高中竞赛专题:染色问题与染色方法q
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
染色问题和覆盖问题第一部分。
染色问题例1.已知(2)n n >条直线把平面划分成为若干块,其中的一些区域被染上颜色,使得任何两个染色的区域都没有公共边界,求证:染色区域的数目不超过2.3n n + 解答:不妨假定这些直线有相交直线。
设有k 条边的染色区域的数目为(1,2,...,)k m k n =。
注意到2m 就是有两条边的区域,两个射线形成的角域。
至多有2n 个线段。
因为每一段(线段或射线)至多是一个染色区域的边界,所以 22323...n m m nm n +++≤。
因为一条直线上只有两段的射线部分才可能是有两条边的染色区域,所以2m n ≤。
22322323 (333)n n m m nm m n n m m m +++++++≤+≤。
注意:这里有个很关键的不等式2m n ≤需要说明一下。
设12,,...,n L L L 是平面上直线束,那么每一个直线上至多有两个被染色(如题目中定义的染色)的角域;同时每一个被染色的角域值只占有两个直线。
设12,,...,m ΩΩΩ是m 个被染色的角域。
如果某个直线i L 上被染色的角域少于两个,那么根据数学归纳法假设可以直接证明2m n ≤。
否则的话,每一个直线上面恰好有两个被染色的角域。
这样可以得到一个2-正则的二部图()1212,,,{,,...,},{,,...,}.(,)n m i j i j G X Y E X L L L Y L E L ===ΩΩΩΩ∈⇔Ω是的边界这个二部图一定有1-因子。
从而也有2m n ≤成立。
例2. 平面上给定了)2(≥n n 条直线,其中任何两条不平行,任何三条不共点。
它们将平面划分成为若干个小区域。
试在每一个区域内部填写一个绝对值不大于n 的非负整数,使得任何一条直线的同一侧所有区域中各数之和为零。
解:一个为人们关心的问题是:这个题目是怎样产生的?那个出题人为什么出这个题?它的背景是什么?如果我们将这个问题放在球面上去,让所有的直线对应于一些大圆(从拓扑学的观点看,这是完全允许的),将每一个交点看成一个节点。
讲6第染色问题与操作问题染色问题6.1知识点睛染色问题类型多样,异彩纷呈,并没有一定的模式,它需要的知识量不多,但需要解题人具有很、可以用来解决代数(例如有理点问题)强的想象能力与推理能力;事实上,染色作为一种手段和工具,. 染色问题可分为:图论、方格表问题等多种形式的问题、小方格染色问题1解决这类问题的方法后.这是最简单的染色问题,是从一种民间游戏中发展起来的方格盘上的染色问题. 来又发展成为解决方格盘铺盖问题的重要技巧.线段染色和点染色2线(或称“边染色线段染色:较常见的一类染色问题是发样子组合数学中图论知识的所谓“”⑴.),主要借助抽屉原则求解段染色”. 对离散的有限个点或平面上的点进行染色⑵点染色:经典精讲【例1】线段AB上有1998个点(包括A,B两点),将点A染成红色,点B染成蓝色,其余各点染成红色或蓝色。
这时,图中共有1997条互不重叠的线段。
问:两个端点颜色相异的小线段的条数是奇数还是偶数?为什么?【例2】在6×6的正方形格中,把部分小方格涂成红色。
然后任意划掉3行和3列,使得剩下的小方格中至少有1个是红色的。
那么,总共至少要涂红多少小方格?【例3】在n×n(n≥3)方格表中,任意选出n-1个方格都涂成黑色,然后将那些至少与两个已涂色的方格相邻的方格也都涂黑. 求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。
【例4】平面直角坐标系中,纵横坐标都是整数的点称为整点称为整点。
设计一种方法,将所有整点涂色,每一个整点染成白色、红色或黑色中的一种颜色,使得⑴每一种颜色的点出现在无穷多条平行于横轴的直线上;⑵对任意白点A、红点B及黑点C,总可以找到一个红点D,使得ABCD为一平行四边形。
证明你设计的的方法符合上述要求。
【例5】设平面上任一点都染上红、蓝、黄三色中的一种,求证:一定存在一条端点同色且长度为1的线段。
