基于遥感的土壤含水量与陆面蒸散发耦合优化模拟研究
- 格式:pdf
- 大小:5.69 MB
- 文档页数:26
基于遥感土壤含水量和蒸散发信息的灌溉面积识别技术研究与应用基于遥感土壤含水量和蒸散发信息的灌溉面积识别技术研究与应用引言:灌溉面积是农业生产中的关键指标之一,准确识别灌溉面积对于合理配置农业资源、提高农业水利效益具有重要意义。
随着遥感技术的快速发展,进一步利用遥感影像来识别和监测灌溉面积已经成为热门研究领域。
本文基于遥感土壤含水量和蒸散发信息,探索了一种新的灌溉面积识别技术的研究与应用。
一、遥感数据的获取和处理1.1 遥感影像的获取本研究使用高分辨率多光谱遥感影像来获取农田的土壤信息和植被信息。
遥感影像可以通过卫星、航空器或无人机等载体获取,具有获取范围广、周期短、空间分辨率高等优势。
1.2 遥感数据的处理将获取到的遥感影像进行预处理,包括大气校正、几何校正等,以去除影响识别结果的干扰因素。
二、基于遥感土壤含水量信息的灌溉面积识别方法2.1 土壤含水量的遥感反演方法通过建立土壤含水量与遥感影像反射率的关系模型,实现非接触式获取土壤含水量信息。
常用的反演方法有基于传统统计方法的多光谱反演法、基于数据驱动的机器学习方法等。
2.2 灌溉面积的识别方法在获取到土壤含水量信息后,结合土壤湿度的空间分布特点,运用图像分割、像元分类等方法,识别出农田中的灌溉面积。
三、基于蒸散发信息的灌溉面积识别方法3.1 蒸散发的遥感估算方法蒸散发是指自然界中水分从植被与土壤表面蒸发和通过植物蒸腾进入大气的过程。
通过建立植被指数与蒸散发的关系模型,可间接估算蒸散发的强度。
3.2 灌溉面积的识别方法结合蒸散发信息和土壤类型等因素,采用阈值或多尺度分析等方法,识别出受灌溉影响的农田面积。
四、基于遥感土壤含水量和蒸散发信息的灌溉面积识别4.1 融合土壤含水量和蒸散发信息的方法将土壤含水量和蒸散发信息进行融合,建立灌溉面积与土壤含水量、蒸散发强度之间的关系模型。
通过遥感影像分析,将这些模型应用于农田遥感图像中,实现灌溉面积的识别。
4.2 实验与结果分析通过对不同地区农田遥感影像的分析,验证了本方法的可行性和精度。
综合各类遥感影像数据的地表蒸散发监测与估算方法遥感技术的发展为地表蒸散发监测与估算提供了更为便捷和准确的手段。
通过综合利用各类遥感影像数据,不仅可以监测蒸散发的时空分布,还可以进行蒸散发的估算和模拟。
本文将探讨综合各类遥感影像数据用于地表蒸散发监测与估算的方法。
一、遥感影像数据的分类及特点遥感影像数据常根据不同传感器的工作原理与波段范围进行分类。
光学遥感影像数据主要通过可见光、红外和短波红外波段捕捉地表信息,可以获取地表植被覆盖、土壤湿度等参数。
另外,热红外影像数据可以反映地表温度分布,而合成孔径雷达数据则可探测土壤含水量、地表粗糙度等。
各类遥感影像数据具有分辨率高、覆盖范围广、周期性强等特点,这使得其在地表蒸散发监测与估算中具有很大的应用潜力。
二、综合遥感影像数据的地表蒸散发监测方法1. 遥感监测植被蒸散发植被蒸散发是地表蒸散发的主要组成部分,并且与气候变化、水资源管理等密切相关。
通过多光谱遥感影像数据,可以获取植被的光谱响应,进而估算植被叶面积指数、叶面积等参数,从而实现植被蒸散发的监测。
2. 遥感监测土壤蒸发土壤蒸发是地表蒸散发的重要组成部分,尤其是在干旱地区。
利用遥感热红外影像数据可以反演地表温度,进而计算土壤蒸发通量。
此外,结合遥感合成孔径雷达数据,可以获取土壤含水量信息,进一步提高土壤蒸发的监测精度。
3. 综合监测蒸散发时空动态地表蒸散发具有显著的时空变化规律。
通过多时相遥感影像数据的监测,可以实现地表蒸散发时空变化的动态监测。
例如,利用陆地观测卫星上的微波辐射计可以获取地表蒸散发的时序变化,结合其它遥感数据,可以分析不同地区的蒸散发差异。
三、遥感影像数据的地表蒸散发估算方法1. 蒸散发模型利用遥感影像数据进行地表蒸散发估算的方法常基于物理模型。
常用的物理模型包括能量平衡模型和质量平衡模型。
能量平衡模型以表面能量平衡为基础,通过计算辐射能量、热通量、水分通量等参数来估算地表蒸散发。
质量平衡模型则以土壤水分为基础,结合土壤蒸发的动态变化规律,进行地表蒸散发的估算。
2024年1月灌溉排水学报第43卷第1期Jan.2024Journal of Irrigation and Drainage No.1Vol.4345文章编号:1672-3317(2024)01-0045-07光学和微波遥感数据联合反演植被覆盖表层土壤含水率周美玲1,张德宁2,王浩3,魏征4*,林人财4(1.江西省水投江河信息技术有限公司,南昌330029;2.德州市潘庄灌区运行维护中心,山东德州253000;3.中国电建集团昆明勘测设计研究院有限公司,昆明650051;4.中国水利水电科学研究院,北京100038)摘要:【目的】探究Vertical-Vertical (VV )、Vertical-Horizontal (VH )极化及双极化方式对微波遥感反演表层0~10cm 土壤含水率影响,分析不同数据源(Landsat-8,L8;Sentinel-2,S2)得到的归一化植被指数(NDVI )、归一化水体指数(NDWI )对表层土壤含水率遥感反演精度的影响。
【方法】基于VV 、VH 单一极化和双极化模式,结合S2和L8计算的NDVI 与NDWI 估算植被含水率(VWC ),消除植被对土壤的后向散射影响,得到土壤后向散射系数,基于水云模型反演北京市大兴区表层土壤含水率。
【结果】对于VV 极化,VV+S2NDWI 反演0~10cm 土层的土壤含水率精度最高(R 2=0.763,RMSE =1.55%);对于VH 极化,VH+S2NDVI 反演的0~10cm 土层的土壤含水率精度最高(R 2=0.622,RMSE =1.66%);对于双极化,Dual-Polarized (DP )+S2NDVI 反演的0~10cm 土层的土壤含水率精度最高(R 2=0.895,RMSE =0.89%)。
