第3章脉冲多普勒雷达
- 格式:ppt
- 大小:199.00 KB
- 文档页数:36
脉冲多普勒雷达matlab脉冲多普勒雷达是一种广泛应用于军事、民用和科学研究领域的雷达系统。
它可以通过测量目标的速度和距离来实现目标检测和跟踪。
而matlab作为一种强大的数学计算软件,可以帮助我们更加高效地进行雷达信号处理和分析。
一、脉冲多普勒雷达的原理脉冲多普勒雷达的工作原理是通过发射一系列短脉冲信号,然后接收反射回来的信号,并通过信号处理来提取目标的速度和距离信息。
其中,多普勒效应是实现速度测量的关键。
当目标相对于雷达运动时,反射回来的信号会发生多普勒频移,通过测量这个频移可以得到目标的速度信息。
二、matlab在脉冲多普勒雷达中的应用matlab作为一种强大的数学计算软件,可以帮助我们更加高效地进行雷达信号处理和分析。
在脉冲多普勒雷达中,matlab可以用于以下方面:1. 信号处理脉冲多普勒雷达接收到的信号通常包含噪声和杂波,需要进行信号处理来提取目标信息。
matlab提供了丰富的信号处理工具箱,可以帮助我们进行滤波、去噪、谱分析等操作,从而提高信号的质量和可靠性。
2. 目标检测和跟踪脉冲多普勒雷达需要对接收到的信号进行目标检测和跟踪。
matlab提供了多种目标检测和跟踪算法,如CFAR、MTI、MUSIC等,可以帮助我们实现自动化目标检测和跟踪。
3. 数据可视化matlab可以帮助我们将雷达接收到的信号进行可视化,以便更好地理解和分析数据。
通过matlab的绘图工具,我们可以绘制出目标的距离-速度图、功率谱密度图等,从而更加直观地了解目标的特征和运动状态。
三、结语脉冲多普勒雷达是一种重要的雷达系统,它在军事、民用和科学研究领域都有广泛的应用。
而matlab作为一种强大的数学计算软件,可以帮助我们更加高效地进行雷达信号处理和分析。
通过matlab的信号处理工具、目标检测和跟踪算法以及数据可视化功能,我们可以更加准确地提取目标信息,从而实现更加精确的目标检测和跟踪。
脉冲多普勒雷达(pulse Doppler Radar)学习笔记1:PD雷达简介PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。
PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。
它们各具特点,分别适用不同的环境。
低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。
高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。
中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。
1:测速原理雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。
对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。
雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。
而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。
多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。
2:距离模糊产生原因雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。
为保证单值测距, 通常应R max选取T R>2CR max为被测目标的最大作用距离。
有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为R=c2(m×T r+t r)式中,t r为测得的回波信号与发射脉冲间的时延。
这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。
脉冲多普勒雷达系统频段
脉冲多普勒雷达系统是一种常见的雷达技术,广泛应用于军事和民用领域。
它利用脉冲信号和多普勒效应来实现对目标的探测和跟踪。
在不同的频段下,脉冲多普勒雷达系统具有不同的特点和应用。
在S波段,脉冲多普勒雷达系统具有较高的分辨率和较小的波束宽度,适用于需要高精度探测的场景。
例如,在航空领域,S波段脉冲多普勒雷达系统可以用于飞机的导航和防撞系统,能够精确测量飞机与其他目标的距离和速度,提供可靠的飞行安全保障。
而在X波段,脉冲多普勒雷达系统具有较长的探测距离和较强的透穿能力,适用于对地面目标的探测。
比如,X波段脉冲多普勒雷达系统可以用于地质勘探和环境监测,可以探测到地下水和地表变形等信息,为资源开发和环境保护提供重要参考。