【例6】平面上有6点,任何三点都是一个不等边三角形的顶点,求证:这些三角形的边中一定有一条,它在一个三角形中是最长边,而在另一个三角形中是最短边.或的正三.用任意方式给平面上的每一个点染上黑色或白色求证:一定存在一个边长为17【例】3角形,它三个顶点是同色的.6.2 操作问题知识点睛操作问题是发源于博弈论的组合趣题;有不少操作问题是以染色形式呈现;但更多的操作问题涉由于联赛中出现操作问题相对较少,我们只举数例简单及到单人与双人的胜负,对推理能力要求很高..介绍之经典精讲块玻璃片,每块上涂有红、黄、蓝三色之一,进行下列操作:将不同颜色的两块玻璃有1987】【例8片擦净,然后涂上第三种颜色。
竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.。
竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾. 故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。
高中染色问题基本题型及其解法总结染色问题是一个复杂而有趣的问题,高考中不时出现,包含着丰富的数学思想.解决涂色问题方法技巧性强且灵活多变,常用的方法是两个计数原理法和不相邻区域分类讨论法,常用的数学思想是转化与化归思想;常见的题型有区域涂色、点涂色、线段涂色和面涂色等.需要注意的是要审清题意,注意题目所给的条件颜色是否需要用完.
染色问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,但学生学习此部分内容时颇感吃力.究其原因,表面上是学生方法使用不当,实际上主要是其没有深刻体会到题目所隐含的数学思想,从而导致解题受阻,要么生搬硬套,要么分类错误,要么不知所云.本文在梳理基础知识和解决基本方法后总结后,尝试将染色问题的常见类型及求解方法做一个总结,力求让读者对染色问题有一个比较系统的认知,并通过解题和方法总结,提炼内化数学思想,从而达到举一反三、触类旁通的效果,不到之处,还请各位同行多多指正.
基本知识和基本方法
基本类型和方法总结
反馈练习
高考链接
相关链接
1.培养高中学生数学思想案例——染色问题教学札记
1.培养高中学生数学思想案例——染色问题教学札记
2.高中数学优秀教学设计合集
参考文献
[1]广东省教育研究院教育研究课题《培养学生数学思想的高中数学教学行动研究》,主持人:王常斌,相关研究成果.
[2]顺德区期末考试统考试题.
[3] 莘村中学导学案及练习题.。
第25讲染色问题与染色方法数学家像画家和诗人一样,是模式制造家。
——G.H.哈代知识方法扫描染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想.同时,染色作为一种解题手段也在数学竞赛中广泛使用.1. 染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力.纵观各种染色试题,它与我们经常使用的数学方法紧密联系.大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等.2. 染色方法将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法.常见的染色方式有:点染色、线段染色、小方格染色和对区域染色.经典例题解析例 1 用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色.分析在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.证明在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.评注由例1可得更一般的结论:平面上的点二染色后,一定存在长为a(a >0)的线段,它的两个端点同色.例2 对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.证明对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.评注 进一步由图证明可得:二染色平面上存在斜边要么为a ,要么为2a 且三顶点同色的等腰直角三角形.那么,当平面点二染色以后,是否一定存在边长为1且顶点同色的等边三角形呢?例3将对这个问题作出回答.例3 用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.证明 若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.