【结论】NDVI 更适用于去除水云模型中的植被影响,且双极化方式反演0~10cm 土层的土壤含水率精度较高。
关键词:含水率;Sentinel-1;双极化;多源遥感;NDVI ;NDWI 中图分类号:S161文献标志码:Adoi :10.13522/ki.ggps.2023312OSID :周美玲,张德宁,王浩,等.光学和微波遥感数据联合反演植被覆盖表层土壤含水率[J].灌溉排水学报,2024,43(1):45-51.ZHOU Meiling,ZHANG Dening,WANG Hao,et al.Inversion of surface soil moisture under vegetated areas based on optical and microwave remote sensing data[J].Journal of Irrigation and Drainage,2024,43(1):45-51.0引言【研究意义】表层土壤含水率在能量平衡、气候变化和陆地水循环中扮演着重要角色,是作物生长发育、产量估算、水资源管理、气候变化等研究领域的关键指标[1]。
农作物生长离不开土壤水分,它是作物生存的重要物质基础之一。
土壤水分在地球上水循环运动中充当着十分重要的角色,也是水文、气象和农业相关研究中重要数据之一[1]。
当面对大面积区域的土壤水分测量时,传统测量方法会耗费大量人力、物力及时间。
因此,对土壤水分含量准确和高效的监测是农业水管理及农作物旱情预测的一个重要内容。
同时,在针对干旱区流域水文模型、农作物生长监测等方面问题也能起到一定作用。
利用微波遥感影像中提取数据监测土壤水分的技术到今天已经发展了40余年[2],由于微波估测土壤水分涉及地表粗糙度、植被覆盖度和土壤质地等多个方面的参数[3],而获取这些参数往往会受到一定的限制,如何充分利用微波数据源的各种辅助信息(如频率、极化方式等),降低对实地测量数据的依赖性,快速、便捷地获取大范围区域土壤水分分布情况是一直以来的研究热点。
搭载合成孔径雷达的主动微波遥感具有全天不间断工作、覆盖率高和信号穿透能力强的重要优势,使其成为土壤水分含量监测的有效手段之一,并且在各种土壤水分监测研究中应用十分广泛。
目前国外和国内已有许多学者对其进行研究并且建立了相应的经验模型和半经验模型[4-5]。
由于微波遥感的不同极化方式,在植被覆盖程度较高的区域会使得信号在穿透植被层的过程中衰减,导致土壤水分含量估测精度下降[6]。
地表植被层的覆盖程度差异及植被种类不同使得这些估测模型的精度不一,导致土壤水分信息的获取也变得复杂。
因此,选择一个穿透性强的极化方式,对消除植被覆盖对土壤水分监测的影响十分重要。
本文研究如何从地表雷达总的后向散射中分离出植被散射和吸收的贡献,对不同极化方式下植被微波散射机制进行分析,从雷达总的后向散射中分离植被层的贡献,进而去除植被影响,估测具有植被覆盖地收稿日期:2021-08-27作者简介:刘钇廷(1996—),男,北京昌平人,塔里木大学信息工程学院农业工程与信息技术专业2020级在读硕士研究生,主要从事农业遥感监测研究。
第39卷第13期2019年7月生态学报ACTAECOLOGICASINICAVol.39,No.13Jul.,2019基金项目:国家重点研发计划项目(2017YFA0604701);中国博士后科学基金项目(2018T110066,2017M620029);中央高校基本科研业务费专项收稿日期:2018⁃04⁃26;㊀㊀网络出版日期:2019⁃04⁃17∗通讯作者Correspondingauthor.E⁃mail:shuaiwang@bnu.edu.cnDOI:10.5846/stxb201804260949潘宁,王帅,刘焱序,赵文武,傅伯杰.土壤水分遥感反演研究进展.生态学报,2019,39(13):4615⁃4626.PanN,WangS,LiuYX,ZhaoWW,FuBJ.Advancesinsoilmoistureretrievalfromremotesensing.ActaEcologicaSinica,2019,39(13):4615⁃4626.土壤水分遥感反演研究进展潘㊀宁1,王㊀帅1,∗,刘焱序1,赵文武1,傅伯杰1,21北京师范大学地理科学学部,地表过程与资源生态国家重点实验室,北京㊀1008752中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京㊀100085摘要:土壤水分精确反演对于理解和解决农业生产㊁生态规划以及水资源管理中的科学与实际问题至关重要㊂目前,大量的反演算法被广泛用于土壤水分估算,全球土壤水分遥感反演产品不断发布,反演算法与产品数据集的应用前景亟待系统梳理㊂基于不同谱段遥感探测技术中的土壤水分反演方法存在各自的特点㊁优势和局限性㊂除反演方法研究外,土壤水分遥感反演研究热点可被归纳为遥感土壤水分产品评估㊁在相关领域的应用㊁数据同化3个方面㊂大量研究表明土壤水分遥感反演产品在生态㊁水文㊁干旱等研究中表现出巨大的潜力,且在部分研究中已经得到应用㊂但目前土壤水分的遥感观测与应用需求仍存在一定的差距,因此最后对土壤水分遥感反演在探测的精度和准确度两个方面及其解决方案进行了总结与展望㊂关键词:土壤水分;反演方法;遥感产品;数据应用;数据同化AdvancesinsoilmoistureretrievalfromremotesensingPANNing1,WANGShuai1,∗,LIUYanxu1,ZHAOWenwu1,FUBojie1,21StateKeyLaboratoryofEarthSurfaceProcessesandResourceEcology,FacultyofGeographicalScience