K波段和Ka波段的脉冲多普勒雷达系统具有较高的抗干扰能力和较强的穿透能力,适用于复杂的电磁环境和恶劣的天气条件下的探测任务。
例如,在天气预报和气象监测领域,K波段和Ka波段脉冲多普勒雷达系统可以用于测量降水粒子的速度和方向,实现对降雨量和暴风雨等极端天气的准确预测和警报。
脉冲多普勒雷达系统在不同频段下具有不同的特点和应用。
通过选择合适的频段,可以最大程度地满足不同领域的需求,实现对目标的精确探测和跟踪。
脉冲多普勒雷达系统的发展将进一步推动雷达
技术在军事、民用和科研等领域的广泛应用。
脉冲多普勒雷达的总结1、 适用范围脉冲多普勒(PD )雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
2、 PD 雷达的定义及其特征(1) 定义:PD 雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
(2) 特征:①具有足够高的脉冲重复频率(简称PRF ),以致不论杂波或所观测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
③PRF 很高,通常对所观测的目标产生距离模糊。
3、 PD 雷达的分类图1 PD 雷达的分类图① MTI 雷达(低PRF ):测距清晰,测速模糊 ② PD 雷达(中PRF ):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③ PD 雷达(高PRF ):测距模糊,测速清晰4、 机载下视PD 雷达的杂波谱分析机载下视PD 雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。
表15、PRF的选择(1)高、中、低脉冲重复频率的选择①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。
(2)高PRF时重复频率的选择①使迎面目标谱线不落人旁瓣杂波区中:②为了识别迎面和离去的目标:A、当接收机单边带滤波器对主瓣杂波频率固定时:B、当接收机单边带滤波器相对发射频率是固定时:注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。
6、PD雷达的信号处理系统PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。
脉冲多普勒雷达原理
脉冲多普勒雷达是一种利用脉冲信号来测量目标距离和速度的雷达系统。
它通过发射脉冲信号并接收目标反射的信号来实现目标的探测和跟踪。
脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域得到了广泛的应用。
脉冲多普勒雷达的工作原理主要包括脉冲信号的发射和接收、目标回波信号的处理以及速度测量等几个方面。
首先,当脉冲多普勒雷达工作时,会发射一系列的脉冲信号。
这些脉冲信号会以一定的重复频率被发射出去,然后在空间中传播。
当这些脉冲信号遇到目标时,会被目标反射回来,形成回波信号。
接着,雷达系统会接收这些回波信号,并进行信号处理。
在信号处理过程中,脉冲多普勒雷达会对接收到的回波信号进行时域和频域的分析。
通过时域分析,可以测量目标与雷达之间的距离,即目标的径向距离。
而通过频域分析,可以测量目标的速度。
这是因为目标的运动会导致回波信号的多普勒频移,通过测量多普勒频移的大小,可以计算出目标的速度信息。
除了距离和速度测量外,脉冲多普勒雷达还可以实现目标的探测和跟踪。
当目标被探测到后,雷达系统会不断地追踪目标,并根据目标的运动状态进行预测。
这样可以实现对目标的持续跟踪,从而满足实际应用中对目标监测的需求。
总的来说,脉冲多普勒雷达是一种能够实现目标距离和速度测量的雷达系统。
它通过发射脉冲信号、接收目标回波信号并进行信号处理,实现了对目标的探测和跟踪。
在实际应用中,脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域有着广泛的应用前景。
脉冲多普勒雷达matlab脉冲多普勒雷达是一种广泛应用于军事、天文、大气科学、气象等领域的电磁波测量技术。
它通过发送一定频率的脉冲信号,并对返回信号进行处理,可以获取目标的信息,如位置、速度、加速度等。
本文将介绍脉冲多普勒雷达的原理和在MATLAB中的实现。
一、脉冲多普勒雷达的原理脉冲多普勒雷达是一种主动雷达,它通过发送脉冲信号,利用目标回波信号的时间差和频率差来测量目标的距离、速度和加速度等信息。
其信号处理过程主要包括以下几个步骤:1. 发送脉冲信号脉冲多普勒雷达发送的脉冲信号通常是一段短时间内的高功率信号,一般情况下可以用正弦函数表示,即:s(t) = A·sin(2πfct)其中,A表示信号的幅度,fc为信号的载频,t为时间。
2. 接收回波信号经过一段时间后,脉冲信号会被目标反射,形成回波信号并被多普勒雷达接收。
