多普勒雷达的组成
- 格式:pptx
- 大小:339.56 KB
- 文档页数:5
多普勒雷达工作原理
多普勒雷达是一种利用多普勒效应测量目标相对速度的雷达系统。
其工作原理基于多普勒效应,即当发射的电磁波与运动的目标相交时,电磁波的频率会发生变化。
多普勒雷达利用这种频率变化来计算目标的运动速度。
多普勒雷达包含一个发射器和一个接收器。
发射器发射出高频的电磁波,这些波经过天线发射出去,并与目标相交。
当电磁波与目标相交时,会发生频率的变化,这是由于目标的运动引起的。
接收器接收到目标反射回来的电磁波,并通过天线发送到接收器。
接收器会测量接收到的波的频率,并与发射时的频率进行比较。
根据频率的差异,可以计算出目标相对于雷达的速度。
为了提高测量的准确性,多普勒雷达通常会使用连续波或脉冲波进行测量。
连续波雷达通过持续地发射和接收电磁波来测量目标的速度。
脉冲波雷达则通过间歇性地发送短暂脉冲的电磁波来测量目标的速度。
除了测量速度,多普勒雷达还可以通过分析接收到的波的频谱来获得目标的运动方向和位置。
当目标接近雷达时,接收到的波的频率会增加,而当目标远离雷达时,接收到的波的频率会减小。
总之,多普勒雷达通过利用多普勒效应测量目标相对速度。
它
广泛应用于航空、气象、交通和军事等领域,可以提供有关目标速度和移动方向的重要信息。
第十四章多普勒天气雷达知识第一节引言RADAR(Radio Detection and Ranging)是一个利用电磁波进行探测、定位的仪器。
最早用于军事目的,后来在气象部门也逐渐得到使用。
它具有准确、客观和实时的特点。
近年来,多普勒雷达的技术也逐渐成熟,它除了保持常规天气雷达的特点外,还通过计算频率(相位)的变化,提取风场的一些特征,因而更具有使用价值。
我国新一代天气雷达建设是我国20世纪末、21世纪初的一项跨世纪气象现代化工程。
我国新一代天气雷达组网的目标和原则是:在我国东部沿海和多强降水地区和四川盆地的大部分地区,布设S波段(波长10cm)新一代天气雷达;在我国强对流天气发生和活动比较频繁、经济比较发达的中部地区,布设C波段(波长5cm)新一代天气雷达;其它地区,即我国第一地形阶梯地域的青、新、藏等流域暂不布设全国组网的站点;但省(区)会所在地和重要地区根据气象服务工作的需要和可能,按统一业务布点要求设置新一代C波段天气雷达,作为局地监测和服务使用。
计划在全国部署158部新一代天气雷达。
图14-1为其中的126部的站点示意图。
截止到2005年5月份为止,已布设80余部新一代天气雷达。
图14-1我国新一代天气雷达网站新一代天气雷达将全部选用S和C两种波段,选取全相干体制,其主要探测和测量对象,包括降水、热带气旋、雷暴、中尺度气旋、湍流、龙卷、冰雹、融化层等,并具备一定的晴空回波的探测能力。
第二节多普勒天气雷达的基本工作原理粒子对电磁波作用的两种基本形式是散射和吸收。
气象目标对雷达电磁波的散射作用是雷达探测大气的基础。
当天气雷达间歇性地向空中发射电磁波(称为脉冲式电磁波)时,它以近于直线的路径和接近光波的速度在大气中传播,在传播的路径上,若遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
粒子产生散射的原因是:粒子在入射电磁波的作用下被极化,感应出复杂的电荷分布和电流分布,它们也要以同样的频率发生变化,这种高频率变化的电荷分布和电流分布向外辐射的电磁波,就是散射波。
第六部分 多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品第一章 我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部分和功能新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。
2/3730/776.0T e T P N +=波束直线传播波束向上弯曲波束向下弯曲000=><dz dN dzdN dzdN三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为:()22232ln 1024K h G P c t λθϕπ=Z r c P r 2=其中Pr 表示雷达接收功率,Z 为雷达反射率,r 为目标物距雷达的距离。
Pt 表示雷达发射功率,h 为雷达照射深度,G 为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