例4 连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.证明 设9个点依次为v 1,v 2,…,v 9,首先证明必存在一点,设为v 1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295 不是整数,矛盾. 若从v 1出发的红色线段至少有6条,设v 1v 2,v 1v 3,v 1v 4,v 1v 5,v 1v 6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.例5某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.分析本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.例6把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.分析与解为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.例7 有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?分析与解先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.例8证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).分析本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i色的有x块,竖着盖住的有y块.2×2砖盖i住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.同步训练1.有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.2.将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.3.在二染色的平面上一定存在一个矩形,它的四个顶点同色.4.将正方体的每一个面分成四个相等的正方形,从三种不同颜色中任选一种给一个正方形染色,且使任何两个有公共边的正方形染不同的颜色.证明:每种颜色恰好染8个正方形.并举出一种染色方案.5.某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.6.在2n ×2n 的棋盘上,把相对角的两格剪去,则不能用若干块1×2的小棋盘(又称为多米诺骨牌)无重迭地覆盖这个缺角的大棋盘.7.有一种计算机软件只能复制一个边长为1的正方形的四个边,然后贴上。
什么是染色问题这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。
染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。
这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。
染色问题基本解法:三面涂色和顶点有关 8个顶点。
两面染色和棱长有关。
即新棱长(棱长-2)×12一面染色和表面积有关。
同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*60面染色和体积有关。
用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。
染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。
图一首先,拿到一道题先认真观察,看这个题的突破点。
什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。
例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。
找到这个区域问题就容易解决了。
这个区域可以任意添色就是染最多的颜色。
本题中有4种颜色那么A可以染4种颜色了。
完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。