多普勒雷达接收到的回波信号会包含有目标的信息,但由于信号在传输过程中会受到一些干扰和衰减,因此需要对信号进行处理,以得到目标信息。
首先,通过信号处理技术可以提取出回波信号中的目标信号,即目标的距离信息。
然后,可以利用多普勒效应来提取目标的速度信息。
多普勒效应是指当观察者和目标相对运动时,目标回波信号的频率会发生变化。
具体来说,当目标朝着多普勒雷达运动时,回波信号的频率高于原始信号的频率;而当目标远离多普勒雷达时,回波信号的频率低于原始信号的频率。
因此,在脉冲多普勒雷达中,可以通过测量回波信号的频率差来计算目标的速度。
对于进行速度测量,一般会采用FFT变换的方法进行频域处理,即把回波信号转换到频域,然后通过计算频率谱来得到目标的速度信息。
频率谱可以使用MATLAB中的fft函数快速计算得到。
4. 计算目标加速度除了可以得到目标的距离和速度信息外,通过对速度信号再次求导,可以得到目标的加速度信息。
因此,可以通过进一步处理速度信号来计算目标的加速度。
在MATLAB中,可以使用diff函数对速度信号进行差分计算,得到相邻速度值之间的差异,再次差分求得目标的加速度。
多普勒雷达就是利用多普勒效应进行定位,测速,测距等工作的雷达。
所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。
因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应.脉冲多普勒雷达是利用多普勒效应制成的雷达。
它的工作原理可表述如下:当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。
根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。
同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。
所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。
脉冲多普勒雷达距离方位矩阵摘要:1.脉冲多普勒雷达概述2.距离方位矩阵的构建3.距离模糊问题的提出4.新算法解决距离模糊问题5.实验结果与分析6.结论正文:一、脉冲多普勒雷达概述脉冲多普勒雷达是一种利用多普勒效应测量目标距离和速度的雷达系统。
它通过发送短脉冲信号并与接收到的回波进行比较,来检测和测量目标的距离和速度。
由于其高精度和可靠性,脉冲多普勒雷达在军事、航空、航天等领域具有广泛的应用。
二、距离方位矩阵的构建距离方位矩阵是脉冲多普勒雷达系统中的一个重要组成部分,它用于存储雷达接收到的回波信息。
距离方位矩阵由距离通道和方位通道组成,其中距离通道表示目标距离信息,方位通道表示目标方位信息。
通过距离方位矩阵,可以获得目标的距离和方位信息。
三、距离模糊问题的提出在实际应用中,由于雷达系统受到各种因素的影响,例如信号噪声、多径效应等,导致距离方位矩阵中的距离信息出现模糊,无法准确获得目标的距离。
因此,如何解决距离模糊问题成为脉冲多普勒雷达研究的关键之一。
四、新算法解决距离模糊问题为了解决距离模糊问题,研究人员提出了一种新的算法。
该算法通过对距离方位矩阵进行处理,消除噪声和多径效应的影响,从而提高距离信息的准确性。
具体来说,该算法包括以下步骤:1.对距离方位矩阵进行预处理,消除噪声和多径效应的影响;2.计算预处理后的距离方位矩阵的特征矩阵;3.根据特征矩阵,估计目标的距离信息。
五、实验结果与分析为了验证新算法的有效性,研究人员进行了大量实验。
实验结果表明,新算法能够在一定程度上提高距离信息的准确性,降低距离模糊的程度。
在不同的场景和条件下,新算法都表现出较好的性能。
六、结论本文介绍了脉冲多普勒雷达距离方位矩阵的概念,提出了一种解决距离模糊问题的新算法。
实验结果表明,该算法能够有效地提高距离信息的准确性,具有较好的应用前景。
脉冲多普勒法的原理脉冲多普勒法(Pulse Doppler)是一种用于检测和测量目标速度的雷达技术。
它利用了多普勒效应,即当目标物相对于雷达移动时,它的反射波频率会发生变化。
脉冲多普勒法的原理是基于脉冲雷达的基本原理。
在脉冲雷达中,发射器发出一个短脉冲的电磁波,并且等待反射波返回。
接收器接收到反射波后,通过测量返回时间来计算目标物距离。
而在脉冲多普勒雷达中,除了测量目标物的距离,还能够测量目标物的速度。
当脉冲电磁波与移动的目标相互作用时,反射波的频率会因为多普勒效应而发生变化。
多普勒效应是指当发射源和接收源与移动的物体之间存在相对运动时,接收源接收到的波的频率相对于发射源的频率发生变化。
这种频率变化取决于目标物相对于雷达的速度。
为了解释脉冲多普勒法的原理,我们可以将其分为两个方面来讨论:距离测量和速度测量。
首先,对于距离测量,脉冲多普勒法使用的是时差测量原理。
