1,|b|=1,解得a=1或0,b=1或﹣1.又因为a与b互为负倒数,所以a=1,b=﹣1.原式=ab﹣a+3b﹣a+6=ab﹣2a+3b+6,当a=1,b=﹣1时,原式=1×(﹣1)﹣2×1+3×(﹣1)+6=0.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.【分析】用这个多项式加上﹣6xy+8yz﹣9,求出这个多项式的式子,然后用这个多项式再减去﹣6xy+8yz﹣9,求出结果即可.【解答】解:﹣6xy+8yz﹣9+2(2xy﹣3yz+4)=﹣6xy+8yz﹣9+4xy﹣6yz+8=﹣2xy+2yz﹣1.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.【分析】根据|a|+a=0,|ab|=ab,|c|﹣c=0知a<0,b<0,c>0,继而知a+b<0,c﹣b >0,a﹣c<0,根据绝对值性质去绝对值符号后合并即可得.【解答】解:∵|a|+a=0,|c|﹣c=0,即|a|=﹣a,|c|=c,∴a<0,c>0,∵|ab|=ab,∴ab>0,∴b<0,则原式=﹣b+a+b﹣c+b﹣a+c=b.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2b﹣3a2b+4ab2+a2b+3a2b=a2b+4ab2,当a=﹣1,b=﹣2时,原式=﹣3﹣16=﹣19.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?【分析】(1)直接把A=x2﹣2xy,B=y2+3xy代入进行计算即可;(2)根据题意得出C的表达式,再去括号,合并同类项即可;(3)把A、B、C的表达式代入,合并同类项后,把x=﹣2,y=﹣3代入进行计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【分析】(1)根据后一排比前一排多2个座位,第n 排比第一排多2(n ﹣1)个座位; (2)①把n =25,m =20代入进行计算即可得解; ②利用求和公式列式计算即可得解. 【解答】(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个); ②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2 =88×25÷2 =1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.人教版初中数学七年级上册第二章《整式的加减》单元测试一、选一选,看完四个选项再做决定! 1.下列各式:1+-x ,3+π,29>,y x y x +-,ab S 21=,其中代数式的个数是( ) A. 5B. 4C. 3D. 22. 以下代数式书写规范的是( )A. 2)(÷+b aB.y 56C. x 311D. y x +厘米3. 在下列各组的两个式子中,是同类项的是( )A. abc ab 32与B.222121mn n m 与 C. 0与21- D. 3与c4. 下列合并同类项中,正确的是( )A. xy y x 633=+B. 332532a a a =+C. 033=-nm mnD. 257=-x x5. 下列各式,正确的是( )A. 6)6(--=--x xB. )(b a b a +-=+-C. )6(530x x -=-D. 243)8(3-=-x x6. 图1的面积用代数式表示是( )A. bc ab +B. )((c a d d b c -+-C. )(d b c ad -+D. cd ab -7. 已知222653z y x A ++=,222822z y x B --=,222352y x z C --=,则C B A ++的值为( )A. 0B. 2xC. 2yD. 2z8. 当x =2时,下列代数式中与代数式12+x 的值相等的是( )A. 21x -B. 13+xC. 23x x -D. 12+x9. 已知做某件工作,每个人的工效相同,m 个人做n 天可完成,如果增加a 人,则完成工作所需天数为( ) A.am mn+B. a n -C. a nn +D. a n +10.按下面图2所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( )A. 6B. 21C. 156D. 231 二、填一填,要相信自己的能力!11.今年小明m 岁,去年小明__________岁,8年后小明__________岁.12.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是______cm . 13.代数式x y y x -+-2312是________________________三项的和,它们的系数分别是__________________.14. 合并同类项:a a 83-=__________,a a a ---=___________.15.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是_________. 16.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为________________.17.53是一两位数,个位数字是3,十位数字是5,可将53写成5×10+3. 如果一个两位数abcd图1图2的个位数字是b ,十位数字是a ,用含a 、b 的代数式表示这个两位数是______________. 18. 化简:)]2([b a ---=___________. 19. 观察下列各式:121312⨯+=⨯ 222422⨯+=⨯ 323532⨯+=⨯ ……请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 20.用黑白两种颜色的正六边形地面砖按如图3所示的规律,拼成若干个图案:第1个 第2个 第3个(1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块. 三、做一做,要注意认真审题! 21.计算:(每小题4分,共12分)(1) 233323)3()2(2a a a a a +-+-++(2) 2222224)()3(8)4(5b a b a ab ab b a ab +-+--+-+(3) )58()37(z y z y ---(4) )6(4)2(322-++--xy x xy x22.(8分)一个多项式减去6142-+x x ,小明错误的当成了加法计算,从而得到结果是322+-x x ,请问正确的结果是多少?23.(9分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案)一、选择题(每小题3分,共30分)1、用式子表示“比y 的相反数少3的数”是( ) A 3y - B 3y + C 3y -+ D 3y --2、下列式子中是单项式的是( ) A 8x + B 43s t + C13mx D 1n- 3、多项式3233524x x y y -++的次数是( ) A 2 B 3 C 4 D 5 4、多项式5225x y -+的项为( ) A525x -,2y B 2x -,2y C x ,25,2y D x ,25-,2y 5、代数式2346x x -+的值为9,则2463x x -+的值为( )A 7B 18C 12D 96、下列合并同类项的结果中,正确的是( )A 550xy xy --=B 22330a b ba -=C 235235m m m +=D 2232a a -= 7、计算22(321)(235)a a a a -+-+-的结果是( )A 256a a -+B 254a a --C 24a a +-D 26a a ++ 8、若2214m x y -与2n x y --是同类项,则()n m --的值为( ) A 8 B 16 C 32 D 649、下列计算中,错误的是( )(1)3232549(5)(49)x x x x x x --+=---+;(2)32325499(54)x x x x x x --+=-++;(3)()a b c d a b c d --+=-++;(4)2()2a b c a b c --+=+-A 1个B 2个C 3个D 4个10、若22M a b =,27N ab =,24P a b =-,则下列等式正确的是( ) A 29M N a b +=人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y 的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( )①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( ) A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=。
人教版七年级数学上册第二章整式的加减单元测试(含答案)一、单选题1.下列各式中,代数式有( )个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x +;(5) s = πr 2;(6) -6k A .2 B .3 C .4 D .52.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )23.下列各式中,不是整式的是( ).A .3aB .2x = 1C .0D .xy4.23-x yz 的系数和次数分别是( )A .系数是0,次数是5B .系数是1,次数是6C .系数是-1,次数是5D .系数是-1,次数是65.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%a B .20%a - C .(120%)a - D .(120%)a + 6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米 7.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( )A .k =-1B .k =-2C .k=3D .k = 18.若2y m +5x n +2与﹣3x 4y 5是同类项,则m +n =( )A .1B .2C .﹣1D .﹣39.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,图1中面积为1的正方形有9个,图2中面积为1的正方形有14个,⋯,按此规律,图12中面积为1的正方形的个数为( )A.64B.60C.54D.5010.下列选项正确的是( )A .xy +x +1是二次三项式B .﹣25xy 的系数是﹣5 C .单项式x 的系数是1,次数是0D .﹣22xyz 2的次数是611.一列数123,,,,n a a a a ,其中112a =,111n n a a -=-(n≥2的整数),则2019a =( ) A .12B .2C .-1D .-2 12.设23A a =+,27B a a =-+,则A 与B 的大小关系是( )A .AB >B .A B <C .A B ≥D .A B ≤二、填空题13.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 14.多项式3m 2-5m 3+2-m 是________次_______项式.15.多项式2239x xy π++中,次数最高的项的系数是_______.16.找规律填数:﹣1,2,﹣4,8,________三、解答题17.观察下列算式1=1=121+3=4=221+3+5=9=321+3+5+7=16=42…按规律填空:(1)1+3+5+7+9=______.(2)1+3+5+…+2005=_______.(3)1+3+5+7+9+…+_____=n².(4)根据以上规律计算 101+103+105+ (499)18.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -(E )0 (F )3y x -+ (G )223a ab b =+ (H )2xy a(I )223x y + (1)单项式集合__________;(2)多项式集合____________;(3)整式集合____________;(4)二项式集合___________;(5)三次多项式集合__________;(6)非整式集合__________.19.化简.(1)(5x +4y )+2(2x ﹣3y );(2)2a ﹣4(a +1)+3a .20.如图,在一块长为2x 米,宽为y (y <2x )米的长方形铁皮的四个角上,分别截去半径为y 2米的圆的14.(1)求剩余铁皮的面积(即阴影部分的面积).(2)当x =6,y =8时,剩余铁皮的面积是多少?21.先列式,再计算(1)﹣1减去﹣23再减去35所得的差是多少? (2)已知多项式A =2x 2﹣x +5,多项式A 与多项式B 的和为4x 2﹣6x ﹣3,求多项式B ?答案1.C2.A3.B4.D5.C6.B7.A8.B9.A10.A11.C12.B13.(10x+50y)分.14.三四15.16.﹣1617.(1)1+3+5+7+9=25=52;(2)1+3+5+…+2005=10032;(3)1+3+5+7+9+…+(2n−1)=n2;(4)101+103+105+…+497+499=(101+499)×200÷2=60000. 18.解:(1)单项式集合(D),(E);(2)多项式集合(A),(B),(C),(F),(G);(3)整式集合(A),(B),(C),(D),(E),(F),(G);(4)二项式集合(A),(C),(F);(5)三次多项式集合(A),(G);(6)非整式集合(H),(I)19.解:(1)(54)2(23)x y x y ++-5446x y x y =++-92x y =-;(2)24(1)3a a a -++2443a a a =--+4a =-.20解:(1)由已知得:剩余铁皮的面积=长方形铁皮面积-截去半径为y 2米的圆的面积144⨯ 212424y xy π⎛⎫=- ⎪⎝⎭, 2124xy y π=-(平方米);(2)当6x =,8y =时,原式2126884π=⨯⨯- (9616)π=-(平方米) 答:剩余铁皮的面积是(9616)π-平方米.21.(1)根据题意,得:[(﹣1)﹣(﹣23)]﹣35 =﹣1+23﹣35 =﹣1415; (2)根据题意,得B =4x 2﹣6x ﹣3﹣(2x 2﹣x+5)=4x 2﹣6x ﹣3﹣2x 2+x ﹣5=2x 2﹣5x ﹣8图 1 图2人教版初中数学七年级上册第2章《整式加减》单元测试卷 及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是( ).A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是( ).A .15x +是多项式B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( ).A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为( ).A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为( ).A .5B .6C .7D .85.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y 表示的数为( ).A .7B .9C .-7D .-96.友龙在电脑中设置了一个运算程序:输入数a ,加“⊗”键,再输入数b ,得到运算a ⊗b =2ab 2+a 2b . 若a =-2,b=3,则输出的值为( ).A .-9B .-12C .-24D .67.有一个三位数,它的百位上的数字是a ,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是( ).A .2的倍数B .3的倍数C .5的倍数D .9的倍数8.已知y=x -1,则(x -y)2+(y -x)+1的值为( ).A .-1B .0C .1D .29.