这道题找到了最特殊的A 区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。
区域B跟A、C相连那么 B可以染2种。
D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D 则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。
29涂色问题涂色问题是数学竞赛中较为典型的问题,可以直接用抽屉原则解决涂色问题。
另一方面,也可以将别的有关问题“涂色”,转化为涂色问题,涂色问题本身,有其深刻的数学背景。
有些问题,本来就属于图论的内容。
有些问题的解决,则需要用到数论、组合数学的理论和方法。
这里介绍,只是中学数学竞赛中的有关问题。
1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.2.线段染色和点染色(1)线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.(2)点染色.先看离散的有限个点的情况.例题讲解1.把正方形ABCD的一边AB分成n段,使奇数号的线段长度之和等于偶数号的线段长度之和(如图01—01)。
过各分点作平行于AD的线段,得到n个矩形。
每一个矩形又被对角线BD分成两部分。
将奇数号矩形左部及偶数号矩形的右部涂上同一颜色。
证明:在对角线BD两侧的有同色的部分,其面积和相等。
2.在一张无限方格纸的某些方格上涂上红色,其余方格涂上蓝色,每一个2×3的六方格矩形内恰好2个红方格。
试问:一个9×11的99方格矩形内包含多少个红方格?3.在n×n(n≥2)个方格的正方形表中,有n-1个格子里涂了色,求证:通过交换两行或两列的位置,总可以将所有涂色的方格移到正方形表的左上角顶点到右下角顶点的对角线下方。
4.有n×n(n≥3)个方格表中,先在表中任意选出n-1个方格都涂成黑色,然后将那些凡是至少与两个已涂色的方格相邻的方格也都涂黑色。
求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。
5.设ABC为正三角形,E为线段BC,CA,AB上点的集合(包括A,B,C在内)。
将E分成两个子集,求证:总有一个子集中含有一个直角三角形的顶点。
v v v ,,...,129n 4[]2∈∈≠=u V v V i j i j K i j ,,;,1,2,...,=G V V V E k (,,...,;)12=G V V V E k (,,...,;)12==∅≠≤≤=V U V V V i j i j k i i i j k ,,,1,1=-C n n n 2(1)12K n K n v v v n ,,...,12v v v n ,,...,12一.知识与方法1.图平面上给定n 个点,其中某些点之间用边相连,得到的就是图,记作G 。
叫做图G 的顶点。
其集合记作V(G),G 中所含的顶点个数n 叫做图G 的阶。
两个顶点u 和v 之间有边相连,则称所连得的边为uv 或(U,V ),而且说u 和v 相邻。
G 中的所有边构成的集合记作E (G )。
所有以v 为端点的边数叫做顶点v 的度,记作d (v )。
在本讲中,除非特别说明,任一条边的两个顶点不同,且两点之间最多有一条边,这样的图称为简单图。
定理1 设G 是n 阶图,则G 中n 个顶点的度数之和等于边数的两倍。
如果一个简单图中,每两个顶点之间都有一条边,这样的图称为完全图,通常将有n 个顶点的完全图记为。
完全图的边的数目是。
2.K 部图如果图G 的顶点集V 可以分解为K 个两两不交且非空的子集的并,即,并且没有一条边其两个端点都在上述同一子集内,我们称这样的图G 为K 部图,记作。
如果在一个K 部图中,任何两点,均有u 和v 相邻,则称G 是完全K 部图。
定理2. 有n 个顶点且不含三角形的图G 的最大边数为. 3.染色问题数学竞赛中的染色问题主要有两类:一类是问题本身就是用染色的方式给出的;另一类是借助于染色方式来解决问题。
这些问题通常涉及到组合中的存在性问题、最值问题、构造问题等。
常用的方法有抽屉原理、极端原理、数学归纳法、反证法、算两次或整体处理等。
二、典型例题选讲例1. 九名数学家在一次国际数学会议上相遇,发现他们中的任意三个人中,至少有两个人可以用同一种语言对话。