当发射器发出一个短脉冲的电磁波后,接收器开始等待反射波的返回。
通过测量发射脉冲和接收脉冲之间的时间差,可以计算目标物与雷达的距离。
这是因为电磁波在真空中的传播速度是已知的,因此可以根据时间差和传播速度来计算距离。
其次,对于速度测量,脉冲多普勒法利用多普勒频移原理。
当发射脉冲的雷达与移动的目标进行相互作用时,接收到的反射波的频率会发生变化。
如果目标物朝着雷达运动,接收到的频率比发射频率要高;如果目标物远离雷达运动,接收到的频率比发射频率要低。
通过测量接收到的波的频率变化,可以计算出目标物相对于雷达的速度。
脉冲多普勒法的速度测量原理是通过两个不同的过程实现的。
首先,借助于基频接收器或者混频器,可以将接收到的带有多普勒频率变化的接收信号与发射信号进行混合。
然后,通过信号处理器将混合后的信号进行解析,并提取出多普勒频率成分。
最后,通过反向多普勒变换等算法,可以将多普勒频率转换为目标物相对于雷达的速度。
总结起来,脉冲多普勒法是一种通过利用多普勒效应来测量目标物的速度的雷达技术。
脉冲多普勒雷达原理
脉冲多普勒雷达(Pulse-Doppler radar)是一种利用脉冲信号和多普勒效应来测量目标运动状态的雷达系统。
其原理涉及到以下几个关键概念和过程。
首先,雷达系统会发射短暂、高功率的脉冲信号。
这些脉冲信号会沿着发射方向传播,并在探测到目标后被反射回来。
当脉冲信号遇到一个静止的目标时,反射信号的频率与发送频率相同,因为目标对信号的回波没有任何变化。
然而,当目标相对于雷达系统运动时,反射信号的频率会发生变化,这就是多普勒效应。
多普勒效应是由于目标的运动引起的,它会导致回波信号的频率发生变化。
当目标以接近雷达的速度靠近时,回波频率会比发送频率更高;当目标以远离雷达的速度远离时,回波频率会比发送频率更低。
利用多普勒效应,雷达系统可以通过测量回波信号的频率来确定目标的速度。
此外,雷达系统还可以通过比较不同时间内的回波信号来确定目标的位置和运动方向。
脉冲多普勒雷达系统通常使用特殊的信号处理技术来处理接收到的回波信号。
这包括时域滤波和频域分析等方法。
通过这些技术,雷达系统可以提取出目标的速度、距离和方向等关键参数。
总的来说,脉冲多普勒雷达利用脉冲信号和多普勒效应实现对目标运动状态的测量。
通过测量回波信号的频率变化,雷达系统可以确定目标的速度、距离和方向等关键信息。
这使得脉冲多普勒雷达成为了许多应用中非常重要的一种雷达技术。
在机载电子设备方面,苏-27装备了N001ZHUK(朱克)多脉冲多普勒雷达,有同步搜索跟踪、上视上射、下视下射的能力,能同时跟踪10个目标,并自动评估威胁优先级别。
与西方产品相比,功率大,作用距离远(对3平方米反射面的目标,前视距离超过100公里,后视距离达40公里),抗干扰能力强。
另外在风挡前固定安装了OEPS-27光电探测系统(左图及下图),这和美国单独加装光学导航攻击吊舱的做法不同。
该系统镜头部分装在一个风挡前透明的半球体内。
系统包括一红外搜索跟踪系统(IRSTinfra-redsearchandtrack)和一个激光测距仪,探测距离40到100公里。
假如敌机高红外辐射的发动机喷管对着己方,IRST作用距离就远些,反之则近些。
拥有IRST 使得苏-27可以在雷达静默或强电子干扰的情况下保持发现和攻击目标的能力。
目前美军新型的F-16战斗机也开始在风挡前加装IRST装置。
任务书雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。
因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。
如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。
特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。
本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。
摘要脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。
现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。
脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。
本文介绍了脉冲多普勒雷达测速的原理,信号处理。