已知有理数a 、b 、c 在数轴上的位置如图1所示,且a 与b 互为相反数,那么| a -c |-| b +c |的值为( ).A .0B .1C .a +bD .2c 10.如图2,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为( ).A .2a -3bB .4a -8bC .2a -4bD .4a -10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a 元收费;若超过100度,那么超过部分每度按b 元收费. 某户居民在图3图4 一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a 3b n +1与单项式-3a m -2b 2的和仍是单项式,则3m -4n=_________.13.如图3,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x 、y 、z 的代数式表示)14.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元.三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b . (1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由. 222(3)51x x x --=-+22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a2-3a+3),每股20元,张家持有(2a2+1)股,王家比张家少(a-1)股.(1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a=300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:第1个第2个第3个第4个(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D .提示:选项A 分母中含有字母,故不是多项式,选项B 的系数是13π-,选项C 的项是2x 2和-1.3.A .提示:由于2月份产值是(1-10%)x 万元,故3月份产值是在(1-10%)x 万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B .提示:由于-a 3 b 4 c 的次数为8,则a 3+a x +1b -2a 2b 2的次数x +1+1=8,故x=6.5.D .提示:根据“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,所以2×1-3=x ,故x=-1;又因为2x -7=y ,即2×(-1)-7=y ,故y=-9.6.C .提示:当a =-2,b=3时,2ab 2+a 2b =2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数.8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1.9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a +c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a-3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b.二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元.三、解答题19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5.(2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =. (2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-. 当32a =-,b =12时,原式=-8×(32-)×12=6. 21.可能. 理由如下:A -B +C=(-6x 2+4x)-(-x 2-3x)+(5x 2-7x +4)=-6x 2+4x +x 2+3x +5x 2-7x +4=4.由于化简后的结果中不含有字母x,所以无论x取何数值,其结果都是4. 22.(1)王家持股:(2a2+1)-(a-1)=2a2-a+2.李家持股:(5a2-3a+3)-(2a2+1)-(2a2-a+2)=a2-2a.(2)当a=300时,a2-2a=3002-2×300=89400.所以李家能获得的钱数为:89400×15%×20=268200(元).23.(1)填表如下:(2)3(n+1);(3)同意建军的说法. 理由如下:当n=671时,3(n+1)= 3×(671+1)=2016. 所以第670个图形有2016颗黑色棋子. 24.(1)第100项是-199x100;(2)第n(n为正整数)项是(-1)n+1(2n-1)x n;(3)当x=1时,原式=1-3+5-7+…+4029-4031=(1-3)+(5-7)+…+(4029-4031)=-2×1008=-2016.人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分)1.下列说法正确的是( )A.a 的系数是0B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( )A.a 2b 与-6ab 2B.-5x 3y 与934yx 3 C.2πR 与π2R D.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3)6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( )A.与x ,y 都无关B.只与x 有关C.只与y 有关D.与x ,y 都有关二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:请写出剩油量A与行驶路程n与耗油量Q之间的关系式,并计算当n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10a+b;第三步:10b+a-(10a+b)=10b+a -10a-b=9b-9a=9(b-a).24. 解:(1)甲超市:300+0.8×(x﹣300)=0.8x+60(元)乙超市:200+0.85×(x﹣200)=0.85x+30(元)(2)甲超市:300+0.8×(500﹣300)=460(元)乙超市:200+0.85×(500﹣200)=455(元)∵460>455∴当顾客累计购物500元时,在乙超市购物合算.25.(1)甲方案:m×30×810=24m;乙方案:(m+5)×30×7.510=22.5(m+5).(2)当m=70时,甲方案所需费用为:24m=24×70=1680(元),乙方案所需费用为:22.5(m+5)=22.5(70+5)=1687.5(元),所以采用甲方案优惠;当m=100时,甲方案所需费用为:24m =24×100=2400(元),乙方案所需费用为:22.5(m+5)=22.5(100+5)=2362.5(元),所以采用乙方案优惠.26.(1)依题意,得这个无盖长方体的容积为x(16-2x)2.(2)当x的值为3cm时,它的容积为300cm3;当x的值为3.5cm时,它的容积为283.5cm3;因此,当x的值为3cm时,这个无盖长方体的容积较大.。
一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 2.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+=C .360020160240x x +-=D .360020160240x x--= 3.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 4.解方程-3x=2时,应在方程两边( )A .同乘以-3B .同除以-3C .同乘以3D .同除以3 5.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .1206.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-7.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=8.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .49.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =10.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律11.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道. A .17B .18C .19D .2012.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-2二、填空题13.对于实数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.14.在方程431=-x 的两边同时_________,得x =___________.15.若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.16.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 17.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.18.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.19.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.20.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.三、解答题21.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天. (1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?22.在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?23.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?24.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖. (1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多? (3)小明现有32元钱,最多可买多少本练习本?25.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行. (1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离; (3)求两船从开始航行到两船相距12海里,需要多长时间?26.解下列方程: (1)15(x +15)=1231-(x -7).(2)2110121364x x x -++-=-1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 2.A解析:A 【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A . 【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.3.B解析:B 【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断. 【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B . 【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.4.B解析:B 【分析】利用等式的性质判断即可. 【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3, 故选:B . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.C解析:C 【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积. 【详解】解:设中间的偶数为m ,则 (m-2)+m+(m+2)=24, 解得m=8.故三个偶数分别为6,8,10. 故它们的积为:6×8×10=480.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.6.C解析:C 【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值. 【详解】解第一个方程得:133ky -=, 解第二个方程得:53y =-,∴133k-=53-, 解得:k=2. 故选C . 【点睛】本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.7.D解析:D 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式. 【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇, 可列方程为:11()179x +=. 故选D . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.8.D解析:D 【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断. 【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x-个,需要长方形纸板3×1202x -张,因此可得120433602xx -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.9.A解析:A 【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可. 【详解】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=,所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =.所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -=系数化为1,得1x=-.故选A.【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m、n的值是解此题的关键.10.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x=,这是依据等式的性质2.故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.11.C解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.12.B解析:B【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12,故选:B.【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.二、填空题13.