锦纶染色过程的问题与解决方法
一、锦纶染色的问题
1、沾色不持久:染料分子在染色过程中,温度过低,pH值过高或低,染料的抗氧化能力不足,导致染料在锦纶表面的沾色不持久,使染色品质
低下。
2、染色品色不稳定:锦纶本身具有多层次的结构,染料的进入和渗
透难度较大,染色后的颜色会因多重因素变化而变化。
3、色牢度低:由于锦纶的受力强度不足,激活温度低,缩合反应低,缩聚反应不足,使得染色的稳定性低,色牢度也不高,容易掉色。
4、色彩不活泼:锦纶染色前料要经过过硫化,这一过程会破坏锦纶
的结构,使染色物质无法有效渗透,色彩显现出来也比较柔韧模糊,不能
表现出细节,色彩不活泼。
二、解决方法
1、优化染料的配方:在染料的配制和选择时要综合考虑锦纶的结构,要选用低温,低pH值,抗氧化性能高的染料,提高染色品质。
2、优化染料渗透性:可以采用化学方法,如离子换位,离子交换,
助剂的引入等,可以提高染料渗透性,改善染色的品质。
3、微量元素的补充:对硫化后的锦纶表面,可以加入微量元素,如氧,氮,硫等,可以改善锦纶的表面形貌。
29涂色问题涂色问题是数学竞赛中较为典型的问题,可以直接用抽屉原则解决涂色问题。
另一方面,也可以将别的有关问题“涂色”,转化为涂色问题,涂色问题本身,有其深刻的数学背景。
有些问题,本来就属于图论的内容。
有些问题的解决,则需要用到数论、组合数学的理论和方法。
这里介绍,只是中学数学竞赛中的有关问题。
1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.2.线段染色和点染色(1)线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.(2)点染色.先看离散的有限个点的情况.例题讲解1.把正方形ABCD的一边AB分成n段,使奇数号的线段长度之和等于偶数号的线段长度之和(如图01—01)。
过各分点作平行于AD的线段,得到n个矩形。
每一个矩形又被对角线BD分成两部分。
将奇数号矩形左部及偶数号矩形的右部涂上同一颜色。
证明:在对角线BD两侧的有同色的部分,其面积和相等。
2.在一张无限方格纸的某些方格上涂上红色,其余方格涂上蓝色,每一个2×3的六方格矩形内恰好2个红方格。
试问:一个9×11的99方格矩形内包含多少个红方格?3.在n×n(n≥2)个方格的正方形表中,有n-1个格子里涂了色,求证:通过交换两行或两列的位置,总可以将所有涂色的方格移到正方形表的左上角顶点到右下角顶点的对角线下方。
4.有n×n(n≥3)个方格表中,先在表中任意选出n-1个方格都涂成黑色,然后将那些凡是至少与两个已涂色的方格相邻的方格也都涂黑色。
求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。
5.设ABC为正三角形,E为线段BC,CA,AB上点的集合(包括A,B,C在内)。
将E分成两个子集,求证:总有一个子集中含有一个直角三角形的顶点。
§29涂色问题涂色问题是数学竞赛中较为典型的问题,可以直接用抽屉原则解决涂色问题。
另一方面,也可以将别的有关问题“涂色”,转化为涂色问题,涂色问题本身,有其深刻的数学背景。
有些问题,本来就属于图论的内容。
有些问题的解决,则需要用到数论、组合数学的理论和方法。
这里介绍,只是中学数学竞赛中的有关问题。
1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.2.线段染色和点染色(1)线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.(2)点染色.先看离散的有限个点的情况.例题讲解1.把正方形ABCD的一边AB分成n段,使奇数号的线段长度之和等于偶数号的线段长度之和(如图01—01)。
过各分点作平行于AD的线段,得到n个矩形。
每一个矩形又被对角线BD 分成两部分。
将奇数号矩形左部及偶数号矩形的右部涂上同一颜色。
证明:在对角线BD两侧的有同色的部分,其面积和相等。
2.在一张无限方格纸的某些方格上涂上红色,其余方格涂上蓝色,每一个2×3的六方格矩形内恰好2个红方格。
试问:一个9×11的99方格矩形内包含多少个红方格?3.在n×n(n≥2)个方格的正方形表中,有n-1个格子里涂了色,求证:通过交换两行或两列的位置,总可以将所有涂色的方格移到正方形表的左上角顶点到右下角顶点的对角线下方。