并用matlab简单的仿真了雷达系统对信号的处理.关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频AbstactPulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution.This article sinply introduced principle of pulse Doppler radar and signaling matlab to simulation The signal processing of radar system.Linear frequency modulation.Keywords:Pulse Doppler (PD) radar.Constant false alarm rate .pulse compression.目录一.脉冲多普雷达简介 (1)1,多普勒效应 (1)二、多普勒测速原理 (2)三、多普勒雷达简介 (4)四、多普勒雷达工作原理 (6)五、PD雷达信号处理仿真 (8)5.1、正交双通道处理 (9)5.2、脉冲压缩 (10)5.3、线性调频信号的脉冲压缩 (12)5.4、巴克码信号的脉冲压缩 (14)5.5、恒虚警处理 (14)5.5.1、单元平均恒虚警处理(CA-CFAR) (16)5.5.2、平均选大恒虚警处理(GO-CFAR) (16)5.6、动目标检测(MTD)模型 (19)六、总结与展望 (20)参考文献 (21)二、脉冲多普雷达简介1,多普勒效应多普勒效应是指当发射源和接收者之间有相对径向运动时,接收到的信号将发生变化。
脉冲多普勒雷达原理1 脉冲多普勒雷达概述脉冲多普勒雷达(Pulse-Doppler Radar)是一种应用了多种高科技技术的雷达系统,它可以同时进行目标的探测、跟踪和识别,并且可以在保证高分辨率的前提下提高探测和跟踪的距离,具有和收音机一样广泛的应用领域,比如在军事、民用和航空领域等。
2 脉冲多普勒雷达的原理脉冲多普勒雷达最基本的原理是利用雷达发射器的微波脉冲辐射目标,然后通过检测目标反射回来的回波信号,分析回波信号的时间、相位和频率等特征,以便确定目标的位置、速度、大小和形状等相关量。
在脉冲多普勒雷达系统中,发射器通过周期性地发射一系列短时间、高峰值的微波脉冲信号,这些脉冲信号被称作“雷达脉冲”。
当这些雷达脉冲向目标发射时,它们遇到目标后会被反射回来,这些回波信号会被雷达接收器捕获,然后通过信号处理系统处理,以便获得目标的信息。
基于多普勒效应的原理,当目标在雷达天线的几何轴线方向上运动时,回波信号的频率会发生变化,这种频率变化被称为“多普勒频移”,通过分析多普勒频移,可以计算出目标的速度信息。
此外,脉冲多普勒雷达还可以通过时差测量获得目标的距离信息,通过回波信号的幅度和相位信息来识别目标。
3 脉冲多普勒雷达的应用作为一种高科技应用,在军事和民用领域都有着广泛的应用。
在军事领域,脉冲多普勒雷达可以用于空中和海上的目标监测、导弹制导、防空反导和战术侦察等领域,这些应用都需要雷达系统的高精度、高分辨率、高速度和高可靠性。
在民用领域,脉冲多普勒雷达也得到了广泛应用,比如用于气象、地球物理勘探、空中交通管制、风能利用等领域。
总之,脉冲多普勒雷达是一种高科技应用技术,它的原理基于多种物理原理,既有数据处理技术,也有信号处理技术,应用领域广泛。
它不仅在军事领域有重要的应用价值,也在民用和科研领域中有着广泛的应用前景。
脉冲多普勒雷达的总结适用范围1、)雷达是在动目标显示雷达基础上发展起来的一种新型雷达脉冲多普勒(PD有更强体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
PD雷达的定义及其特征2、 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
)(1 定义:,以致不论杂波或所观PRF)(2)特征:①具有足够高的脉冲重复频率(简称测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
很高,通常对所观测的目标产生距离模糊。
③PRF雷达的分类3、PD1 PD 图雷达的分类图MTI雷达(低:测距清晰,测速模糊PRF)①):测距模糊,测速模糊,是机载雷达的最佳波形选择PRF②PD雷达(中 PRF③PD雷达(高):测距模糊,测速清晰、机载下视PD雷达的杂波谱分析4雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成PD机载下视的。
1表多普勒中心频率变化范围特点①强度比雷达接收机的噪声强70-90dB②与天线主波束的宽度、方向角、载机速度、发射信号波长有主瓣杂波关①当PD雷达不运动时,旁瓣杂波与主瓣杂波在频域上相重合;旁瓣杂波②当PD雷达运动时,旁瓣杂波与主瓣杂波就分布在不同的频域上①机载下视PD雷达做平行于地面的运动高度线杂波②在零多普勒频率处总有一个较强的“杂波”①恰当选择雷达信号的PRF,使得其地面杂波既不重叠也不连接无杂波区②其频谱中不可能有地面杂波,只有接收机内部热噪声的部分5、PRF的选择(1)高、中、低脉冲重复频率的选择①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。