新一代多普勒天气雷达产品及其在短时天气预报中的应用杨引明上海中心气象台二零零二.二目录第一讲:新一代多普勒雷达基本构成及雷达产品生成数据流简介 (4)1.1 基本构成 (4)1.2 数据采集子系统(RDA) (5)1.3 产品生成子系统(RPG) (7)1.4 主用户处理子系统(PUP) (8)第二讲:雷达基本产品的生成、调阅和应用 (9)2.1 基本反射率因子(R) (10)2.2 平均径向速度(V) (12)2.3 速度谱宽(W) (14)第三讲:由基本反射率因子导出产品的生成、调阅和应用 (16)3.1 组合反射率因子(CR) (18)3.2 组合反射率因子廓线(CRC) (20)3.3 反射率因子剖面(RCS) (22)3.4 分层组合反射率因子平均值(LRA) (24)3.5 分层组合反射率因子最大值(LRM) (26)3.6 弱回波区(WER) (28)3.7 风暴跟踪信息(STI) (30)3.8 风暴结构(SS) (34)3.9 冰雹指数(HI) (36)3.10 回波顶高(ET) (40)3.11 回波顶高廓线(ETC) (42)3.12 垂直积分液态含水量(VIL) (44)3.13 强天气概率(SWP) (46)3.14 一小时降水量(OHP) (48)3.15 三小时降水量(THP) (50)3.16 风暴总降水量(STP) (52)3.17 用户可选降水量(USP) (54)3.18补充降水资料(SPD) (56)3.19一小时数字降水阵列(DPA)……………………………………………………(58).第四讲:由基本速度资料导出产品的生成、调阅和应用 (59)4.1 风暴相对平均径向速度图(SRM) (60)4.2 风暴相对平均径向速度区(SRR) (62)4.3 平均径向速度场剖面(VCS) (64)4.4 速度方位显示(V AD) (66)4.5 速度方位显示风廓线(VWP) (68)4.6 中尺度气旋(M) (70)4.7 龙卷涡旋标志(TVS) (74)4.8 组合切变(CS) (78)4.9 组合切变等值线(CSC) (80)第五讲:由谱宽资料导出产品其它产品的生成、调阅和应用 (82)5.1 谱宽剖面(SCS) (83)5.2 分层组合湍流平均值(LTA) (85)5.3 分层组合湍流最大值(LTM) (87)5.4 组合矩(CM) (89)5.5 强天气分析(SWA) (91)第六讲:新一代多普勒雷达产品在局地暴雨预测和监测中的应用 (96)(6.1)、暴雨形成的条件 (96)(6.2).形成暴雨常见的对流回波系统 (96)(6.3).WSR-88D多普勒天气雷达降水探测算法及评估 (97)(6.4).基于WSR-88D多普勒天气雷达的暴雨监测 (100)(6.5).个例分析 (102)第七讲:新一代多普勒雷达产品在冰雹预测和监测中的应用 (106)(7.1).利用新一代多普勒雷达产品冰雹监测流程 (106)H (106)(7.2).强冰雹概率指数hail第八讲:新一代多普勒雷达产品在龙卷风预测和监测中的应用 (108)(8.1).龙卷风的定义、强度等级和分类 (108)(8.2).龙卷风产生多普勒天气雷达资料特征 (108)(8.3).WSR-88D多普勒天气雷达的龙卷风探测方法 (110)(8.4).龙卷风的监测和预警流程 (113)(8.5).个例分析 (116)一. 新一代多普勒雷达基本构成及雷达产品生成数据流简介与常规天气雷达不同,WSR—88D多普勒天气雷达是全相干脉冲多普勒天气雷达,它包含三个微机控制的工作单元,每个单元又由若干次级单元组成,为了准确、合理的操作该雷达,并最有效的使用WSR—88D多普勒天气雷达产品,对这三个工作单元、它们的次级单元、以及相互间的数据信号流有一个简要的了解是必要的。
多普勒天气雷达集训试题附答案一、填空题1、新一代天气雷达主要由雷达数据采集系统RDA、雷达产品生成系统RPG、主用户终端子系统PUP三部分组成。
2、新一代天气雷达的体扫方式有VCP11、VCP21、VCP31、VCP32。
降水模式使用VCP11或VCP21,晴空模式使用VCP31或VCP32,其中VCP11常在强对流风暴出现的情况下使用,而VCP21在没有强对流但有显着降水的情况下使用,其他情况下使用VCP31。
3、多普勒天气雷达测量的三种基数据是基本反射率因子、平均径向速度、谱宽。
4、大气中折射的种类有标准大气折射、超折射、负折射、无折射、临界折射。
5、多普勒雷达是一种全相干雷达,每个发射脉冲的位相已知的,而且是相同的。