4.有n×n(n≥3)个方格表中,先在表中任意选出n-1个方格都涂成黑色,然后将那些凡是至少与两个已涂色的方格相邻的方格也都涂黑色。
求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。
5.设ABC为正三角形,E为线段BC,CA,AB上点的集合(包括A,B,C在内)。
将E分成两个子集,求证:总有一个子集中含有一个直角三角形的顶点。
2019-2020学年高中数学竞赛 第14讲 染色问题教案本节主要讲述用染色的方法解有关的竞赛题.染色,是一种辅助解题的手段,通过染色,把研究对象分类标记,以便直观形象地解决问题,因此染色就是分类的思想的具体化,例如染成两种颜色,就可以看成是奇偶分析的一种表现形式.染色,也是构造抽屉的一个重要方法,利用染色分类,从而构造出抽屉,用抽屉原理来解题.A 类例题例1⑴ 有一个6×6的棋盘,剪去其左上角和右下角各一个小格(边长为1)后,剩下的图形能不能剪成17个1×2的小矩形?⑵ 剪去国际象棋棋盘左上角2×2的正方形后,能不能用15个由四个格子组成的L 形完全覆盖?分析 把棋盘的格子用染色分成两类,由此说明留下的图形不能满足题目的要求.证明 ⑴如图,把6×6棋盘相间染成黑、白二色,使相邻两格染色不同.则剪去的两格同色.但每个1×2小矩形都由一个白格一个黑格组成,故不可能把剩下的图形剪成17个1×2矩形. ⑵如图,把8×8方格按列染色,第1,3,5,7列染黑,第2、4、6、8列染白.这样染色,其中黑格有偶数个.由于每个L 形盖住三黑一白或三白一黑,故15个L 形一定盖住奇数个黑格,故不可能.说明 用不同的染色方法解决不同的问题.例2 用若干个由四个单位正方形组成的“L ”形纸片无重叠地拼成一个m n 的矩形,则mn 必是8的倍数.分析 易证mn 是4的倍数,再用染色法证mn 是8的倍数.证明:每个L 形有4个方格,故4|mn .于是m 、n 中至少有一个为偶数.设列数n 为偶数,则按奇数列染红,偶数列染蓝.于是红格与蓝格各有12mn 个,而12mn 是偶数.每个L 形或盖住3红1蓝,或盖住1红3蓝,设前者有p 个,后者有q 个.于是红格共盖住3p +q 个即p +q 为偶数,即有偶数个L 形.设有2k 个L 形.于是mn =2k ×4=8k .故证.说明 奇偶分析与染色联合运用解决本题.例例1(!)情景再现1.下面是俄罗斯方块的七个图形:请你用它们拼出(A)图,再用它们拼出(B)图(每块只能用一次,并且不准翻过来用).如果能拼出来,就在图形上画出拼法,并写明七个图形的编号;如果不能拼出来,就说明理由.2.能否用图中各种形状的纸片(不能剪开)拼成一个边长为75的正方形?(图中每个小方格的边长都为1)请说明理由.B 类例题例3⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在无穷条长为1的线段,这些线段的端点为同一颜色.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:存在同色的三点,且其中一点为另两点中点.分析 任意染色而又要求出现具有某种性质的图形,这是染色问题常见的题型,常用抽屉原理或设置两难命题的方法解.证明 ⑴取边长为1的等边三角形,其三个顶点中必有两个顶点同色.同色两顶点连成线段即为一条满足要求的线段,由于边长为1的等边三角形有无数个,故满足要求的线段有无数条.⑵ 取同色两点A 、B ,延长AB 到点C,使BC =AB ,再延长BA 到点D ,使AD =AB ,若C 、D 中有一点为红色,例如点C 为红色,则点B 为AC 中点.则命题成立.否则,C 、D 全蓝,考虑AB 中点M ,它也是CD 中点.故无论M 染红还是蓝,均得证.说明 ⑴中,两种颜色就是两个“抽屉”,三个点就是三个“苹果”,于是根据抽屉原理,必有两个点落入同一抽屉.⑵中,这里实际上构造了一个两难命题:非此即彼,二者必居其一.让同一点既是某两个红点的中点,又是两个蓝点的中点,从而陷入两难选择的境地,于是满足条件的图形必然存在.达到证明的目的.例4 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多(5)(6)(7)(4)(2)(3)(1)(B)(A )个顶点为为同一种颜色的等腰三角形.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰直角三角形.