,BeijingNormalUniversity,Beijing100875,China2StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco⁃EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,ChinaAbstract:Accuratesoilmoistureretrievalisveryimportantforunderstandingandsolvingscientificandpracticalproblemsinagriculturalproduction,ecologicalplanning,andwaterresourcesmanagement.Atpresent,alargenumberofinversionalgorithmsarewidelyusedinsoilmoistureestimation,andglobalsoilmoistureremotesensinginversionproductsareconstantlypublished,butinversionalgorithmsandtheapplicationprospectsofproductdatasetsneedtobesystematicallycombed.Soilmoistureretrievalmethodsbasedonremotesensingtechnologyindifferentspectralrangeshavetheirowncharacteristics,advantages,andlimitations.Inadditiontoinversionmethods,theresearchhotspotsofremotesensinginversionofsoilmoisturecanbesummarizedintothreeaspects:evaluationofremotesensingsoilmoistureproducts,applicationinrelatedfields,anddataassimilation.Alargenumberofstudiesshowthatremotesensinginversionproductsforsoilmoisturehaveshowngreatpotentialinecological,hydrological,drought,andotherresearch,andhavebeenappliedinsomeresearch.However,thereisstillagapbetweentheremotesensingobservationsandapplicationinsoilmoisture.Thus,thispaperfinallysummarizesandforecaststheprecisionandaccuracyofSoilMoistureRemoteSensingInversionanditssolutions.KeyWords:soilmoisture;inversionmethod;remotesensinginversedproducts;dataapplication;dataassimilation土壤水分作为重要的陆地表层系统要素,是生态㊁环境㊁农业等领域研究中不可忽视的指标㊂对比传统的6164㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀土壤水分测量方法如烘干法㊁时域反射法等局地土壤水分测量途径[1],遥感技术提供了一种周期性㊁可全球覆盖的㊁多时相的对地观测手段[2⁃5],为土壤水分研究带来了新的技术支撑㊂在目前遥感技术和土壤水分研究的衔接中,数据㊁方法与应用三者之间的级联特征尚缺乏梳理,容易致使数据误用,从而增加了遥感土壤水分产品在使用中的不确定性㊂基于此,本文拟依托数据㊁方法与应用的逻辑主线(图1),首先对土壤水分研究中所涉及到的遥感数据及对应方法的特点与不足进行梳理,为遥感技术在土壤水分研究中的应用提供更清晰的技术背景;随后对土壤水分数据产品的近今研究应用进行归纳总结,提出目前的研究热点及方向;最终就遥㊂感土壤水分的研究前景做出三点展望图1㊀遥感技术在土壤水分中的研究框架Fig.1㊀Researchframeworkofremotesensingtechnologyinsoilmoisture1㊀土壤水分遥感定量反演基础1.1㊀光学遥感反演方法广义的光学遥感包括可见光⁃近红外⁃热红外三部分的波段范围㊂目前在可见光⁃近红外波段,常用的方法是利用Landsat或MODIS等多光谱数据构建相应的干旱指数或植被指数来反映土壤含水量[6⁃8]㊂在热红外波段,通过地表温度[9]或热惯量[10]实现土壤水分的反演㊂其中地表温度常常与植被指数相结合,通过不同土壤水分条件下所观测到的卫星影像像元值在温度⁃植被指数特征空间的分布规律来估算土壤水分[11⁃14]㊂热惯量与土壤水分之间存在一定的理论基础,可以根据能量平衡方程来估算土壤水分,但由于物理模型较复杂,常常利用回归函数模型进行反演㊂在经验方程基础上,相关研究还在模型中对地形㊁土壤质地㊁风速等影响热惯量的因素进行了修正㊂例Dong等[15]通过表层土壤温度估算了土壤热和水力参数,并用来促进土壤水分估算的精度和鲁棒性㊂对比之下,可见光⁃近红外波段可以反映地表植被生长状况,热红外波段的光谱特性可以通过能量平衡与土壤水分建立理论模型㊂因此在近几年光学遥感反演土壤水分的研究中,可见光⁃近红外波段数据常常与热红外波段数据进行融合分析㊂除上述温度⁃植被指数空间外,另一种常用的融合方法是蒸散与作物缺水指数法㊂例如虞文丹等[16]在作物缺水指数构建模型中引入双层蒸散发模型,估算了表层20cm土壤的