6、雷达探测到的任意目标的空间位置可根据仰角、方位角、斜距三个基本要素求得。
7、多普勒雷达除了具有探测云和降水的位置和强度的功能以外,它以多普勒效应为基础,根据返回信号的频率漂移,还可以获得目标物相对于雷达运动的径向速度。
8、达气象方程为=t p∑单位体积i r h PtGσπθϕλ2 222)2(ln1024,其中G表示天线增益,h表示脉冲长度,σ表示粒子的后向散射截面。
9、反射率因子定义为单位体积中所有粒子直径的6次方之和。
它的大小反映了气象目标内部降水粒子的尺度和数密度,常用来表示气象目标的强度。
10、11、雷达波束在降水中传播时能量的衰减是由降水粒子对雷达电磁波的散射和吸收造成的。
12、当发生距离折叠时,雷达所显示的回波位置的方位(或位置)是正确的,但距离是错误的。
13、在风向随高度不变的多普勒速度图像中,零等速度线为一条贯穿屏幕中心的直线。
14、在雷达径向速度图上,任意高度处的真实风向垂直于过雷达测站点和该高度与零值等风速线交点的径向直线;暖平流时零值等风速线呈S型,冷平流时呈反S型;出现急流时会有一对符号相反的并与PPI显示中心对称分布的闭合等风速线出现。
15、新一代雷达速度埸中,辐合或辐散在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线一致。
CINRADSC型天气雷达用途:CINRAD/SC型天气雷达属于S波段全相参体制的多普勒天气雷达,具有实时探测回波强度(dBZ)、径向速度(v)和谱宽(w)等气象参数。
对台风、暴雨、冰雹、龙卷等灾害性天气进行有效监测和预警,对大范围降水进行定量测量,监测恶劣天气带来的风灾,获取降水区中风场信息和一定强的晴空探测能力。
适用于气象、水利、航空、军事和科研等部门。
组成:雷达由天线罩、天线、馈线、天线控制和伺服、速调管发射机、数字中频接收机、数字中频多普勒信号处理器、多普勒数据处理和显示终端、监测和标校控制终端、配电等系统组成。
工作频率2700~2900MHz点频工作雷达体制:全相干脉冲多普勒体制天线形式:8.54米圆抛物面天线强度监测距离:≥500km强度测量距离:≥200km速度监测距离:≥250km方位扫描范围:0°~360°俯仰扫描范围:-2°~+90°距离精度:150m方位精度:0.2°仰角精度:0.2°高度精度:200m(距离≤100km),300m(距离>100km)强度参数测量范围:-10~+70dBZ速度参数测量范围:±48m/s(250km),±78m/s(150km)谱宽参数测量范围:0~16m/s电源电压:三相380V±10% 50Hz±1Hz整机功耗:≤25Kw工作条件温度:0℃~+40℃(室内);-40℃~+55℃(室外)相对湿度:90%~96%(室内30℃)95%~100%(室外30℃)海拔高度:4500米以下抗风能力:风速≤50m/s时正常工作风速≤60m/s时(阵风)天线不产生永久形变雷达具有防潮、防霉、防盐雾、防风沙的性能MTBF≥400小时;MTTR≤0.5小时运输方式公路、铁路、水路和航空运输天线罩直径:12m 射频损失:≤0.3dB天线天线直径:8.54m 增益:≥44dB波束宽度:≤1.0°第一旁瓣电平:≤-29dB远端附瓣(10度以外):≤-40dB发射机脉冲峰值功率:≥750kW 发射脉冲宽度:1、4μs脉冲重复频率:300~1000Hz(1μs)300~450Hz(4μs)参差重复频率比:2/3、3/4 相位稳定度:≤0.15°接收机中频频率:30MHz 噪声系数:≤4dB线性动态范围:≥90dB灵敏度:优于-107 dBm(1μs)优于-113 dBm(4μs)信号处理器A/D转换器位数:14位库长:125m、250m、500m强度处理:距离上采用分库累积平均方位角上采用滑动累积平均多普勒处理:脉冲对算法(PPP)快速傅立叶变换(FFT)双重频去速度模糊(DPRF)随机相位法(RPHASE)处理范围:500km 地物对消能力:30~50dB距离平均数:1、2、4、8 方位平均数:16、32、64、128信号强度的估算精度:优于1dB平均速度估值误差:1m/s(S/N>10dB 速度谱宽<4m/s)谱宽估值误差:1m/s(S/N>10dB)输出信号:触发脉冲dBZ,V,W信号和dBT信号伺服系统天线扫描方式:PPI、RHI、体扫天线扫描速度:PPI 为0~18°/s可调RHI 为0~3°/s可调天线定位精度:方位、仰角均≤0.2°气象雷达原理:雷达通过方向性很强的天线向空间发射脉冲无线电波,它在传播过程中和大气发生各种相互作用。