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22 【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x 的方程,然后解方程即可求出x 的值. 【详解】 解:∵(1)(2)(3)(1)x x x x ++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27, ∴x 2-1-(x 2-x -6)=27, ∴x 2-1-x 2+x +6=27, ∴x =22; 故答案为:22. 【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.14.乘-12【解析】【分析】根据等式的性质2方程的两边乘即可【详解】方程的两边同时乘得:x =-1故答案为:乘;-12【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:乘3- -12 【解析】 【分析】根据等式的性质2,方程的两边乘3-即可. 【详解】方程431=-x 的两边同时乘3-得:x =-1, 故答案为:乘3-;-12.【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.15.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元 解析:1-【解析】 【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可. 【详解】∵()||110a a x --=是关于x 的一元一次方程,∴1=a 且10a -≠, 解得a=-1. 故答案为:-1 【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.16.【解析】【分析】根据解方程的过程方程去括号移项合并把x 系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键解析:213x -+=-, 321x =--+, 4x =-. 【解析】 【分析】根据解方程的过程,方程去括号,移项合并,把x 系数化为1,即可求出解. 【详解】2(1)3x --=-.去括号,得213x -+=-; 移项,得321x =--+; 合并同类项,得4x =- 【点睛】本题考查了解一元一次方程,熟练掌握计算法则是解题关键.17.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】 【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可. 【详解】每件服装的标价为:(1+40%)x , 每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.18.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.19.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得: 解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键. 20.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3, 故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.三、解答题21.(1)2.4天(2)2天【分析】(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解. (2)设徒弟先做1天,再两人合作还需x 天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.【详解】解:(1)11511=2.44612⎛⎫÷+=÷ ⎪⎝⎭(天). 答:两个人合作需要2.4天完成.(2)设还需x 天可以完成这项工作, 根据题意,得1164x x ++=. 解得=2x .答:还需2天可以完成这项工作.【点睛】本题考查一元一次方程的应用,根据题意列出方程并解答是解题关键22.3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x 盏灯.根据题意,得248163264381x x x x x x x ++++++=.解得3x =.答:塔的顶层有3盏灯.【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键. 23.(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 24.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==.∵y为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y=.解得40y=.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.25.(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.26.(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.。
人教版数学七年级上学期第二章整式的加减测试一.选择题(每小题4分,共20分)1.列式表示“比m 的平方的3倍大1的数”是( )A. (3m)2+1B. 3m 2+1 C 3(m +1)2D. (3m +1)22.多项式3x k y – x 是三次二项式,那么k 的值是( )A. 3B. 2C. 1D. 0 3.下列各项中,去括号正确的是( )A. x 2-2(2x -y +2)=x 2-4x -2y +4B. -3(m +n)-mn =-3m +3n -mnC. -(5x -3y)+4(2xy -y 2)=-5x +3y +8xy -4y 2D. ab -5(-a +3)=ab +5a -34.下列说法正确的是:( ).A. 单项式m 的次数是0B. 单项式5×105t 的系数是5C. 单项式223x π-系数是23- D. -2 010是单项式 5.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A ()x 15x - B. ()x 30x - C. ()x 302x - D. ()x 15x +二.填空题(每小题4分,共20分)6.单项式-4xy 的系数为____________ .7.写出6xy 的一个同类项_____________.8.已知15mn 和-29mn 是同类项,则∣2-4x ∣+∣4x -1∣的值为_______ . 9.我校有三个年级,其中初三年级有(2x+3y )名学生,初二年级有(4x+2y )名学生,初一年级有(x+4y )名学生, 请你算一算,我校共有_______________名学生.10.观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2010个单项式是______.第n 个单项式怎样表示________.三.解答题(共60分)11计算:(1) 32a b -3(2a b -a 2b )-3a 2b ; (2) -xy -(4z -2xy )-(3xy -4z ).12.计算:已知222232,23m x xy y n x xy y =-+=+-,求:(1) m+n; (2) m-3n.13.(1)给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.(2)先化简,再求值:()22532234x x x x ⎡⎤----⎣⎦,其中12x =- 14.把3个长为a ,宽为b(a>b )的长方形如图放置,恰好拼成一个大长方形,(1)大长方形的面积S=____________(用含字母a 、b 的代数式表示);(2)a 、b 之间的等量关系是:__________________;(3)当b=2时,面积S=?b=3时,周长C=?15已知|a -2|+|b+1|+|2c+3|=0.(1)求代数式2a +2 b +2 c +2ab +2ac +2bc 的值;(2)求代数式()2a b c ++的值;(3)从中你发现上述两式的什么关系?由此你得出了什么结论?答案与解析一.选择题(每小题4分,共20分)1.列式表示“比m 的平方的3倍大1的数”是( )A. (3m)2+1B. 3m 2+1C. 3(m +1)2D. (3m +1)2 【答案】B【解析】试题解析:比的平方的倍大的数为:23 1.m +故选B.2.多项式3x k y – x 是三次二项式,那么k 的值是( )A. 3B. 2C. 1D. 0【答案】B【解析】由多项式3x k y – x 三次二项式,可得k+1=3,解得k=2,故选B.3.下列各项中,去括号正确的是( )A. x 2-2(2x -y +2)=x 2-4x -2y +4B. -3(m +n)-mn =-3m +3n -mnC. -(5x -3y)+4(2xy -y 2)=-5x +3y +8xy -4y 2D. ab -5(-a +3)=ab +5a -3【答案】C【解析】试题解析:A. 222(22)42 4.x x y x x y --+=-+-故错误. B 3()33.m n mn m n mn -+-=---故错误.C. 22(53)4(2)5384.x y xy y x y xy y --+-=-++-故正确.D.5(3)515.ab a ab a --+=+-故错误. 故选C.4.下列说法正确的是:( ).A. 单项式m 的次数是0B. 单项式5×105t 的系数是5C. 单项式223x π-的系数是23- D. -2 010是单项式【答案】D【解析】 A. 单项式m 的次数是1,故A 选项错误;B. 单项式5×105t 的系数是5×105,故B 选项错误;C. 单项式223x π-的系数是23-π,故C 选项错误;D. -2 010是单项式,正确, 故选D. 5.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A. ()x 15x -B. ()x 30x -C. ()x 302x -D. ()x 15x +【答案】A【解析】∵长方形的周长是30,∴相邻两边和是15,∵一边是x,∴另一边是15-x,∴面积是:x(15-x),故选A.【点睛】本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长. 二.填空题(每小题4分,共20分)6.单项式-4xy 的系数为____________ .【答案】-4【解析】根据单项式系数的定义,单项式-4πxy 3 的系数是-4π,故答案为-4π.7.写出6xy 的一个同类项_____________.【答案】5xy 等【解析】根据同类项的定义,同类项是指所含字母相同,相同字母的指数也相同的项,因此与6x 3y 2是同类项的项可以是5x3y2(答案不唯一).8.已知15mn和-29mn是同类项,则∣2-4x∣+∣4x-1∣的值为_______ .【答案】13【解析】由题意可得:x=2,所以∣2-4x∣+∣4x-1∣=∣2-4×2∣+∣4×2-1∣=6+7=13,故答案为13.9.我校有三个年级,其中初三年级有(2x+3y)名学生,初二年级有(4x+2y)名学生,初一年级有(x+4y)名学生, 请你算一算,我校共有_______________名学生.【答案】7x+9y【解析】(2x+3y)+(4x+2y)+(x+4y)=2x+3y+4x+2y+x+4y=7x+9y(名),即我校共有(7x+9y)名学生,故答案为7x+9y.10.观察下列单项式:x,-3x2,5x3,-7x4,9x5,…按此规律,可以得到第2010个单项式是______.第n个单项式怎样表示________.【答案】(1). -4019 x2010(2). (-1)(n+1)(2n-1)n【解析】观察下列单项式:x,-3x2,5x3,-7x4,9x5,…得出第n项的系数可以表示为(-1)n-1(2n-1),指数表示为n,即第n项表示为(-1)n-1(2n-1)x n,第2008个单项式是-4015x2008,故答案为-4015x2008;(-1)n-1(2n-1)x n.【点睛】本题考查根据规律写单项式,通过仔细观察写出第n个单项式是解此题关键.三.解答题(共60分)11.计算:(1) 32a b-3(2a b-a2b)-3a2b; (2) -xy-(4z-2xy)-(3xy-4z).【答案】(1)0; (2)-2xy【解析】试题分析:(1)先去括号,然后再合并同类项即可;(2)先去括号,然后再合并同类项即可试题解析:(1)原式=3a2b-3a2b+3ab2-3ab2= 0;(2)原式=-xy -4z+2xy -3xy+4z =-2xy12.计算:已知222232,23m x xy y n x xy y =-+=+-,求:(1) m+n; (2) m-3n.【答案】(1) 2252x xy y --; (2) 223510x xy y --+【解析】【分析】把22223223m x xy y n x xy y =-+=+-,,分别代入所求的式子中,然后去括号,合并同类项即可得.【详解】解:(1)m+n=()22223223x xy y x xy y-+++- =22223223x xy y x xy y -+++-=2252x xy y --;(2)m-3n=()222232323x xy y x xy y-+-+- =222232639x xy y x xy y -+--+=223510x xy y --+.13.(1)给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.(2)先化简,再求值:()22532234x x x x ⎡⎤----⎣⎦,其中12x =- 【答案】(1)6(答案不唯一);(2)174-【解析】 试题分析:(1)答案不唯一,任意选取两个多项式进行加法或减法运算,通过去括号,合并同类项进行化简后再代入数值进行求值即可;(2)先去小括号,再去中括号,然后合并同类项,最后代入数值进行求值即可.试题解析:(1)(212x x +)+(2132x y +)=23x x y ++ 当12x y =-=,,原式=()()211326-+-+⨯= 或者(212x x +)-(2132x y +)=3x y - 当12x y =-=,,原式=()1327--⨯=- (212x x +)+(2113x +)=255166x x ++=(212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-= (2)()225x 3x 22x 34x ⎡⎤----⎣⎦=225x 3x 4x 64x --+-=225x x 64x +-+=29x x 6+-当1x 2=- 时,原式=174-. 14.把3个长为a ,宽为b(a>b )的长方形如图放置,恰好拼成一个大长方形,(1)大长方形的面积S=____________(用含字母a 、b 的代数式表示);(2)a 、b 之间的等量关系是:__________________;(3)当b=2时,面积S=?b=3时,周长C=?【答案】(1)3ab ;(2)a=2b ;(3)S=24; C=30;【解析】试题分析:(1)根据大长方形的面积等于3个小长方形的面积之和即可得;(2)根据图示即可得;(3)由(2)中a 与b 的关系,根据b 的值可得到a 的值,根据长方形的面积公式以及周长即可得. 试题解析:(1)大长方形的面积=3ab,故答案为3ab ;(2)根据图示可知小长方形的长等于小长方形的宽的2倍,故a=2b ;(3)由a=2b,b=2可得a=4,所以大长方形的面积S=3×4×2=24;由b=3,a=2b 可得a=6,所以大长方形的周长C=2×(6+6+3)=30. 15.已知|a -2|+|b+1|+|2c+3|=0.(1)求代数式2a +2 b +2 c +2ab +2ac +2bc 的值;(2)求代数式()2a b c ++的值;(3)从中你发现上述两式的什么关系?由此你得出了什么结论?【答案】(1)14;(2)14;(3)两式相等,结论是(a+b+c)=a+b+c+2ab+2ac+2bc【解析】试题分析:先根据绝对值的非负性,根据已知所给的等式,分别求出a、b、c的值,然后再分别代入(1)、(2)中进行求值即可;(3)根据(1)、(2)中的结果进行观察即可得.试题解析:(1)由题意得,a=2,b=-1, c=-32,所以,原式=22+(-1)2+32⎛⎫-⎪⎝⎭2+2×2×(-1)+2×2×32⎛⎫-⎪⎝⎭+2×(-1)×32⎛⎫-⎪⎝⎭=4+1+94-4-6+3 =14;(2)(a+b+c)2=(2-1-32)2 =14;(3)两式相等,结论是(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.【点睛】本题考查了绝对值非负性,代数式求值等知识,解题的关键是先根据绝对值的非负性求出a、b、c 的值.。