相对含水量㊂此外还有多种融合方式,如除多等[17]将生长季植被供水指数与热红外波段相结合实现西藏高原地区的土壤水分遥感监测;于君明等[18]通过角度指数来修正MODIS数据近红外与两个热红外光谱之间的关系,提高了土壤水分监测的精度㊂此外,高光谱遥感技术也以其丰富的光谱信息广泛应用于土壤水分的反演中[19],例如Sadeghi等[20]在波段选择的基础上提出了一种基于可见光⁃近红外波段估算土壤水分的线性物理模型㊂土壤反射光谱曲线中的水分吸收带主要体现在近红外的1400nm㊁1900nm和2200nm左右,最佳波段选择㊁光谱特征增强(如微分光谱㊁差分等)是剔除数据冗余㊁提高反演精度的常用方法㊂利用高光谱技术反演土壤水分可以分为两种类型,一种是采用土壤采样的方法,分别获取土壤含水量和土壤反射光谱,通过经验模型建立土壤水分与光谱反射之间的关系,同时还可以用来分析土壤含水量与有机质㊁氮磷元素等含量的影响,此类实验研究较多[21⁃22];另一种是利用高光谱影像实现土壤水分的分布制图㊂由于高光谱数据含有丰富的光谱信息,混合光谱分解是目前高光谱研究中的热点和难点,也引入到了土壤水分反演的研究中,例如蔡亮红和丁建丽[23]利用小波变换对土壤光谱进行8层分解,分别对分解后特征光谱进行9种数学运算建立与土壤水分的回归模型,为反射率法反演土壤水分提供了新思路㊂1.2㊀微波遥感反演方法对比光学遥感,微波遥感波长较长,具有一定的穿透能力,不受云层㊁大气的影响,在对地观测研究中发挥着巨大的作用,近年来发射的对地观测卫星也均以微波传感器为主,如SMOS㊁SMAP等㊂微波遥感反演土壤水分受植被和粗糙度[24⁃25]影响较大,在光滑的裸土区域精度最佳,并随着土壤粗糙度和植被生物量的增加而降低,因此通常分裸露地表[26]和植被覆盖地表进行反演分析㊂微波遥感反演地表土壤水分具有一定的理论基础[27⁃28]㊂理论模型不依赖于站点条件和传感器特性[29],在裸露地表或稀疏植被区建立的主动微波物理模型有几何光学模型㊁物理光学模型㊁小扰动模型以及积分方程模型AIEM等㊂前3个模型均有一定的粗糙度适用范围,而AIEM模型的粗糙度适用范围相对较宽㊂然而由于对表面粗糙度的敏感性及其参数测量困难,AIEM模型在实际应用中结果并不理想,过去的几年中出现了IEM改进模型和许多解算方案,如神经网络㊁遗传算法等㊂主动微波经验模型假设粗糙度不变的情况下,后向散射系数和土壤水分之间有一个近似的线性关系[30]㊂然而经验模型的参数设置一般只对特定的数据集和实验条件(如观测频率㊁入射角和表面粗糙度等)有效,该模型的建立需要大量实验基础,实现成本较高且鲁棒性较差㊂半经验模型是经验模型和理论模型的一个折中[31⁃32],利用模拟或实测数据集来简化后向散射的理论模型,建立在一定的统计规律上,又在一定程度上反映了散射机制,能够获得较好的精度,如常用的Oh模型[33]和Dubois模型[34]㊂随后,一些研究将两种常用模型耦合,提出了一种融合模型,即半经验耦合(SEC)模型㊂SEC模型在同向极化和交叉极化中均耦合了两种模型的最佳性能,并且不需要使用实测的粗糙度数据㊂与主动微波类似,被动微波反演土壤水分的方法也分为理论模型和经验模型,但相对而言受干扰因素更多㊂因此土壤粗糙度㊁土壤纹理信息等相关参数被引入土壤水分反演模型中,如Hong和Shin[28]针对被动微波遥感提出了一种基于粗糙表面极化率特性反演土壤水分的算法㊂而在植被覆盖区,则需要引入植被指数或水云模型等来消除植被的影响㊂1.3㊀反演方法研究现状针对不同遥感数据类型的土壤水分反演方法各具特点和优势(表1)㊂其中光学遥感具有较高的空间分辨率,可以准确反映植被信息,技术相对成熟㊁可用卫星数据源多且可以获取高光谱分辨率数据;然而其时间分辨率差,受大气影响严重,多局限于区域研究,且大部分反演方法仅能反映土壤的相对湿度㊂微波遥感具有一定的穿透能力,不受云雾干扰,可以全天候观测,有相对完善的理论基础,更适合土壤水分的估算,但空间分辨率低,且受植被和地表粗糙度的影响㊂目前公开发表的一系列全球尺度的遥感土壤水分产品均建立在微波探测数据基础上㊂目前,土壤水分的遥感反演方法的研究方向可以分为4种主要类型㊂第一种是多源数据协同反演㊂除了上述光学遥感内部融合方法以外,主被动微波遥感数据相结合也是一种常用的数据融合方式[35⁃36]㊂如Kolassa等[37]的研究表明AMSR⁃E的亮度温度数据和ASCAT后向散射数据间的协同作用能够有效的提高土壤水分估算数据质量㊂Lievens等[38]将雷达的后向散射系数(ASCAT数据)与辐射计的亮度温度(SMOS数据)相结合,从而促进土壤水分和陆地蒸发等水文要素的估算㊂而在植被覆盖区,采用微波与光学遥感相结7164㊀13期㊀㊀㊀潘宁㊀等:土壤水分遥感反演研究进展㊀合的方式来消除植被对土壤水分反演的影响[39⁃40]㊂第二种是引入新的计算方法,如神经网络㊁遗传算法等,Santi等[41]和余凡等[42]分别用人工神经网络和遗传BP神经网络实现了土壤水分的主被动遥感协同反演;随后,支持向量机等机器学习方法[43⁃44]在遥感中的应用成了新的热点;此外,更多的统计方法被引入到土壤水分反演的经验模型中,如贾继堂等[22]基于多元统计分析建立了高光谱数据的土壤含水量反演模型㊂第三种是改进现有模型㊂由于土壤水分的遥感反演受多种因素的影响,如植被覆盖㊁地表粗糙度㊁土壤类型㊁地形等,理论模型过于复杂,从而在解算简化模型时会根据具体研究区域进行相应改进,从而提高反土壤水分反演的精度[45⁃48]㊂第四种是针对新对地观测传感器所获取数据的反演算法[49⁃52]㊂随着对地观测技术的发展,传感器的波段以及相应的数据获取方式也逐渐进步㊂因此利用此类数据反演土壤水分时,需要根据新的数据特征提出新的反演方法,如针对近两年发射的SMOS和SMAP卫星数据提出的一系列反演方法㊂表1㊀不同遥感探测类型对比表Table1㊀Comparisonofdifferentremotesensingtypes光谱范围Spectralrange观测属性Observationalattributes优势Advantages局限性Limitations可见光⁃近红外Visiblelight⁃nearinfrared土壤反射率空间分辨率高幅宽大表层穿透力差噪声源多限日间工作热红外Thermalinfrared地表温度空间分辨率高幅宽大物理意义明确表层穿透力差噪声源多受大气状况㊁植被干扰强被动微波Passivemicrowave亮温介电特性大气干扰小穿透力强物理意义明确空间分辨率小受地表粗糙度㊁植被影响大主动微波Activemicrowave后向散射系数介电特性大气干扰小穿透力强物理意义明确空间分辨率小受地表粗糙度㊁植被影响大土壤水分存在一定的区域性,大部分学者会针对特定的地表类型或区域特征进行土壤水分的反演研究[53⁃61]㊂例如武晋雯等[62]针对不同植被条件下的土壤水分监测方法进行了比较;刘焕军等[63]则针对性研究了黑土的土壤水分的高光谱模型㊂此外还有针对干旱区㊁矿区㊁湿地等地表类型的土壤水分反演研究㊂这些土壤水分的反演方法在区域研究中表现良好并不意味着具有普适性,虽然理论基础相同,但在实际应用中表现各异,因此土壤水分的遥感反演方法始终是研究热点㊂2㊀主要研究热点2.1㊀遥感土壤水分产品评估对地观测卫星数量增加,微波探测器从C波段以发展到了L波段,为土壤水分观测增加了新的数据产品㊂如表2所示,目前发布全球遥感土壤水分数据的对地观测计划有ASCAT[64]㊁AMSR⁃E/2[65]㊁SMOS[66]㊁SMAP[67]和我国的FY⁃3共5个,其中SMOS和SMAP是利用L波段进行地表探测的卫星计划㊂除此之外,2012年,作为气候变化公约(ClimateChangeInitiative,CCI)项目的一部分,欧洲航空局(EuropeanSpaceAgency,ESA)发布了首套数十年全球卫星观测土壤水分数据集,并已在气候变化㊁水文㊁生态等研究中得以应用[68]㊂一系列全球尺度土壤水分数据集的发布,数据集在全球各地以及不同尺度的验证和对比分析成为了近几年的研究热点[69⁃85]㊂首先就时间尺度而言,由于卫星发射时间的不同,各数据集的时间序列参差不齐,其中ESACCI数据集将相关微波数据进行融合获得了最长时间系列的土壤水分数据;其次由于传感器的探测波段不同,数据反演方法均有很强的针对性,空间分辨率也存在很大差异,具体见表2㊂验证数据包括实测数据和模型模拟数据两种检验类型,整体而言,各数据集均能满足应用需求,但普遍在地势平坦㊁地表裸露或草原区域数据精度较8164㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀高,且不同数据集的表现在不同区域存在很大的差异性㊂例如庄媛等[86]的研究表明2012年的ASCAT㊁WINDSAT㊁FY3B㊁SMOS共4种微波遥感土壤湿度产品在我国西北地区相对较好;而沈润平等[87]的研究表明ESACCI土壤湿度产品在我国东北地区精度最佳㊂此外,各数据集的空间相关性和时间敏感度也存在差异,如Polcher等[88]的研究表明,在伊比利亚半岛地区,SMOS数据空间相关性较差;Yee等[89]在澳大利亚的马兰比季河流域比较了SMOS和AMSR⁃2数据的精度,指出若综合考虑绝对精度和时间精度,推荐最新版本的JAXA数据产品(JX2);若只考虑时间精度,夜间观测获得的LP3X产品和早晨观测获得的SMOS2产品更佳㊂正是数据集之间存在很大的差异且区域表现的不确定性使得大量的研究聚集在数据的检验和对比㊂表2㊀全球遥感土壤水分产品对比Table2㊀ComparisonofglobalremotesensingsoilmoistureproductsASCATAMSR⁃E/2SMOSSMAPFY⁃3ESACCI设备类型EquipmenttypeC波段(5.255GHz)主动微波6.93 8.9GHz被动微波L波段(1.4GHz)被动微波L波段(1.2 1.4GHz)主被动微波微波成像仪多源数据空间分辨率Spatialresolution12.5km,25kmLevel2:25kmLevel3:12km15 2170km35km3 40km50ˑ85/25km 25km时间分辨率Temporalresolution3d2次/d1 3dLevel3:1d/3d/10d/月3d2次/d10d/月1d时间序列Timeseries2007至今2002 20102013至今2010至今2015至今2011至今1979至今反演精度Inversionaccuracy0.03 0.07m3/m3ȡ0.04m3/m3ȡ0.04m3/m3ȡ0.04m3/m30.05m3/m30.04m3/m3㊀㊀ASCAT,高级散射计,theAdvancedScatterometer;AMSR⁃E/2,高级微波扫描辐射计,theAdvancedMicrowaveScanningRadiometer⁃E/2;SMOS,土壤水分和海洋盐度卫星,theSoilMoistureandOceanSalinity;SMAP,土壤湿度主动/被动探测,SoilMoistureActive/Passive;FY⁃3,风云3号,Fengyun⁃3;ESACCI,欧洲航空局气候变化公约,EuropeanSpaceAgencyClimateChangeInitiative2.2㊀在相关领域的应用土壤水分作为地表要素之一,在气候变化㊁陆气交互㊁全球生态㊁水文和地表模型以及干旱等研究中均起着不可或缺的作用㊂首先,在气候变化研究中,遥感土壤水分数周期性㊁时间序列长㊁空间范围广的优势有利于分析变化的空间分布和时间动态趋势[90⁃91]㊂Feng[92]的研究表明,在全球尺度上,气候变化是土壤水分长时间变化的最主要驱动因素㊂因此土壤水分的变化在某种程度上反应了气候