分析 ⑴同样可以设置两难命题:由于等腰三角形的顶点在底边的垂直平分线上,故先选两个同色点连成底边,再在连线的垂直平分线上找同色的点,这是解法1的思路.利用圆的半径相等来构造等腰三角形的两腰,这是解法2的思路.利用抽屉原理,任5个点中必有三点同色,只要这5点中任三点都是一个等腰三角形的顶点即可,而正五边形的五个顶点中任三个都是等腰三角形的顶点,这是解法3的思路.⑵连正方形的对角线即得到两个等腰直角三角形,所以从正方形入手解决相题第2问. ⑴ 证明1 任取两个同色点A 、B (设同红),作AB 的垂直平分线MN ,若MN 上(除与AB 交点外)有红色点,则有红色三角形,若无红色点,则MN 上至多一个红点其余均蓝,取关于AB 对称的两点C 、D ,均蓝.则若AB 上有(除交点外)蓝点,则有蓝色三角形,若无蓝点,则在矩形EFGH 内任取一点K (不在边上)若K 为蓝,则可在CD 上取两点与之构成蓝色三角形,若K 为红,则可在AB 上找到两点与之构成红色三角形.证明2 任取一红点O ,以O 为圆心任作一圆,若此圆上有不是同一直径端点的两个红点A 、B ,则出现红色顶点等腰三角形OAB ,若圆上只有一个红点或只有同一直径的两个端点是红点,则圆上有无数蓝点,取两个蓝点(不关于红点为端点的直径对称)C 、D ,于是CD 的垂直平分线与圆的两个交点E 、F 为蓝点,于是存在蓝色顶点的等腰三角形CDE . 证明3 取一个正五边形ABCDE ,根据抽屉原理,它的5个顶点中,必有三个顶点(例如A 、B 、C)同色,则△ABC 即为等腰三角形. ⑵证明 任取两个蓝点A 、B ,以AB 为一边作正方形ABCD ,若C 、D 有一为蓝色,则出现蓝色三角形.若C 、D 均红,则对角线交点E 或红或蓝, 出现红色或蓝色等腰直角三角形.显然按此作法可以得到无数个等腰直角三角形.(由本题也可以证明上一题.)例5 设平面上给出了有限个点(不少于五点)的集合S ,其中若干个点被染成红色,其余点被染成蓝色,且任意三个同色点不共线.求证:存在一个三角形,具有下述性质:⑴ 以S 中的三个同色点为顶点;⑵此三角形至少有一条边上不含另一种颜色的点.分析 要证明存在同色三角形不难,而要满足第⑵个条件,可以用最小数原理.证明 由于S 中至少有五点,这些点染成两种颜色,故必存在三点同色.且据已知,此三点不共线,故可连成三角形.取所有同色三角形,由于S 只有有限个点,从而能连出的同色三角形只有有限个,故其中必有面积最小的.其中面积最小的三角形即为所求.首先,这个三角形满足条件⑴,其次,若其三边上均有另一种颜色的点,则此三点必可连出三角形,此连出三角形面积更小,矛盾.A B C DA(1)说明 最小数原理,即极端原理.见第十二讲.例6 将平面上的每个点都染上红、蓝二色之一,证明:存在两个相似的三角形,其相似比为1995,且每一个三角形的三个顶点同色.(1995年全国联赛加试题)分析 把相似三角形特殊化,变成证明相似的直角三角形,在矩形的网格中去找相似的直角三角形,这是证法1的思路.证法2则是研究形状更特殊的直角三角形:含一个角为30˚的直角三角形.证明可以找到任意边长的这样的三角形,于是对任意的相似比,本题均可证.证法3则是考虑两个同心圆上三条半径交圆得的三组对应点连出的两个三角形一定相似,于是只要考虑找同心圆上的同色点,而要得到3个同色点,只要任取5个只染了两种颜色的点就行;而要得到5个同色点,则只要取9个只染了两种颜色的点即行.证明1 首先证明平面上一定存在三个顶点同色的直角三角形. 任取平面上的一条直线l ,则直线l 上必有两点同色.设此两点为P 、Q ,不妨设P 、Q 同着红色.过P 、Q 作直线l 的垂线l 1、l 2,若l 1或l 2上有异于P 、Q 的点着红色,则存在红色直角三角形.若l 1、l 2上除P 、Q 外均无红色点,则在l 1上任取异于P 的两点R 、S ,则R 、S 必着蓝色,过R 作l 1的垂线交l 2于T ,则T 必着蓝色.△RST 即为三顶点同色的直角三角形.下面再证明存在两个相似比为1995的相似的直角三角形.设直角三角形ABC 三顶点同色(∠B 为直角).把△ABC 补成矩形ABCD (如图).把矩形的每边都分成n 等分(n 为正奇数,n >1,本题中取n=1995).连结对边相应分点,把矩形ABCD 分成n 2个小矩形.AB 边上的分点共有n +1个,由于n 为奇数,故必存在其中两个相邻的分点同色,(否则任两个相邻分点异色,则可得A 、B 异色),不妨设相邻分点E 、F 同色.