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
第二章《整式的加减》达标检测题一、选择题(每题4分,共28分)1.计算a+(-a )的结果是( )A.2aB.0C.-a 2D.-2a2.下列判断中正确的是( )A.3a 2bc 与bca 2不是同类项 B .5n m 2不是整式 C.单项式-x 3y 2的系数是-1 D.3x 2-y+5xy 2是二次三项式3.已知5a 3-x b 与127a 5y 5b 的和是单项式,则|x+y|等于( ) A.-5 B.4 C.3 D.54.化简a-[-2a-(a-b)]等于( )A.-2aB.2aC.4a-bD.2a-2b5.化简5(2x-3)-4(3-2x )可得( )A.2x-27B.8x-15C.12x-15D.18x-276.已知多项式ax 5+bx 3+cx ,当x=1是值为5,那么当x=-1时,该多项式的值为( )A.-5B.5C.1D.无法求出7.使(ax 2-2xy+y 2)-(-x 2+bxy+2y 2)=5x 2-9xy+cy 2成立abc 的值依次是( )A.4,-7,-1B.-4,-7,-1C.4,7,-1D.4,7,1二、填空题(每题4分,共20分)8.多项式_____与m 2+m-2的和是m 2-2m9.有四个偶数,其中最小的一个是2n ,其余三个是________________,这四个连续偶数的和是______________.10.一个两位数的个位上的数为a ,十位上的数为b ,将8插入这两位数的中间,则得到的三位数可表示为__________________.11.(x+2y-3c )(x-2y+3c )= [x+( )] [x-( )]12.有一个一个简单的数值运算程序:“先输入x ,然后乘以(-1),然后-2011,再输出结果”当输入x 的值为-2时,则输出的结果为________________.三、解答题(17题12分,其余每题10分,共52分)13.求2x 211-29x+10y 与x 252+13x-5y 的2倍的差.14.先化简,在求值:4x 2-{-3x 2-[5x-x 2-(2x 2-x )]+4x},其中x=-21.15.已知三角形的周长为3a+2b ,其中第一条边长为a+b ,第二条边长比第一条边长小1,求第三条边的长.16.有这样一道题“当a=2,b=-2时,求3a 3b 3-21a 2b+b 2-(4a 3b 3-41a 2b-b 2)+(a 3b 3+41a b 2)-2b 32+的值”,马小虎做题时把a=2错抄写成a= -2,小明没抄错题,但他们做出的结果却是一样,你知道这是怎么回事吗?说明理由。
人教版数学七年级上学期第二章整式的加减测试一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.整式23x x -的值是,则2398x x -+的值是( )A. 20B. 4C. 16D. -4 2.下列说法正确的是( )A. 3 2x π的系数是B. 2 x y 的系数是C. 2 2x y -的系数是D. 2 4y 的系数是 3.观察下列各式:,3ab , ,a b ,a b b a +=+,21x -,213x +=,2x y -+,2S r π=,其中整式的个数是( ) A. 4 B. 5 C. 6 D. 74.已知3a b -=,2c d -=,则()()b c a d +-+的值是( )A -1 B. 1 C. -5 D. 155.计算2232a b a b --的正确结果是( )A. -1B. 2 a b -C. 2 5a b -D. 5- 6.若代数式()22342x ax bx x ++-+的值与字母无关,则21123a b -的值为( ) A. 1- B. 1 C. 23 6- D. 23 67.下列每组中的两个代数式,属于同类项的是( ) A 212x y 与223xy B. 20.5a b 与20.5a cC. 3abc 与3abD. 312m n 与38nm - 8.下列说法中正确的是( )A. 多项式2ax bx c ++是二次多项式B. 2335a b c -是次单项式,它的系数是35 C. 235ab -,x -都单项式,也都是整式 D. 24a b -,3ab ,是多项式2435a b ab -+-中的项9.一列单项式按以下规律排列:,23a ,35a ,7a ,29a ,311a ,13a ,…,则第2016个单项式应是( )A. 3 4031aB. 4031aC. 2 4031aD. 3 4032a10.下列结论中,正确是( ) A. 单项式237xy 的系数是,次数是2? B. 2xy z -的系数是,次数是 C. 单项式的次数是,没有系数单项式 D. 多项式223x xy ++是三次三项式二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.化简:()()323a b a b --+-=________.12.已知两个单项式5234m a b 与623n a b -和是一个单项式,则m n =________. 13.把多项式添括号得:a b c d a -+-=- _____ .14.若单项式212a x y 与32b x y -的和仍为单项式,则a b +=________. 15.若22238xy axy axy -+=,那么a =________.16.若一个多项式加上2532x x +-的倍得231x x --,则这个多项式是________.17.()u v u v --=-+________18.单项式232x y -的系数是________,次数是________.19.数, ,在数轴上的位置如图所示且a c =;化简:2a c b b a c b a b ++----++=________.20.在计算多项式M 加上229x x -+时,因误认为加上229x x ++,得到答案222x x +,则正确的答案应是________.三、解答题(共 9 小题 ,每小题 7 分 ,共 63 分 )21.合并同类项(1)23a 222422b ab a ab b -+-+-(2)()()222232232x y y x --- (3)()22294326x x x x x ⎡⎤+---⎣⎦(4)()()22323b a a b -+- 22.先化简再求值:﹣(x 2﹣y 2)﹣[3xy ﹣(x 2﹣y 2)],其中x =﹣1,y =2.23.已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.24.求多项式22113333a abc c a c +--+的值,其中2a =-,34b =-, 1.5c =. 25.已知有理数,在数轴上的位置如图所示,化简:232a b a b b a +----.26.先化简后求值(1)2222332232x y xy xy x y +-+-,其中2x =,14y =-; (2)()()()323111323233326x y x y x x y -+--++,其中2x =-,3y =. 27.在计算代数式()()()52252552523223x x y xy xxy y x x y y ----++-+-的值,其中0.5,1x y ==-时,甲同学把0.5x =错抄成0.5x =-,但他计算的结果是正确的.试说明理由,并求出这个结果. 28.小明和小丽一起做同样一道题:计算()2221222232a a b b a b a ⎛⎫+-++-+- ⎪⎝⎭的值,其中23a =-,1b =.粗心的小明把23a =-错抄成23a =,所得结果却与小丽的正确结果相同,聪明的你知道这是为什么吗?29.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--()1当2x =,15y =-时,求2B A -的值. ()2若22(3)0x a y -+-=,且2B A a -=,求的值.答案与解析一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.整式23x x -值是,则2398x x -+的值是( )A. 20B. 4C. 16D. -4 【答案】A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4,所以3x 2-9x =12,所以3x 2-9x +8=12+8=20.故选A .【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键. 2.下列说法正确的是( )A. 3 2x π的系数是B. 2 x y 的系数是C. 2 2x y -的系数是D. 2 4y 的系数是 【答案】D【解析】【分析】根据单项式系数的定义:单项式中,与字母相乘的数叫做单项式的系数,即可选出正确答案.【详解】解:选项A :23x π的系数是2π;选项B :2x y 的系数是1;选项C :22x y -的系数是2-;选项D :24y 的系数是.故选D.【点睛】此题主要考查了单项式的系数,关键是熟练掌握定义,注意π是一个常数,不是字母. 3.观察下列各式:,3ab , ,a b ,a b b a +=+,21x -,213x +=,2x y -+,2S r π=,其中整式的个数是( ) A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据整式的定义来进行判断.【详解】解:整式有:,3ab , ,21x -,2x y -+共5个;a b分母中含有字母是分式;a b b a +=+,213x +=,2S r π=是等式.故选B.【点睛】分母中含有字母的式子不是整式;单项式和多项式都是整式.4.已知3a b -=,2c d -=,则()()b c a d +-+的值是( )A. -1B. 1C. -5D. 15 【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a−b=3,c−d=2,∴原式=b+c−a−d ,=−(a−b)+(c−d),=−3+2,=−1,故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减法则.5.计算2232a b a b --的正确结果是( )A. -1B. 2 a b -C. 2 5a b -D. 5-【答案】C【解析】【分析】根据乘法分配律合并同类项.【详解】解:原式=(-3-2)a 2b,=-5a 2b,故选C.【点睛】合并同类项时,只要把它们的系数相加,字母和字母的指数不变.6.若代数式()22342x ax bx x ++-+的值与字母无关,则21123a b -的值为( ) A. 1-B. 1C. 23 6-D. 23 6 【答案】B【解析】【分析】代数式的值与x 无关,说明合并同类项之后,含有x 项的系数等于0,从而求出a 、b 的值.【详解】解:原式=3x 2+ax+4-bx 2-2x,=(3-b)x 2+(a-2)x+4,∵代数式()22342x ax bx x ++-+的值与字母无关,∴3-b=0,a-2=0,∴b=3,a=2, ∴21123a b -, =2122⨯-133⨯, =2-1,=1.故选B.【点睛】此题主要考查了多项式的化简,正确得出a,b 的值是解题关键.7.下列每组中的两个代数式,属于同类项的是( ) A. 212x y 与223xy B. 20.5a b 与20.5a cC. 3abc 与3abD. 312m n 与38nm - 【答案】D【解析】【分析】 根据同类项:所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】解:A 、212x y 与223xy ,相同字母的指数不同,不是同类项;B 、20.5a b 与20.5a c ,所含字母不同,不是同类项;C 、3abc 与3ab ,所含字母不同,不是同类项;D 、312m n 与38nm -,是同类项; 故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.8.下列说法中正确的是( )A. 多项式2ax bx c ++是二次多项式B. 2335a b c -是次单项式,它的系数是35 C. 235ab -,x -都是单项式,也都是整式 D. 24a b -,3ab ,是多项式2435a b ab -+-中的项【答案】C【解析】【分析】根据单项式系数和次数、多项式项数和次数的定义,即可判断,注意多项式的每一项要带有符号.【详解】解:A :当a=0时,2ax bx c ++不是二次多项式,故A 错误;B :2335a b c -是次单项式,它的系数-35,故B 错误; C :235ab -,x -既单项式,也是整式,故C 正确; D :2435a b ab -+-的项有:24a b -,3ab ,5-,故D 错误.故选C.【点睛】本题考查了多项式的项和次数,单项式的系数和次数.9.一列单项式按以下规律排列:,23a ,35a ,7a ,29a ,311a ,13a ,…,则第2016个单项式应是( )A. 3 4031aB. 4031aC. 2 4031aD. 3 4032a【答案】A【解析】观察已知式子可知,第n 个式子的系数是2n-1,所以第2016个式子系数是4031;每个单项式的指数是个数除以3的余数,当被3除尽时指数是3,所以第2016个单项式的指数是2016÷3=672,所以指数是3.【详解】解:34031a .故选A.【点睛】在寻找规律时,可分为两部分,首先看系数的规律,其次看次数的规律.10.下列结论中,正确的是( )A. 单项式237xy 的系数是,次数是2? B. 2xy z -的系数是,次数是 C. 单项式的次数是,没有系数单项式D. 多项式223x xy ++是三次三项式【答案】B【解析】【分析】 由单项式的系数和次数的意义以及多项式的定义即可解答.【详解】解:A :237xy 的系数是,次数是的系数是37,次数是,故A 错误; B :2xy z -的系数是,次数是,故B 正确;C :的次数是1,系数是1,故C 错误;D :223x xy ++是二次三项式,故D 错误.故选B.【点睛】判断单项式的系数和次数、多项式的项数和次数问题,一定要认真仔细,关键是熟知概念.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.化简:()()323a b a b --+-=________.【答案】a -【解析】【分析】先去括号,然后合并同类项.【详解】解:原式=-3a+3b+2a-3b,=(-3+2)a+(3-3)b,故答案为-a.【点睛】解决此类题目的关键是去括号法则,注意运用乘法分配律,不要漏乘括号里的项.12.已知两个单项式5234m a b 与623n a b -的和是一个单项式,则m n =________. 【答案】125【解析】【分析】两个单项式的和是一个单项式,说明这两个单项式是同类项,根据同类项的概念可得m=3,n=5,从而m n =125. 【详解】解:∵两个单项式5234m a b 与623n a b -的和是一个单项式, ∴5234m a b 与623n a b -是同类项, ∴2m=6,n=5,∴m=3,n=5,∴m n =35=125,故答案为125.【点睛】本题是对同类项定义的考查.两个单项式是同类项的条件有两条:一是含有相同的字母,二是相同字母的指数也相同,两者缺一不可.13.把多项式添括号得:a b c d a -+-=- _____ .