变化㊂Seneviratne等[93]综合阐述了土壤水分在土地能源和水平衡中的作用,并详细分析了土壤水分与气候间的交互作用对温度和降水的影响以及在气候变化背景下的含义㊂在陆气交互研究中,土壤水分可以影响边界层的温湿变化㊂由于目前大部分关于土壤水分⁃蒸散发或土壤水分⁃温度耦合的研究都基于模型模拟结果或基于降水的干旱指数,而遥感可以提供长期的土壤水分观测估算数据,在研究蒸散发动态和大气反馈的同时还可以进行模型诊断[94⁃96]㊂Klingmuller等[97]将气溶胶光学厚度的正向趋势与ESACCI土壤水分数据的反向趋势相连接,建立了更直接的土壤水分⁃大气反馈模型㊂他们的结果表明,在过去的10年中,温度的升高和相对湿度的下降促进了土壤的干燥,导致了更多的粉尘排放和AOD㊂在全球生物化学循环和生态系统中,土壤水分是植物物候学㊁光合作用㊁生物量分配以及土壤中碳的积累和分解等陆地生态系统过程的调节剂[98⁃99]㊂许多研究利用遥感土壤水分数据评估水分可用性和干旱对植物物候和生产力的影响[100⁃103]㊂除此以外,也有部分学者关注于植被生长对土壤水分的影响㊂例如Feng等[104]分析了2002 2011年间的AMSR⁃E土壤水分数据,表明黄土高原退耕还林还草使土壤水分含量有所下降㊂此外,Periasamy等[105]还对土壤水分压力和盐分进行估算用于土地退化评价㊂在水文和陆表模型中,土壤水分联结了径流㊁洪水㊁蒸发㊁渗透和地下水补给等过程㊂遥感反演土壤水分9164㊀13期㊀㊀㊀潘宁㊀等:土壤水分遥感反演研究进展㊀0264㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀数据在陆表模型和大尺度水文模型中的潜力已广泛得到认可[106]㊂Zhuo等[72]以美国的某一流域为研究区,评估了SMOS升降两种观测所得土壤水分数据及其在水文气象模型中应用的可行性㊂首先遥感土壤水分数据可以用来洪水和径流预测,例Wanders等[107]的研究表明了多源遥感土壤水分数据在径流预测中的促进作用㊂其次,遥感土壤水分数据还可以用来促进水文循环中不同要素的定量化,如蒸散发[108⁃109]㊁地下水含量[110]以及降雨等㊂在干旱研究中,土壤水分的遥感数据可以直接用来监测农业干旱或者用来建立干旱指标[111⁃114]㊂例如Rahmani等[91]利用SMOSL3㊁ESACCI和两种再分析土壤水分数据分析了伊朗6个子区域的土壤水分变化趋势,并通过计算标准土壤水分指数(StandardizedSoilMoistureIndex,SSI)来检测农业干旱事件的时间和规模㊂Mishra等[115]利用SMAP土壤水分数据构建了一个土壤水赤字指数作为农业干旱指标㊂2.3㊀数据同化在上述遥感土壤水分的应用研究中需要与降水㊁植被㊁蒸散发等数据共同计算,并涉及到许多的陆表过程㊁水文以及陆气交互模型㊂根据需求则需要将不同的数据类型或将遥感土壤水分数据引入到相应模型中,即同化㊂一方面,现有的遥感土壤水分数据产品存在精度不稳定㊁时间序列不连续㊁空间分辨率不匹配等缺陷,部分学者将不同的数据源进行同化,以满足研究需求㊂Liu等[36]针对各数据集间数据质量不同等问题,提出了一种数据融合方法,将若干被动和主动微波获取的数据集融合为一个具有长时间序列的数据集㊂Kolassa等[37]提出了一种利用回归方程生成长时间序列数据集的方法,将SMOS表层土壤水分作为回归方程的参考值,应用到AMSR⁃E的亮度温度数据,从而使得AMSR⁃E反演得出的表层土壤水分产品与SMOS产品达成一致㊂Crow等[50]在美国的16个流域对多个L波段微波遥感所得土壤水分数据与地表数据进行同化分析,提高了土壤水分信息的质量,并将土壤水分结果成功应用于水文预测㊂另一方面,遥感数据反演所得均为表层土壤水分数据,有学者利用数据同化获得根区土壤水分㊂如Das等[116]将机载遥感反演的表层土壤水分同化进入土壤⁃水⁃大气⁃植物(SWAP)模型中,估算了核桃谷流域根区土壤水分㊂Baldwin等[117]提出了一种集合卡尔曼滤波(ensembleKalmanfilter,EnKF)水文数据同化系统来预测卫星土壤水分数据中的偏差,并结合土壤水分解析关系(SoilMoistureAnalyticalRelationship,SMAR)渗透模型,利用卫星观测的表层土壤水分实现根区土壤水分的预测㊂也有部分学者反其道而行之,如Coopersmith等[44]由于实测传感技术和现有土壤水分观测网站无法提供实测表层土壤水分数据,从而通过机器学习方法,利用10cm探测数据以及当前降水数据估算表层5cm的土壤水分,可以用来验证和分析遥感土壤水分估算结果㊂此外,由于数据或数据集之间的空间分辨率存在差异,在数据融合和同化的过程中涉及到一些数据降尺度或升尺度算法㊂降尺度算法可以数据的空间分辨率提高;而升尺度算法将数据的空间分辨率降低㊂如王璐等[118]基于克里格法实现了土壤水分遥感数据的空间尺度转换㊂Fang和Lakshmi[119]在流域尺度,提出了一种利用高空间分辨率的地表温度和植被指数对被动微波反演所得土壤水分降尺度的算法,以提高土壤水分数据的空间分辨率㊂对于该部分研究内容,周壮等[119]和Qin等[120]已分别对降尺度和升尺度算法进行了详细综述分析㊂3㊀研究展望土壤水分作为四大圈层水分大循环中的重要组成部分,是对地观测中不可忽视的要素㊂遥感反演土壤水分的研究减少了野外采样获取土壤水分的人力劳动,且有着观测范围广㊁周期性㊁长时间序列的优势㊂随着遥感技术的发展,对地观测所用的波段范围越来越广泛;土壤水分遥感反演方法愈加的多元化且更为成熟和完善;同时越来越多的对地观测计划提供了全球土壤水分数据集,并在气候㊁生态干旱等研究中得以应用㊂然而遥感土壤水分观测与地球系统的研究需求之间仍然存在一些差距㊂首先,受遥感探测数据源的限制,获取的均为土壤表层数据㊂其次,土壤水分的反演