考察E 、F 所在的小矩形的另两个顶点E 、F ,若E 、F 异色,则△EFE 或△DFF 为三个顶点同色的小直角三角形.若E 、F 同色,再考察以此二点为顶点而在其左边的小矩形,….这样依次考察过去,不妨设这一行小矩形的每条竖边的两个顶点都同色.同样,BC 边上也存在两个相邻的顶点同色,设为P 、Q ,则考察PQ 所在的小矩形,同理,若P 、Q 所在小矩形的另一横边两个顶点异色,则存在三顶点同色的小直角三角形.否则,PQ 所在列的小矩形的每条横边两个顶点都同色.现考察EF 所在行与PQ 所在列相交的矩形GHNM ,如上述,M 、H 都与N 同色,△MNH 为顶点同色的直角三角形.由n=1995,故△MNH ∽△ABC ,且相似比为1995,且这两个直角三角形的顶点分别同色. 证明2 首先证明:设a 为任意正实数,存在距离为2a 的同色两点.任取一点O (设为红色点),以O 为圆心,2a 为半径作圆,若圆上有一个红点,则存在距离为2a 的两个红点,若圆上没有红点,则任一圆内接六边形ABCDEF 的六个顶点均为蓝色,但此六边形边长为2a .故存在距离为2a 的两个蓝色点. 下面证明:存在边长为a ,3a ,2a 的直角三角形,其三个顶点同色.如上证,存在距离为2a 的同色两点A 、B (设为红点),以AB 为直径作圆,并取圆内接六边形ACDBEF ,若C 、D 、E 、F 中有任一点为红色,则存在满足要求的红色三角形.若C 、D 、E 、F 为蓝色,则存在满足l lC要求的蓝色三角形.下面再证明本题:由上证知,存在边长为a ,3a ,2a 及1995a ,19953a ,19952a 的两个同色三角形,满足要求.证明3 以任一点O 为圆心,a 及1995a 为半径作两个同心圆,在小圆上任取9点,其中必有5点同色,设为A 、B 、C 、D 、E ,作射线OA 、OB 、OC 、OD 、OE ,交大圆于A ,B ,C ,D ,E ,则此五点中必存在三点同色,设为A 、B 、C .则ABC 与A B C 为满足要求的三角形.情景再现3.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在一个矩形,它的四个顶点同色.4.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点全为同一种颜色的全等三角形.5.图中是一个6×6的方格棋盘,现将部分1×1小方格涂成红色。
练习二十九
1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.
2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.
3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。
两人不通话,就不连线.
(1)果任两点都有连线并涂有颜色,那么必有一点如A1,以其为一端点的8条线段中至少有两条同色,比如A1A2、A1A3.可见A1,A2,A3之间可用同一语言通话.②如情况①不发生,则至少有两点不连线,比如A1、A2.由题设任三点必有一条连线知,其余七点必与A1或A2有连线.这时七条线中,必有四条是从某一点如A1引出的.而这四条线中又必有二条同色,则问题得证.
4.结论不成立,如图所示(图中每条线旁都有一个数字,以表示不同语种).
5.类似于第3题证明.
6.用点A1、A2、…、A100表示客人,红、蓝的连线分别表示两人相识或不相识,因为由一个顶点引出的蓝色的线段最多有32条,所以其中至少有三点之间连红线.这三个点(设为A1、A2、A3)引出的蓝色线段最多为96条.去掉所有这些蓝色的线段(连同每条线段上的一个端点AI,I≠1,2,3),这样,在图中至少还剩下四个点,除A1、A2、A3外,设第四点为A4,这四个点中A1,A2,A
3每一个点与其它的点都以红色的线段相连,于是客人A1、A2、A3、A4彼此两两相识.
7.先利用右图证明"若平面上有两个异色的点距离为2,地么必定可以找到符合题意的三角形".再找长为2端点异色的线段.以O(白色)为圆心,4为半径作
圆.如圆内皆白点,问题已证.否则圆内有一黑点P,以OP为底作腰长为2的三角形OPR,则R至少与O、P中一点异色,这样的线段找到.。