【答案】b c d -+【解析】分析】添括号的法则:添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都改变符号.【详解】解:a b c d -+-=a-(b-c+d),故答案为b-c+d.【点睛】本题考查了添括号的法则.14.若单项式212a x y 与32b x y -的和仍为单项式,则a b +=________. 【答案】5【解析】 试题解析:单项式212a x y -与32b x y -的和为单项式, ∴212a x y -,32b x y -为同类项, ∴2b =,3a =, ∴23232315222x y x y x y --=-. 故答案为2352x y -. 15.若22238xy axy axy -+=,那么a =________. 【答案】37-【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,即可求出a 的值.【详解】解:22238xy axy axy -+=, 228axy axy -=23xy ,27axy -=23xy , =37-, 故答案为37-. 【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则.16.若一个多项式加上2532x x +-的倍得231x x --,则这个多项式是________.【答案】2773x x --+【解析】【分析】根据一个加数等于和减去另一个加数列出算式,然后去括号、合并同类项即可.【详解】解:231x x ---2(2532x x +-)=231x x ---10264x x -+=7273x x -+故答案为7273x x -+.【点睛】本题考查了整式的加减,去括号、合并同类项是解题的关键.17.()u v u v --=-+________【答案】√【解析】【分析】直接根据去括号法则判断即可.【详解】解:()u v u v --=-+故答案为√.【点睛】本题考查了去括号的法则.18.单项式232x y -的系数是________,次数是________.【答案】 (1). -2 (2). 5【解析】【详解】解:单项式232x y -的系数是-2,次数是3.故答案为:-2;5【点睛】本题考查单项式的系数和次数,掌握概念是本题的解题关键.19.数, ,在数轴上的位置如图所示且a c =;化简:2a c b b a c b a b ++----++=________.【答案】c b -【解析】【分析】根据数轴可知,a>0>b>c 且a c =,从而判断出a+c,2b,b-a,c-b,a+b 的值的正负,去掉绝对值符号,再化简即可.【详解】解:由图可知a>0>b>c 且a c =∴a+c=0,2b<0,b -a<0,c-b<0,a+b>0,∴原式=0-2b-(a-b)-(b-c)+(a+b),=-2b-a+b-b+c+a+b,=c-b,故答案为c-b.【点睛】本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.20.在计算多项式M 加上229x x -+时,因误认为加上229x x ++,得到答案222x x +,则正确答案应是________.【答案】222x x -【解析】【分析】根据多项式的加法的运算法则,用和减去这个多项式,即可求出多项式M ,再将多项式M 加上229x x -+化简即可.【详解】解:M=222x x +-(229x x ++),=222229x x x x +---,=29x -,∴29x -+(229x x -+),=22929x x x -+-+,=222x x -,故答案为222x x -.【点睛】本题主要考查了整式的加减法.整式的加减实质就是合并同类项,若有括号,就要用去括号的法则去掉括号,然后再合并同类项.三、解答题(共 9 小题 ,每小题 7 分 ,共 63 分 )21.合并同类项(1)23a 222422b ab a ab b -+-+-(2)()()222232232x y y x --- (3)()22294326x x x x x ⎡⎤+---⎣⎦(4)()()22323b a a b -+- 【答案】(1)22 53a ab b +-;(2)22109x y -,(3)2113x x +,(4)4a b -+.【解析】【分析】有括号的首先去括号,注意去括号后符号的变化,然后找出同类项,根据合并同类项的法则进行计算.【详解】解:(1) 22222242253a b ab a ab b a ab b -+-+-=+-,(2),()()22222232232109x y y x x y ---=-,(3)()222294326113x x x x x x x ⎡⎤+---=+⎣⎦,(4),()()223234b a a b a b -+-=-+. 故答案为(1)2253a ab b +-;(2)22109x y -,(3)2113x x +,(4)4a b -+.【点睛】解决本题要注意去括号时符号的变化,并且不要漏乘,有多个括号时要注意去各个括号时的顺序. 22.先化简再求值:﹣(x 2﹣y 2)﹣[3xy ﹣(x 2﹣y 2)],其中x =﹣1,y =2.【答案】6.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式22223x y xy x y =-+-+-, 3xy =-;当1x =-,2y =时,原式()312=-⨯-⨯,6=.故答案为6.【点睛】解决本题要注意去括号,去括号要注意顺序,先去小括号,再去中括号.负数代入求值时,要加上括号. 23.已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.【答案】2【解析】【分析】由22m x y 与3n xy -是同类项得到m=1,n=2,将原式去括号合并得到最简结果,把m 与n 的值代入计算即可求出值.【详解】解:∵22m x y 与3n xy -是同类项,∴1m =,2n =,∴()()223423m m n m n nm n -+-+- 223423m m n m n nm n =--++-22nm m n =-+,当1m =,2n =时,原式2222=-+=.故答案为2.【点睛】本题考查了同类顶的定义和整式的加减.24.求多项式22113333a abc c a c +--+的值,其中2a =-,34b =-, 1.5c =. 【答案】94. 【解析】【分析】将原式合并同类项得到最简结果,把a 、b 、c 的值代入计算即可求出值.【详解】原式abc =,当2a =-,34b =-, 1.5c =时,原式392 1.544⎛⎫=-⨯-⨯= ⎪⎝⎭. 故答案为94. 【点睛】求代数式的值时,在运算过程中,若字母的取值是负数或分数时,运算时应添上括号,不然运算符号很容易出错,要特别注意.25.已知有理数,在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b -+【解析】【分析】根据数轴可知,a>0>b 且|a|<|b|,从而判断出a+b,a-b,b-a 的值的正负,去掉绝对值符号,再化简即可.【详解】解:由数轴可知:0b a <<,∴0a b +<,0a b ->,0b a -<,∴原式()()()232a b a b b a =-+--+-,223322a b a b b a =---++-,73a b =-+.故答案为73a b -+.【点睛】本题考查了利用数轴,比较数的大小关系,对于含有绝对值的式子的化简,要根据绝对值内的式子的符号,去掉绝对值符号.26.先化简后求值 (1)2222332232x y xy xy x y +-+-,其中2x =,14y =-; (2)()()()323111323233326x y x y x x y -+--++,其中2x =-,3y =. 【答案】(1)74;(2)4-. 【解析】【分析】此类题目有括号的要先去括号,再合并同类项,然后代入数值进行计算.【详解】解:()1原式()22333222x y xy ⎛⎫=-+-+ ⎪⎝⎭, 122xy =+, 当2x =,14y =-时,原式11172222444⎛⎫=⨯⨯-+=-+= ⎪⎝⎭; ()2原式3231311132322x y x y x x y =-+----, 3211131133222x x x y ⎛⎫⎛⎫=-+-+--- ⎪ ⎪⎝⎭⎝⎭, 2132x x y =--. 当2x =-,3y =时,原式()142941942=-⨯--=+-=-. 故答案 (1)74;(2)4-. 【点睛】求代数式的值时,一定要先化简再求值,该题中代数式的化简工作有两个,一是去括号,二是合并同类项.27.在计算代数式()()()52252552523223x x y xy x xy y x x y y ----++-+-的值,其中0.5,1x y ==-时,甲同学把0.5x =错抄成0.5x =-,但他计算的结果是正确的.试说明理由,并求出这个结果.【答案】解:原式=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=(2x 3-x 3-x 3)+(-3x 2y +3x 2y)+(-2xy 2+2xy 2)+(-y 3-y 3)=-2y 3∵化简后的结果中不含x,∴甲同学把x=0.5错抄成x=-0.5,计算结果仍是正确的.当y=-1时,原式=-2×(-1)3=-2×(-1)="2," 即计算的结果为2. 【解析】【分析】把整式进行合并同类项得出结果不含x,所以整式的值与x 无关.【详解】原式3223233232x 3x y 2xy x 2xy y x 3x y y =---+--+-32y =-,∵整式的值与无关, ∴甲同学把1x 2=错看成1x 2=-,但计算结果仍然正确, 当1x 2=-,y 1=-时,原式32(1)2=-⨯-=. 【点睛】本题考查整式的加减混合运算,熟练掌握合并同类项法则是解题关键.28.小明和小丽一起做同样一道题:计算()2221222232a a b b a b a ⎛⎫+-++-+- ⎪⎝⎭的值,其中23a =-,1b =.粗心的小明把23a =-错抄成23a =,所得结果却与小丽的正确结果相同,聪明的你知道这是为什么吗?【答案】见解析【解析】【分析】先通过去括号、合并同类项对多项式进行化简,然后代入a 、b 的值进行计算.【详解】解:原式2222222226242a a b b a b a b b =+-++-+-=++,∵化简的结果没有含字母的项,∴整式的值与的取值无关,虽然小明把“23a =-”错抄成“23a =”,但结果仍是正确的. 【点睛】解答此类题的思路就是把原式化简,得到一个不含看错值的字母的结果,便可说明该式与看错值的字母的取值无关.29.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--()1当2x =,15y =-时,求2B A -的值. ()2若22(3)0x a y -+-=,且2B A a -=,求的值.【答案】(1)-13;(2)-1.【解析】【分析】(1)把A 和B 所表示的多项式整体代入B-2A 中即可;(2)根据已知条件可知x=2a,y=3,代入(1)题中B-2A 化简后的式子中,即可求出a.【详解】解:()1∵222322A x xy y x y =-+++,224623B x xy y x y =-+--, ∴2B A -,()2222462322322x xy y x y x xy y x y =-+----+++,2222462346244x xy y x y x xy y x y =-+---+---,75x y =--,当2x =,15y =-时, 2B A -,17255⎛⎫=-⨯-⨯- ⎪⎝⎭, 141=-+,13=-,()2∵22(3)0x a y -+-=,∴20x a -=,30y -=,∴2x a =,3y =,∵2B A a -=,∴7572531415x y a a --=-⨯-⨯=--,∴1415a a --=,解得1a =-.故答案为(1)-13;(2)-1.【点睛】本题考查了整式的加减运算.。
人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=(6x2+4x2)+(﹣3y2﹣6y2)=10x2﹣9y2.21.解:∵2A+B=x2+5x﹣6,A=x2+2x﹣1,∴B=(x2+5x﹣6)﹣2(x2+2x﹣1)=x2+5x﹣6﹣2x2﹣4x+2=﹣x2+x﹣4,∴A+2B=x2+2x﹣1+2(﹣x2+x﹣4)=x2+2x﹣1﹣2x2+2x﹣8=﹣x2+4x﹣922.解:原式=a2﹣2ab+2a2﹣2b2﹣a2+2ab﹣b2=2a2﹣3b2,当a=﹣,b=1时,原式=﹣2.5五、综合题23.(1)解:S=n(n+1)(2)解:(a)2+4+6+…+100 =50×51=2550;(b)52+54+56+…+200=(2+4+6+8+...+200)﹣(2+4+6++ (50)=100×101﹣25×26=10100﹣650=9450.人教版数学七年级上册第2章整式的加减单元检测卷(含答案解析)一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=.5.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=.6.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3 10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣112.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣113.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?人教版数学七年级(上册)第2章整式的加减单元检测卷参考答案一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7.【分析】根据多项式的项的概念和降幂排列的概念解答即可.【解答】解:多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7,故答案为:﹣2x3+x2y﹣5xy+7.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为3x2+.【分析】首先表示出x2的3倍、y的倒数,然后求其和即可.【解答】解:依题意得3x2+.故答案是:3x2+.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为26.【分析】把x的值代入运算程序进行计算即可得解.【解答】解:x=3时,32×3﹣2=27﹣1=26.故答案为:26.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=16.【分析】已知等式相加即可求出原式的值.【解答】解:∵x2﹣3xy=6,3xy+y2=10,∴x2+y2=x2﹣3xy+3xy+y2=10+6=16,故答案为:165.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=10.【分析】所求式子合并同类项得到最简结果,将a与b的值代入计算即可求出值.【解答】解:a2+ab﹣b2+a﹣a2﹣ab+b+b2=a+b,当a=3.6,b=6.4时,原式=3.6+6.4=10.故答案为:106.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是2.【分析】把3x+3﹣x=2两边平方即可求解.【解答】解:把3x+3﹣x=2两边平方得:32x+3﹣2x+2•3x+3﹣x=4,即32x+3﹣2x=2.故答案是2.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式【分析】根据多项式的有关概念,以及单项式的系数的定义即可作出判断.【解答】解:A、x是单项式,正确;B、3x4是四次单项式,正确;C、的系数是,错误;D、x3﹣xy2+2y3是三次多项式,正确;故选:C.9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3【分析】设最小的整数为n﹣1,根据连续的整数只是相差1,知另外的两个整数分别是n,n+1.