方法表现出局限性,使得反演结果的精度有待提高㊂同时,由于遥感反演结果的不确定性,遥感土壤水分产品在生态㊁水文等领域的应用受到很大限制㊂因此,为满足科研需求,遥感土壤水分观测需要从精度和准确度两个方面进行提高㊂3.1㊀增加探测深度就深度而言,由于遥感探测器接收的地表辐射穿透能力有限,仅与表层土壤水分的相关性较强,最深仅可估算30cm厚度的土壤水分㊂而在生态㊁水文等研究中,土壤水分的入渗以及部分植物的根系生长深度远超30cm,使得遥感土壤水分反演数据与径流㊁植物生长等要素的联系并不紧密,因此在相关应用中表现出局限性㊂为了解决这一问题,需要建立遥感数据或反演所得表层土壤水分与深层土壤水分的关系㊂在这一过程中,可以引入土壤热学和水力学性质,分析土壤水分在土壤剖面的分配规律,从而实现深层土壤水分的遥感估算,例如Das等[116]和Baldwin等[117]根区土壤水分的遥感预测的研究㊂如果将深层土壤水分的遥感估算进行全球推广,将对全球生态和水文研究具有重大意义㊂3.2㊀提高探测准确度准确度包含两个方面的含义,一是探测的精度,尽可能的减小估值和真值之间的误差;二是在空间和时间上的准确性㊂就精度而言,虽然在区域尺度上,一些反演结果的精度可以满足研究的需求,但全球尺度上的空间异质性使得遥感反演土壤水分产品在不同区域的精度参差不齐㊂例如,Wu等[71]指出AMSR2土壤水分数据普遍比实际土壤水分数据低,在大平原与实测数据的匹配度高,而在森林区匹配度差㊂因此,提高土壤水分的遥感反演精度以及空间一致性将增加反演结果的实用性㊂就空间尺度而言,增加空间分辨率将能够为更多的区域性应用研究提供服务㊂目前公布的土壤水分产品均建立微波遥感数据基础上,空间分辨率相对较为粗糙,无法进行区域的精细研究,且与实测数据或模型模拟数据结合时存在尺度不一致的问题㊂在时间维度上,全球遥感土壤水分产品受不同对地观测计划的时间限制,时间序列不连续㊂解决这一系列问题的最有效方法就是数据融合,集合多源数据的优势,且目前有些学者已经涉及到相关的解决方案㊂虽然遥感反演土壤水分的研究中仍面临一些问题,短时间内上述提到的遥感土壤水分产品的不确定性难以从根本上得到解决,然而数据融合和协同方法可以对这一现状进行改善,为遥感土壤水分数据的应用提供了更多可能㊂但与其他土壤水分监测方法相比,遥感反演方法除了可以减少人力投入以外,所获土壤水分数据也有着不可比拟的优势㊂遥感反演土壤水分数据是大范围㊁面状㊁周期性的电子数据,可操作性强,更有利于分析土壤水分的异质性以及与其他生态㊁水文㊁气象等因子的相互关系㊂参考文献(References):[1]㊀Lekshmi,SUS,SinghDN,BaghiniMS.Acriticalreviewofsoilmoisturemeasurement.Measurement,2014,54:92⁃105.[2]㊀杨涛,宫辉力,李小娟,赵文吉,孟丹.土壤水分遥感监测研究进展.生态学报,2010,30(22):6264⁃6277.[3]㊀陈书林,刘元波,温作民.卫星遥感反演土壤水分研究综述.地球科学进展,2012,27(11):1192⁃1203.[4]㊀PetropoulosGP,IrelandG,BarrettB.Surfacesoilmoistureretrievalsfromremotesensing:currentstatus,products&futuretrends.PhysicsandChemistryoftheEarth,PartsA/B/C,2015,83⁃84:36⁃56.[5]㊀徐沛,张超.土壤水分遥感反演研究进展.林业资源管理,2015,(4):151⁃156,160.[6]㊀WangLL,QuJJ.NMDI:anormalizedmulti-banddroughtindexformonitoringsoilandvegetationmoisturewithsatelliteremotesensing.GeophysicalResearchLetters,2007,34(20):117⁃131.[7]㊀GhulamA,QinQM,ZhanZM.Designingoftheperpendiculardroughtindex.EnvironmentalGeology,2007,52(6):1045⁃1052.[8]㊀GhulamA,QinQM,TeyipT,LiZL.Modifiedperpendiculardroughtindex(MPDI):areal-timedroughtmonitoringmethod.ISPRSJournalofPhotogrammetryandRemoteSensing,2007,62(2):150⁃164.[9]㊀喻素芳,范文义,秦武明,吴英,陆道调.地表温度估测土壤含水量.广西大学学报:自然科学版,2007,32(S1):110⁃112.[10]㊀张霄羽,毕于运,李召良.遥感估算热惯量研究的回顾与展望.地理科学进展,2008,27(3):166⁃172.[11]㊀柳钦火,辛景峰,辛晓洲,田国良,杨贵军.基于地表温度和植被指数的农业干旱遥感监测方法.科技导报,2007,25(6):12⁃18.[12]㊀田苗,王鹏新,孙威.基于地表温度与植被指数特征空间反演地表参数的研究进展.地球科学进展,2010,25(7):698⁃705.[13]㊀林巧,王鹏新,张树誉,李俐,景毅刚,刘峻明.不同时间尺度条件植被温度指数干旱监测方法的适用性分析.干旱区研究,2016,33(1):186⁃192.[14]㊀沙莎,郭铌,李耀辉,胡蝶,王丽娟.温度植被干旱指数(TVDI)在陇东土壤水分监测中的适用性.中国沙漠,2017,37(1):132⁃139.1264㊀13期㊀㊀㊀潘宁㊀等:土壤水分遥感反演研究进展㊀。
土壤水分运移模拟研究进展【摘要】本文主要探讨了土壤水分运移模拟研究的重要性、背景和研究意义。
首先介绍了土壤水分运移模拟模型的发展历程,从而揭示了数值模拟方法在土壤水分运移研究中的重要应用。
然后重点分析了不同地区土壤水分运移差异的模拟研究以及气候变化对土壤水分运移的影响。
最后探讨了土壤水分运移模拟研究在农业生产中的应用,指出了未来发展方向和与实地观测结合的研究方法。
结论部分强调了土壤水分运移模拟研究对可持续发展的重要性,为推动农业生产效率和生态环境的保护提供了科学支持。
通过本文的研究,将有助于深入了解土壤水分运移机理,并为未来的研究和实践提供有益启示。
【关键词】土壤水分运移模拟研究, 土壤水分, 模型, 数值模拟, 地区差异, 气候变化, 农业生产, 可持续发展, 发展方向, 实地观测, 研究方法, 研究意义1. 引言1.1 土壤水分运移模拟研究进展的重要性土壤水分运移模拟研究是农田水管理和土壤保护的重要领域,在农业生产和生态环境保护中具有重要意义。
随着气候变化和人类活动的影响,土壤水分运移状况对农作物生长和土壤水分利用效率产生直接影响。
通过模拟研究土壤水分运移过程,可以更准确地了解土壤水分变化规律,为合理施肥、灌溉和田间水分管理提供科学依据。
土壤水分运移模拟研究还可以帮助预测土壤水分时空分布情况,为制定有效的土壤保护政策和水资源管理措施提供支持。
通过模拟分析不同气象条件下土壤水分运移的变化规律,可以更好地应对极端气候事件的发生,保障农作物生长和生态系统健康。
土壤水分运移模拟研究是建立可持续农业生产和生态环境保护的基础,具有重要的现实意义和应用价值。
通过深入研究土壤水分运移过程,可以为提高农业生产效率、降低灌溉水耗、改善土壤质量和推动农业可持续发展提供重要科学依据。
1.2 土壤水分运移模拟研究的背景土壤水分运移模拟研究的背景可以追溯到20世纪初,随着计算机技术和数值模拟方法的不断发展,人们开始尝试使用数学模型来描述和预测土壤中水分的运移过程。
SWAT模型研究进展SWAT模型(Soil and Water Assessment Tool)是一种用于流域水文模拟和水资源管理的集成模型。
它综合考虑了土壤水分平衡、表面径流、地下径流、蒸散发等关键过程,可用于分析流域内的水文过程、土壤侵蚀、水质等问题。
近年来,SWAT模型在流域尺度水文模拟和水资源管理方面取得了很大的研究进展。
本文将对SWAT模型的研究进展进行综述。
关于SWAT模型的改进和优化方面,研究人员进行了大量的努力。
针对模型在土壤侵蚀方面的不足,研究者提出了改进模型中土壤侵蚀算法的方法,同时改进了对坡面过程的描述,提高了模型对土壤侵蚀的模拟能力。
模型在蒸散发过程的模拟方面也进行了不少研究。
研究者通过改进模型中蒸散发算法,提高了模型对蒸散发过程的模拟精度。
针对模型在水质模拟方面的不足,研究者还改进了对水质污染的描述,提高了对水质过程的模拟能力。
SWAT模型在应用方面得到了广泛的应用。
研究者将SWAT模型应用于不同流域的水文模拟、水资源管理等研究中。
通过模拟分析和实验验证,SWAT模型被证明在流域水文过程、土壤侵蚀、水质模拟等方面具有较高的模拟精度。
研究者还将SWAT模型与其他模型进行比较和集成,以提高模型的模拟能力。
SWAT模型在不同研究领域的应用也得到了关注。
在气候变化研究领域,研究者将SWAT 模型与气候模型相结合,用于模拟未来流域水文过程的变化。
在水资源管理领域,研究者利用SWAT模型评估流域的水资源利用状况,制定合理的水资源管理策略。
在生态系统保护和恢复领域,研究者利用SWAT模型模拟分析生态系统的水文过程和水质变化,为生态系统的管理和保护提供科学依据。
SWAT模型在可持续发展研究方面的应用也备受关注。
研究者利用SWAT模型评估流域的水资源可持续利用能力,制定合理的水资源规划和管理策略。
SWAT模型也可用于评估不同的土地利用和管理措施对流域水资源的影响,为土地利用规划和管理提供科学依据。
基于改进水云模型的土壤水分反演研究1. 引言1.1 研究背景土壤水分是土壤中水分含量的重要指标,对于农业生产、生态环境和水资源管理具有重要意义。
当前遥感技术在土壤水分监测中起着越来越重要的作用,其中水云模型是一种常用的反演方法。
水云模型是通过遥感数据和地面观测数据建立起土壤水分与微波遥感信号之间的关系模型,从而实现土壤水分监测。
传统的水云模型在土壤水分反演中存在一些不足,如在复杂地形和植被覆盖下的反演精度较低。
基于改进水云模型的土壤水分反演研究具有重要意义。
通过引入新的参数和方法,可以提高水云模型在不同条件下的反演精度,拓展其应用范围,为土壤水分监测提供更可靠的数据支持。
本研究旨在探究改进水云模型在土壤水分反演中的应用效果,为遥感监测技术在土壤水分领域的发展提供新的思路和方法。
1.2 研究目的土壤水分是农业生产中一个至关重要的因素,对作物生长和产量影响巨大。
而遥感技术能够提供大范围、高时空分辨率的土壤水分监测数据,对于农业生产管理具有重要价值。
本研究旨在基于改进水云模型,通过遥感技术对土壤水分进行反演研究,进一步提高土壤水分监测的准确性和精度。
具体目的包括:一是探究改进水云模型在土壤水分反演中的有效性和可行性,为提高土壤水分监测的精度奠定基础;二是分析改进水云模型的方法对土壤水分反演结果的影响,为进一步优化模型提供参考;三是通过实验设计和结果分析,验证改进水云模型在土壤水分反演中的优势和局限性,为模型在实际农业生产中的应用提供依据。
通过对土壤水分反演研究的目的的探讨和分析,本研究旨在为改进水云模型在土壤水分监测领域的应用提供理论和实践支持。
1.3 研究意义土壤水分是农业生产中至关重要的因素之一,对植物生长和产量具有重要影响。
传统的土壤水分监测方法往往受到时间、空间和成本等限制,限制了其在大范围和实时监测中的应用。
开发高效准确的土壤水分反演方法成为当前研究的热点之一。
本研究旨在基于改进水云模型进行土壤水分反演,通过引入更多的环境因素和提高模型精度,实现对土壤水分的准确估计。