由等量关系这三个连续整数的积是0,列出方程.然后根据三个因式的积是0,则每一个因式都可能是0,分情况讨论.【解答】解:设最小的整数为n﹣1,根据题意得(n﹣1)•n•(n+1)=0,解得n﹣1=0或n=0或n+1=0,当n﹣1=0时,n=1,这三个数分别是0,1,2,这三个数的和是3;当n=0时,这三个数分别是﹣1,0,1,这三个数的和是0;当n+1=0时,n=﹣1,这三个数是﹣2,﹣1,0,这三个数的和是﹣3.故选:D.10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、3x3y2﹣2x2y,无法合并,故此选项错误;C、3x2+2x3,无法合并,故此选项错误;D、4x2y﹣7yx2=﹣3x2y,正确.故选:D.11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣1【分析】根据单项式、多项式的定义即可判断;【解答】解:A、x2是二次单项式;正确,本选项不符合题意.B、x3﹣2xy2+y3是三次三项式;正确,本选项不符合题意.C、0是单项式;正确,本选项不符合题意.D、﹣的系数是﹣1;错误,系数应该是﹣,本选项符合题意.故选:D.12.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.13.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:原式=(2+3﹣4)(x+y)=x+y,故选:A.15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:×3×a=2.4a(元),∵2.2a<2.4a,∴甲比乙优惠,故选:A.三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)【分析】合并同类项就是系数和系数相加作为系数,字母和字母的指数不变.【解答】解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.【分析】按要求先化简再求值.注意去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.【解答】解:(1)原式=3x2﹣x,当x=﹣3时,原式=30;(2)原式==﹣,当x=6,y=﹣1时,原式=﹣2.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.【分析】此题要抓住同类项的定义“所含字母相同,相同字母的指数相同”去列方程:|2a ﹣1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式ab﹣3(﹣b)﹣+6化简,将a,b的值代入即可.【解答】解:由题意可知|2a﹣1|=1,|b|=1,解得a=1或0,b=1或﹣1.又因为a与b互为负倒数,所以a=1,b=﹣1.原式=ab﹣a+3b﹣a+6=ab﹣2a+3b+6,当a=1,b=﹣1时,原式=1×(﹣1)﹣2×1+3×(﹣1)+6=0.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.【分析】用这个多项式加上﹣6xy+8yz﹣9,求出这个多项式的式子,然后用这个多项式再减去﹣6xy+8yz﹣9,求出结果即可.【解答】解:﹣6xy+8yz﹣9+2(2xy﹣3yz+4)=﹣6xy+8yz﹣9+4xy﹣6yz+8=﹣2xy+2yz﹣1.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.【分析】根据|a|+a=0,|ab|=ab,|c|﹣c=0知a<0,b<0,c>0,继而知a+b<0,c﹣b >0,a﹣c<0,根据绝对值性质去绝对值符号后合并即可得.【解答】解:∵|a|+a=0,|c|﹣c=0,即|a|=﹣a,|c|=c,∴a<0,c>0,∵|ab|=ab,∴ab>0,∴b<0,则原式=﹣b+a+b﹣c+b﹣a+c=b.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2b﹣3a2b+4ab2+a2b+3a2b=a2b+4ab2,当a=﹣1,b=﹣2时,原式=﹣3﹣16=﹣19.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?【分析】(1)直接把A=x2﹣2xy,B=y2+3xy代入进行计算即可;(2)根据题意得出C的表达式,再去括号,合并同类项即可;(3)把A、B、C的表达式代入,合并同类项后,把x=﹣2,y=﹣3代入进行计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【分析】(1)根据后一排比前一排多2个座位,第n排比第一排多2(n﹣1)个座位;(2)①把n=25,m=20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m+2(n﹣1).(2)①当m=20,n=25时,m+2(n﹣1)=20+2×(25﹣1)=68(个);②m+m+2+m+2×2+…+m+2×(25﹣1)=25m+600.当m=20时,25m+600=25×20+600=1 100(人).解:(1)第一排有m个座位,后边的每一排比前一排多两个座位,第n排有m+2(n﹣1)=2n+m﹣2(个);(2)当m=20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.人教版数学七年级上册通关宝典(9)-《整式的加减》单元检测一、选择题(共10小题;共30分)1. 下列说法正确的是A. 的系数是B. 单项式的系数为,次数为C. 的次数为D. 的系数为2. 下列说法中,正确的有①的系数是;②的次数是;③多项式的次数是;④和都是整式.A. 个B. 个C. 个D. 个3. 多项式的次数及最高次项的系数分别是A. ,B. ,C. ,D. ,4. 在如图所示的年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是A. B. C. D.5. 化简的结果等于A. B. C. D.6. 若,则的值为A. B. C. D.7. 若与是同类项,则的值为A. B. C. D.8. 已知,当时,的值是,当时,的值是A. B. C. D. 无法确定9. 古希腊著名的毕达哥拉斯学派把,,,这样的数称为“三角形数”,而把,,,这样的数称为“正方形数”.从图形可以发现,任何一个大于的“正方形数”,都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为A. B. C. D.二、填空题(共6小题;共18分)11. 如果,则.12. 单项式的系数是,次数是.13. 如果是五次多项式,那么.14. 填空:;.15. 若与的和是单项式,则式子的值是.16. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.三、解答题(共6小题;共52分)17. 去括号,并合并同类项:(1);(2).18. 将式子,分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式的值,把它的后两项放在:①前面带有“”号的括号里;②前面带有“”号的括号里.19. 如果关于的多项式不含项和项,求,的值.20. 如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为米,广场长为米,宽为米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为米,宽为米,圆形花坛的半径为米,求广场空地的面积(计算结果保留).21. 有一位同学做一道题:“已知两个多项式,,计算”.他误将“ ”看成“ ”,求得的结果为.已知,求正确答案.22. 用火柴棒搭的图形如图所示:(1)第一个图①有根火柴棒,第二个图②有根火柴棒,第三个图③有根火柴棒;(2)按此规律,第个图有根火柴棒;(用含的式子表示)(3)按此规律,是否存在第个图有根火柴棒?若存在,请求出的值;若不存在,请说明理由.答案第一部分1. C2. C3. C4. B 【解析】设这四个数中最小的一个数为,则其余的三个数为,,,那么,这四个数的和为.A、如果,那么,不符合题意;B、如果,那么,符合题意;C、如果,那么,不符合题意;D、如果,那么,不符合题意.5. B【解析】6. D 【解析】,,,.7. C8. A 【解析】时,,.时,.9. D10. C【解析】由图知,左上方小方格的数恰好是表格的序数;左下方的数都比左上方的数大,即;右上方的数是左下方的数的倍,即;右下方的数等于左下方、右上方的数的积与左上方的数的和,即.所求表格中右上方的数是,.解得..第二部分11.12. ,【解析】根据单项式定义得:单项式的系数是,次数是.13.【解析】是五次多项式,,解得.14. ,15.16.【解析】化简:第三部分17. (1)(2)18. (1),.所添括号前是“ ”号,括到括号里的各项都不改变符号;所添括号前是“ ”号,括到括号里的各项都改变符号.(2)①;②.19. 关于的多项式不含项和项,,,,.故的值为,的值为.20. (1)空地的面积.(2)当,,时,空地的面积(平方米).21. ,,所以所以22. (1)【解析】第个图形中火柴棒的数量,第个图形中火柴棒的数量,第个图形中火柴棒的数量为.(2)【解析】按此规律知,第个图形中火柴棒的数量为.(3)不存在,理由如下:根据题意,得:,解得:,为正整数,不符合题意,不存在.。
人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y 的系数、次数分别是( ) A.-1,3 B.1,3 C.13,3 D.-13,3 2.下列式子中代数式的个数为( )①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .5 3.下列说法中,正确的是( )A .5mn 不是整式B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式的次数是( ) A. B.m C. D.m ,n 中的较大数 5.某企业今年月份产值为万元,月份比月份增加了,月份比月份减少了,则月份的产值为( ) A.万元 B.万元 C.万元 D.万元6.已知两个完全相同的大长方形,长为,宽为,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么与之间的关系是( )A. B. C. D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2 B .1 C .3 D .48.[]()a b c --+去括号后应为( )A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c 9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 2 10.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211.等于( ) A. B. C. D. 12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b (),则b-a 的值为( ).A.5B.6C.7D.8二、填空题 13.已知212a a -+=,那么21a a -+的值是______________.14.单项式1325m n x y ---与24yx 的和仍是单项式,则n m =______. 15.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)16.多项式23231x y x xy -+-按字母x 降幂..的排列是________.三、解答题17.化简.(1)(5x +4y )+2(2x ﹣3y );(2)2a ﹣4(a +1)+3a .18.计算:(1)2(3a ﹣2b )﹣3(a ﹣3b )(2)2xy 2+2(3xy 2﹣x 2y )﹣2(xy 2﹣x 2y )19.先化简再求值:2222414224333x xy y x xy y ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭,其中2x =,1y =. 20.如图所示,四边形ABCD 与四边形ECGF 是两个边长分别为a ,b 的正方形,写出用a ,b 表示阴影部分面积的代数式,并计算当4a =cm ,6b =cm 时,阴影部分的面积.答案1.D 2.B 3.C 4.D 5.C 6.C 7.A 8.D 9.C 10.D 11.D 12.C 13.0. 14.915.231n n ++16.322+31x x y xy --+17.解:(1)(54)2(23)x y x y ++- 5446x y x y =++-92x y =-;(2)24(1)3a a a -++2443a a a =--+4a =-.18.解:(1)原式=6a-4b-3a+9b=3a+5b ;(2)原式=2xy 2+6xy 2-2x 2y-2xy 2+2x 2y=6xy 2.19.解:2222414224333x xy y x xy y ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭ =2222444221233x xy y x xy y -+-+- =2210x xy +当x=2,y=1时,原式=222102182028⨯+⨯⨯=+=. 20.S 阴影部分面积用代数式表示为2211()22a b a b b +-+ =2222111222a b a ab b +--- =22111222a b ab +-.当4a =cm ,6b c = m 时, 原式()()()2222211464614cm 22a b ab =+-=⨯+-⨯=. 所以阴影部分面积为214cm。
人教版数学七年级上学期第二章整式的加减测试一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列说法正确的是( )A. 字母相同的项是同类项B. 整式是多项式C. 单独一个数或一个字母也是单项式D. 多项式22x x 2-+的系数是2 2.已知2223,21A a a B a a =-=--当4a =-时,A B -等于( )A 8 B. 9 C. -9 D. -73.化简()()a b 3a b ----的正确结果是( )A. 4a 4b -+B. 4a 2b --C. 4a 4b --D. 2a 2b - 4.21x xy x --,1a ,2x 2x 1x 1++-,1m n 3+,x 12+,7π中不是整式的有( ) A. 2个 B. 3个 C. 4个 D. 5个 5.当x 5=时,()()22x x x 2x 1---+等于( )A -14B. 4C. -4D. 1 6.下列说法正确的是( )A. 3223a bc -的系数为3-,次数为27B. 2x y z π23++不是单项式,但是整式 C. 1x 1+是多项式 D. 2mx 1+一定是关于x 的二次二项式 7.下面计算正确的是( )A. 223x x 3-=B. 2353a 2a 5a +=C. 3x 3x +=D. 2ab ab ab -= 8.按某种标准,单项式25x y 和多项式22a b 2ab 5+-属于同一类,则下列哪一个多项式也属于此类( )A. 343x 2xy +B. 2x 2-C. abc 1-D. 22m 2mn n ++ 9.下列各组中两项是同类项的是( )A. 2m n -和2mn -B. 0.5a 和0.5bC. 203和5410⨯D. 2m -和3m10.下列概念表述正确的是( )A. 单项式ab 的系数是0,次数是2B. 单项式3232a b -的系数是2-,次数是5C. 24a b -,3ab ,5是多项式24a b 3ab 5-+-的项D. xy 12-是二次二项式 二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.若单项式n 12ab -与m 1a b +的差仍是单项式,则m n +=________.12.已知单项式2m n 95x y -与53n 4x y 是同类项,则m n -的值为________.13.合并同类项:22222a ab 3b 4ab 4b a -++--=________.14.矩形的周长为4a 2b +,一边长为a 2b -,则矩形的另一边长为________.15.当m =________时,代数式2x y mx my --+中不含x 项,此时合并结果=________.16.若a b 2-=,a c 6+=,则()()2a b c 2a b c ++---=________.17.多项式28x 2x 5++与另一个多项式的差是25x x 3-+,则另一个多项式是________.18.什么是整式?________,整式中如有分母,分母________(含、不含)字母.19.若2m 6m 5+=,则代数式()2225m 5m m m 7m 5⎡⎤-----⎣⎦的值是________. 20.若多项式322x 8x 1--与多项式32x 2mx 5x 2+-+的和不含二次项,则m 的值为________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.化简:(1)225a 3ab 42ab 5a +---(2)()()x 22x 233x 5-+--+22.先化简再求值:221131x 2x y x y 2323⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭,其中x 1=-,y 2=. 23.先化简,再求值:()22222122x 3x xy 2y 2x xy 2y 33⎡⎤⎛⎫--+---+ ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 满足21x (y 1)02-++=. 24.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值. 25.按照规律填上所缺的单项式并回答问题:(1)a 、22a -、33a 、44a -,________,________;()2试写出第2007个和第2008个单项式;()3试写出第n 个单项式.26.已知多项式A 、B ,计算A B +.某同学做此题时误将A B +看成了A B -,求得其结果2A B 3m 2m 5-=--,若2B 2m 3m 2=--,请你帮助他求得正确答案答案与解析一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列说法正确的是( )A. 字母相同的项是同类项B. 整式是多项式C. 单独一个数或一个字母也是单项式D. 多项式22x x 2-+的系数是2【答案】C【解析】【分析】根据同类项的定义,以及整式的定义逐一分析即可.【详解】A 、所含字母相同,并且相同字母的指数相同的两个项才是同类项,选项错误;B 、整式是单项式和多项式的统称,故选项错误;C 、正确;D 、多项式2x 2-x+2的次数是2.故选C .【点睛】本题考查了同类项以及整式的定义,熟练掌握定义是解题的关键.2.已知2223,21A a a B a a =-=--,当4a =-时,A B -等于( )A. 8B. 9C. -9D. -7 【答案】B【解析】【分析】先化简整式,再把a 代入求值即可.【详解】A-B=2a 2-3a-(2a 2-a-1)=2a 2-3a-2a 2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9,故选B .【点睛】本题考查了整式的化简求值,先化简再求值,注意去括号时,符号的变化.3.化简()()a b 3a b ----的正确结果是( )A. 4a 4b -+B. 4a 2b --C. 4a 4b --D. 2a 2b -【答案】A【解析】【分析】 由题意去括号时,括号前面是负号,去掉括号和前面的负号,括号里的各项都改变符号.【详解】-(a-b )-3(a-b )=-a+b-3a+3b=-4a+4b ,故选A .【点睛】本题考查了整式的加减,解题的关键是熟练掌握合并同类项的法则. 4.21x xy x --,1a ,2x 2x 1x 1++-,1m n 3+,x 12+,7π中不是整式的有( ) A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】 根据整式的概念进行判断,即可求出答案.【详解】∵21x xy x --,1a ,2x 2x 1x 1++-,1m n 3+,x 12+,7π中, 不是整式的有:21x xy x --,1a ,2x 2x 1x 1++-. 故选B .【点睛】本题考查了整式的知识点,在解题时要根据整式的概念,进行选择是本题的关键.5.当x 5=时,()()22x x x 2x 1---+等于( )A. -14B. 4C. -4D. 1 【答案】B【解析】【分析】原式去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】(x 2-x )-(x 2-2x+1)=x 2-x-x 2+2x-1=x-1.当x=5时,原式=5-1=4.故选B .【点睛】本题考查了整式的加减—化简求值,熟练掌握运算法则是解本题的关键.6.下列说法正确的是( )A. 3223a bc -的系数为3-,次数为27B. 2x y z π23++不是单项式,但是整式 C. 1x 1+是多项式 D. 2mx 1+一定是关于x 的二次二项式 【答案】B【解析】【分析】分别利用多项式以及单项式的定义和单项式的次数以及系数判断得出即可.【详解】A 、-33a 2bc 2的系数为-33,次数为2+1+2=5,所以此选项不正确;B 、2x y z π23++不是单项式,是多项式,是整式,所以此选项正确; C 、1x 1+不是多项式,是分式,所以此选项不正确; D 、因为m 不确定,当m=0时,mx 2+1=1,是单项式,当m≠0时,一定是关于x 的二次二项式,所以此选项不正确.故选B .【点睛】本题考查了整式、单项式和多项式的概念,熟练掌握这此概念是做好本题的关键.7.下面计算正确的是( )A. 223x x 3-=B. 2353a 2a 5a +=C. 3x 3x +=D. 2ab ab ab -=【答案】D【解析】【分析】根据合并同类项的法则进行运算,找到运算正确的选项即可.【详解】A 、原式=(3-1)x2=2x 2,故错误;B 、不是同类项,不能合并,故错误;C 、不是同类项,不能合并,故错误;D 、正确,故选D .【点睛】本题考查了合并同类项的相关知识;用到的知识点为:所含字母相同,相同字母的指数也相同的项,叫同类项;合并同类项时,字母及字母的指数不变,只把系数相加减.8.按某种标准,单项式25x y 和多项式22a b 2ab 5+-属于同一类,则下列哪一个多项式也属于此类( )A. 343x 2xy +B. 2x 2-C. abc 1-D. 22m 2mn n ++【答案】C【解析】【分析】观察单项式5x 2y 和多项式a 2b+2ab 2-5,发现它们的次数都是3次,因此可以属于同一类,然后找出四个选项中的三次多项式即可.【详解】∵单项式5x 2y 和多项式a 2b+2ab 2-5的次数都是3次,又∵多项式3x 3+2xy 4的次数为4;x 2-2的次数为2;abc-1的次数为3;m 2+2mn+n 2的次数为2; ∴多项式abc-1的次数与单项式5x 2y 和多项式a 2b+2ab 2-5的次数相同.故选C .【点睛】本题考查了单项式、多项式的次数的定义.能够通过观察发现单项式5x 2y 和多项式a 2b+2ab 2-5的次数相同是解题的关键.9.下列各组中的两项是同类项的是( )A. 2m n -和2mn -B. 0.5a 和0.5bC. 203和5410⨯D. 2m -和3m 【答案】C【解析】【分析】根据同类项的概念解答即可.【详解】A.-m 2n 和-mn 2中,相同字母的指数不相等,故A 不是同类项,B.0.5a 和0.5b 中,没有相同字母,故B 不是同类项,D.-m 2和3m 中,相同字母的指数不相等,故D 不是同类项,故选C .【点睛】本题考查了同类项的概念,解题的关键是正确理解同类项的概念.10.下列概念表述正确的是( )A. 单项式ab 的系数是0,次数是2B. 单项式3232a b -的系数是2-,次数是5C. 24a b -,3ab ,5是多项式24a b 3ab 5-+-的项D. xy 12-是二次二项式 【答案】D【解析】【分析】根据单项式的系数和次数以及多项式的项和次数的定义分别对每一项进行分析,即可得出答案.【详解】A 、单项式ab 的系数是1,次数是2,故本选项错误;B 、单项式-23a 2b 3的系数是-23,次数是5,故本选项错误;C 、-4a 2b,3ab,-5是多项式-4a 2b+3ab-5的项,故本选项错误;D 、xy 12-是二次二项式,故本选项正确; 故选D .【点睛】本题考查了多项式与单项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数和单项式的次数与系数.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.若单项式n 12ab -与m 1a b +的差仍是单项式,则m n +=________.【答案】2【解析】【分析】根据同类项的定义得到m+1=1,n-1=1,再解方程分别求出m 与n ,然后计算它们的和.【详解】根据题意得m+1=1,n-1=1,解得m=0,n=2,所以m+n=0+2=2.故答案为2.【点睛】本题考查了同类项:把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.12.已知单项式2m n 95x y -与53n 4x y 是同类项,则m n -的值为________.【答案】1【解析】【分析】根据同类项:所含字母相同且相同字母的指数也相同可得出关于m 和n 的方程,解出即可得出答案.【详解】:∵单项式5x 2m-n y 9与4x 5y 3n 是同类项,∴25{39m n n -== , 解得:43m n ==⎧⎨⎩, 则m-n=4-3=1.故答案为1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项中的两个相同,(1)同类项所含字母相同,(2)相同字母的指数相同.13.合并同类项:22222a ab 3b 4ab 4b a -++--=________.【答案】22a 3ab b +-【解析】【分析】把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】原式=(2-1)a 2+(4-1)ab+(3-4)b 2=a 2+3ab-b 2. 故答案为a 2+3ab-b 2.【点睛】本题考查了合并同类项的知识,熟练掌握同类项的定义是解题的关键. 14.矩形的周长为4a 2b +,一边长为a 2b -,则矩形的另一边长为________.【答案】a+3b【解析】【分析】 由矩形的性质列出边长的表达式,再去括号,合并同类项即可.【详解】∵矩形的周长为4a+2b ,一边长为a-2b,∴矩形的另一边长=12(4a+2b )-(a-2b )=2a+b-a+2b=a+3b . 故答案为a+3b . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.15.当m =________时,代数式2x y mx my --+中不含x 项,此时合并结果=________.【答案】 (1). 2 (2). y【解析】【分析】根据题意知,x 项的系数是0,据此可以求得m 的值.然后再合并同类项.【详解】因为2x-y-mx+my=(2-m )x+(m-1)y ,且该多项式中不含x 项,所以,2-m=0,即m=2,则2x-y-mx+my=(2-2)x+(2-1)y=y .故答案是:2;y .【点睛】本题考查了多项式、合并同类项.在多项式中不含哪项,即哪项的系数为0,两项的系数互为相反数,合并同类项时为0.16.若a b 2-=,a c 6+=,则()()2a b c 2a b c ++---=________.【答案】12【解析】【分析】用a+c=6减去a-b=2,可得b+c 的值,再将(2a+b+c )-2(a-b-c )去括号,合并同类项得3b+3c ,把b+c 整体代入求原式的值.【详解】a+c=6减去a-b=2,得b+c=4∴(2a+b+c )-2(a-b-c )=2a+b+c-2a+2b+2c=3b+3c=3(b+c )=3×4=12.【点睛】本题考查了整式的加减—化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,是一个常考的题材.17.多项式28x 2x 5++与另一个多项式的差是25x x 3-+,则另一个多项式是________.【答案】23x 3x 2++【解析】【分析】根据题意利用整式的加减运算法则计算得出答案.【详解】∵多项式8x 2+2x+5与另一个多项式的差是5x 2-x+3,∴另一个多项式是:8x 2+2x+5-(5x 2-x+3)=3x 2+3x-8.故答案为3x 2+3x+2.【点睛】本题考查了整式的加减运算,正确掌握运算法则是解题关键.18.什么是整式?________,整式中如有分母,分母________(含、不含)字母.【答案】 (1). 单项式和多项式统称整式 (2). 不含【解析】【分析】根据整式的概念即可解答.【详解】单项式和多项式统称整式.整式中如有分母,分母不含(含、不含)字母.故答案是:单项式和多项式统称整式;不含.【点睛】本题考查了整式的定义,熟练掌握整式的概念是解题的关键.19.若2m 6m 5+=,则代数式()2225m 5m m m 7m 5⎡⎤-----⎣⎦的值是________. 【答案】10【解析】【分析】由题意原式去括号合并得到最简结果,将已知等式代入计算即可求出值.【详解】∵m 2+6m=5,∴原式=5m 2-5m 2+m 2-m+7m+5=m 2+6m+5=5+5=10.故答案10【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.20.若多项式322x 8x 1--与多项式32x 2mx 5x 2+-+的和不含二次项,则m 的值为________.【答案】4【解析】【分析】根据题意直接合并同类项,进而利用多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x+2的和不含二次项,得出m 的值.【详解】∵2x 3-8x 2-1+x 3+2mx 2-5x+2=3x 3+(2m-8)x 2-5x+1,多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x+2的和不含二次项,∴2m-8=0,解得:m=4.故答案为4.【点睛】本题考查了整式的加减,正确合并同类项是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.化简:(1)225a 3ab 42ab 5a +---(2)()()x 22x 233x 5-+--+【答案】()()1ab 426x 19---【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【详解】()1原式225a 5a 3ab 2ab 40ab 4ab 4=-+--=+-=-()2原式x 4x 49x 156x 19=-+---=--【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.22.先化简再求值:221131x 2x y x y 2323⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭,其中x 1=-,y 2=. 【答案】4【解析】【分析】 根据整式的运算法则即可求出答案. 【详解】原式2221231x 2x y x y y 2323=-+++=, 当x 1=-,y 2=时,原式4=.【点睛】本题考查了整式的运算,解题的关键是熟练运用整式的运算法则.23.先化简,再求值:()22222122x 3x xy 2y 2x xy 2y 33⎡⎤⎛⎫--+---+ ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 满足21x (y 1)02-++=. 【答案】314-【解析】【分析】由题意原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】原式22222222x x 2xy 2y 2x 2xy 4y x 2y =+-+-+-=-, ∵21x (y 1)02-++=, ∴1x 2=,y 1=-, 则原式132144=-=-. 【点睛】本题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键. 24.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值. 【答案】(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项,∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.25.按照规律填上所缺的单项式并回答问题:(1)a 、22a -、33a 、44a -,________,________;()2试写出第2007个和第2008个单项式;()3试写出第n 个单项式.【答案】(1)()5620075a 6a22007a -,20082008a -;(3) ()1n 1na n +- 【解析】【分析】 通过观察题意可得:每一项都是单项式,其中系数为n×(-1)n+1,字母是a,x 的指数为n 的值.由此可解出本题.【详解】(1)()565a 6a 2-第2007个单项式为:20072007a ,第2008个单项式为:20082008a -;(3)第n 个单项式的系数为:()1n 1n +⨯-,次数为n , 故第n 个单项式为:()1n 1na n +-.【点睛】本考查了数字的变换类,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.26.已知多项式A 、B ,计算A B +.某同学做此题时误将A B +看成了A B -,求得其结果为2A B 3m 2m 5-=--,若2B 2m 3m 2=--,请你帮助他求得正确答案.【答案】27m 8m 9--【解析】分析】根据A+B=2m 2-3m-2,B=3m 2-2m-5,先求出A ,然后再求出A-B 的值.【详解】∵222A B B 3m 2m 52m 3m 25m 5m 7-+=--+--=--,∴222A B 5m 5m 72m 3m 27m 8m 9+=--+--=--,或直接计算A B 2B -+得A B +也可.【点睛】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则。
第二章 整式的加减单元测试一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++xx xx 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分) 13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a -- 17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( ) A 、c b a a c b a a +--=+--2)2(22 B 、)123(123-+-+=-+-y x a y x a C 、1253)]12(5[3+--=---x x x x x x D 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a +43,21,2009,,3,42mnbc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、6 20、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+ 三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x .30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a .五、解答题(31、32题各6分,33、34题各7分,共20分) 31、已知:22,,(1)(5)50;3m x y x m -+=满足:2312722a b b a y 与+-)(是同类项.求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+3. 如果213n m x y -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-24.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1 C. 52n m 不是整式 D.2235x y xy -+是二次三项式 5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( )A.2a b + B.23a b + C.22a b + D.3a b +9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 .14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____.16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 .三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分)1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( ) A.5 B.2x C.2x D.23a 3、①; ②;③; ④分别是同类项的是( )(A )①② ; (B )①③;(C )②③ ; (D )②④4、-( a-1)-(-a-2)+3的值是( )(A )4; (B )6;(C )0; (D )与的值有关。
人教版初中数学七年级上册第2章整式的加减单元测试卷一、单选题(共10题;共30分)1.下列运算中,结果正确的是().A. 4+=B.C.D.解:A.4与不是同类项,所以不能合并,错误;B.6xy与x不是同类项,所以不能合并,错误;C.,同类项与字母顺序无关,正确;D.12x3与5x4字母指数不同,不是同类项,所以不能合并,错误.故答案为:C.2.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 3解:多项式﹣x2+2x+3中的二次项系数是:﹣1.故答案为:A3.下列语句中错误的是()A. 数字0也是单项式B. 单项式–a的系数与次数都是1C. xy是二次单项式D. –的系数是–解:A,0也是单项式,故A不符合题意;B、单项式–a的系数与次数都是-1,故B符合题意;C、是二次单项式,故C不符合题意;D、的系数是,故D不符合题意;故答案为:B4.多项式- 2a3b + 3a2 - 4的项数和次数分别为()A. 3,3B. 4,3C. 3,4D. 3,6 解:题目中多项式是四次三项式,故次数是4,项数是3.故答案为:C.5.在代数式x2+5,-1,x2-3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个解:依题可得:整式有:x2+5,-1,x2-3x+2,,共4个.故答案为:B.6.下列是用火柴棒拼成的一组图形,第①个图形中有3 根火柴棒,第②个图形中有9 根火柴棒,第③个图形中有18 根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是().A. 63B. 60C. 56D. 45解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个无重边的三角形,共有3×(1+2)根火柴;第③个有1+2+3个无重边的三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个无重边的三角形,共有3×(1+2+3+…+n)n(n+1)根火柴;∴第⑥个图形中火柴棒根数是×6×(6+1)=63.故答案为:A.7.下列各组整式中是同类项的是()A. a3与b3B. 2a2b与﹣a2bC. ﹣ab2c与﹣5b2cD. x2与2x 解:A、a3与b3所含的字母不同,不是同类项;B、2a2b与-a2b是同类项;C、-ab2c与-5b2c所含字母不同,不是同类项;D、x2与2x相同字母的指数不相同,不是同类项.故答案为:B.8.观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是()A. 10B. 20C. 36D. 45解:2条直线相交,只有1个交点,3条直线相交,最多有3个交点,4条直线相交,最多有6个交点,…,n条直线相交,最多有个交点,n=10时,=45.故答案为:D9.已知和是同类项,则m+n=()A. 6B. 5C. 4D. 3解:由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故答案为:A.10.按图示的方法,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,依此类推,若搭个三角形需2019根火柴棒,则()A. 1008B. 1009C. 1010D. 1011 解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,m个三角形需要3+2(m-1)=(2m+1)根火柴.由2m+1=2019解得m=1009,所以有2019根火柴棒,可以搭出这样的三角形1009个.故答案为:B.二、填空题(共6题;共18分)11.的系数是________,次数是________次解:单项式−a2bc3的系数是−,次数是6.故答案是:−,6.12.如果是一个五次三项式,那么m=________.解:由题意得m+2=5,故m=3。
人教版七年级上册数学第二章整式的加减单元测试卷附答案精品数学单元测试人教版数学七年级上学期第二章整式的加减达标测试卷总分:120分考试时间:120分钟一、选择题(共10小题,每小题3分,共30分)1.下列说法中正确的是()A.不是单项式B.是单项式C.单项式D.是整式2.若。
的系数是,次数是,的值为()A.7B.-2C.5D.-33.某天数学课上老师讲了整式的加减运算,XXX回到家后拿出自己的课堂笔记,认真地复老师在课堂上所讲的内容,她突然发现一道题目:了,请问空格中的一项是()A。
+2ab B。
+3ab C。
+4ab D。
-ab4.下列说法中正确的个数有()①和都是单项式;②多项式的系数为,的次数是;③单项式,空格的地方被墨水弄脏A。
3个 B。
2个 C。
1个 D。
0个5.下列说法不正确的是()A.单项式和多项式统称为整式 B。
C.是单项式 D.6.已知。
是六次单项式,则代数式的值为()A.36B.40C.44D.467.若关于、的多项式,则A。
2 B。
-2 C。
3 D。
-38.若和是同类项,则的值与无关,则A。
5 B。
6 C。
7 D。
89.在式子。
中,单项式的个数是()A。
5个 B。
4个 C。
3个 D。
2个10.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)-2xB.x(x+3)+6C.3(x+2)+x2D.x2+5x二、填空题(共10小题,每小题3分,共30分)11.若单项式和是同类项,则与的值为_________.12.若关于、的单项式,则_________.13.七年级班有_________个男生和_________个女生,则男生比女生少_________人.14.若多项式,则_________.15.若多项式的和不含二次项,则的值为_________.16.已知,则_________.17.某同学把错抄为,则的和仍为单项式,则其和为_________.18.代数式。
第二章 整式的加减 单元练习题 (19)
一、选择题(本大题共4小题,共12.0分)
1. 下列各式是5次单项式的是( )
A. x 5y
B. 23xy
C. −5xy 4
D. x 3+x 2 2. 多项式3x 3−2xy 2+78y 3+9x 2y 按某一字母的降幂排列正确的是( )
A. 3x 3+78y 3−2xy 2+9x 2y
B. 78y 3−2xy 2+9x 2y +3x 3
C. 78y 3+9x 2y −2xy 2+3x 3
D. 3x 3−2xy 2+9x 2y +78y 3 3. 已知m ,n 是正整数,则多项式x m −2y n +7m+n 的次数是( )
A. m
B. n
C. m +n
D. m 与n 中较大的那个
4. 减去−2x 得x 2−2x +4的式子为( )
A. x 2+4
B. x 2+2x +4
C. x 2−4x
D. x 2−4x +4
二、填空题(本大题共14小题,共42.0分)
5. 多项式2x 2y −1+3x 是 次 项式.
6. 去括号:(a +b)−2(a −b)= .
7. 把多项式x 3y −x 2y 3−1−xy 2按x 的升幂排列为 .
8. 如果2a 2x b 与5a 4b 2y−1是同类项,那么x +y = .
9. 多项式2x −3与−3x 的差是 .
10. 如果a m b 3与−2a 2b n 是同类项,那么m +n = .
11. 当m = 时,关于x 的多项式3x 2−5x +2与多项式4mx 2−12x −7的和不含x 2项.
12. 计算:2a 2−3a 2= .
13. 若0.2x m−1y 2−(n +3)x +5是三次二项式,则m = ,n = .
14. 将多项式3+6x 2y 2−2x −5x 3y 3−4x 4y 按字母x 降幂排列为 .
15. 在代数式a −b ,m ,m 2−12,2y 3,−a 3bc ,a 3+a 2b +ab 2+b 3,
2x 2−y 3中,多项式有 . 16. 单项式−2m 2n 5的次数是 .
17. 一组数据的前几项分别是2,4,6,8,⋯,那么第n 项可以表示为 .
18. 多项式−2x 3+5x −1是 次 项式,其中三次项是 ,二次项系数是 ,一次项系数是 ,常数项是 .
三、解答题(本大题共2小题,共16.0分)
19. 请写出多项式2x m −(nx −2)+3是三次二项式的条件.
20.已知多项式mx3+5x2+1与7x n−3x是同次多项式,求m,n应该满足什么条件?
-------- 答案与解析 --------
1.答案:C
解析:
【分析】
本题考查单项式的概念,解题的关键是正确理解单项式的系数、次数等概念,本题属于基础题型.单项式的次数是指各字母的指数之和.
【解答】
解:A.x5y次数为6,故不符合题意,
B.23xy次数为2,故不符合题意,
C.−5xy4次数5,故符合题意,
D.x3+x2的多项式,故不符合题意,
故选C.
2.答案:B
解析:
【分析】
此题考查的多项式的次数排列,本题降幂排即从y的最高次幂排到最低次幂,关键是先分清各项,然后按降幂排列的定义解答.要注意,在排列多项式各项时,要保持其原有的符号.
【解答】
解:多项式3x3−2xy2+7
8y3+9x2y按某一字母的降幂排列为7
8
y3−2xy2+9x2y+3x3.
故选B.
3.答案:D
解析:
【分析】
本题考查了多项式的次数,多项式中次数最高的单项式的次数是多项式的次数,根据多项式次数定义即可判断.
【解答】
解:∵在这个多项式中,x m是m次,−2y n是n次,7m+n的指数虽然是m+n,
但底数7不是字母,所以7m+n只能算是数,次数为0.
∴m、n、0这三个数中较大的就是多项式的次数.
m、n是正整数,都比0大,
故多项式的次数就是m与n中较大的数.
故选D.
4.答案:D
解析:解:−2x+(x2−2x+4)
=−2x+x2−2x+4
=x2−4x+4.
故选D.
根据题意列出关系式−2x+(x2−2x+4),去括号合并即可得到结果.。