半导体物理绪论
- 格式:ppt
- 大小:2.59 MB
- 文档页数:47
半导体重点总结(1-7章)绪论1. 制作pn 结的基本步骤。
(重点,要求能够画图和看图标出步骤)第一章. 固体晶体结构1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。
大部分化合物半导体材料是III 族和V 族化合形成的。
2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而成)、InP 、ZnS 。
类似的也有三元素化合物半导体。
3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。
多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。
似晶非晶。
4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。
晶胞就是可以复制出整个晶体 的小部分晶体。
5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。
例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。
单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。
比如上图(c )假设晶格常数为5A 。
求原子体密度。
8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。
9. 特定原子面密度:原子数/截面面积。
计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。
其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。
举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度:该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2()223384 3.210510cm ρ-==⨯⨯个原子/举例2:第一次作业中有一道小题是计算硅晶体在晶面(1,1,1)的面密度,晶格常数为a ,如下图可以知道如图所示的等边三角形的边长为√2*a,三个角顶点截面角度为60度,所以该面实际占据这个三个点的比率都为1/6,三个面心点截面角度为180度,所以该面实际占据这个三个点的比率都为1/2.所以该面拥有原子数为3*1/6+3*1/2=1/2+3/2=2.等边三角形面积为√3/2*a^2,所以可以算出面密度为4/(√3a^2).10. 晶向:与晶面垂直的矢量(在非简立方体晶格中不一定成立)。
半导体物理-侯艳芳课件绪论物理基础半导体物理是现代电子学和光电子学的基础学科之一,其中包括了半导体材料、器件和电子器件中的物理性质和现象。
本文旨在介绍半导体物理领域的基础知识和重要概念,为读者提供一个全面的绪论。
一、半导体材料半导体材料是半导体科学和技术的基础。
半导体材料的禁带宽度和能带结构决定了它的导电性质。
本节将重点介绍以下几类半导体材料:1. 硅(Silicon):硅是最常用的半导体材料之一,它具有许多优异的性质,如稳定性好、热性能优异、生产工艺成熟等。
硅在电子学中的应用非常广泛,例如集成电路、太阳能电池等。
2. 砷化镓(Gallium Arsenide):砷化镓是另一种常见的半导体材料,它具有高电子迁移率和高饱和漂移速度,适用于高频率和高速度的电子器件。
砷化镓在通信领域、雷达技术和高速电子学等方面有广泛应用。
3. 碳化硅(Silicon Carbide):碳化硅是一种能承受高温、高压和高电场的半导体材料,具有优异的热稳定性和宽的能带宽度。
碳化硅在电力电子、汽车电子和高温电子学等领域有重要应用。
二、半导体器件半导体器件是通过控制半导体材料的导电性质来实现电子设备功能的关键组件。
常见的半导体器件包括二极管、晶体管、场效应管和集成电路等。
1. 二极管(Diode):二极管是最简单的半导体器件,由一个PN结构构成。
它具有只允许一个方向通电的性质,用于整流和电压调整等电路。
2. 晶体管(Transistor):晶体管是一种具有放大和开关功能的半导体器件。
根据结构和工作原理的不同,晶体管可分为双极型晶体管(BJT)和场效应晶体管(FET)两种类型。
3. 集成电路(Integrated Circuit):集成电路将大量的晶体管、电阻和电容等器件集成在一个小型芯片上。
它广泛应用于计算机、通信、消费电子和医疗设备等领域。
三、物理基础半导体物理的理论基础主要包括能带理论、量子力学和半导体统计等。
1. 能带理论:能带理论是解释半导体材料中电子能级分布的重要理论。
半导体物理导论导言半导体物理是研究半导体材料中电子行为和电子器件原理的学科。
半导体是一种介于导体和绝缘体之间的材料,具有独特的电子特性。
本文将介绍半导体物理的基本概念和原理,并探讨半导体器件的工作原理和应用。
一、半导体基本概念半导体是一种能够在室温下导电的材料,其电导率介于导体和绝缘体之间。
半导体晶体的原子排列具有定序性,形成晶格结构。
半导体材料中的电子能级被称为能带,其中价带是由价电子占据的能级,导带是由自由电子占据的能级。
在能带之间存在禁带宽度,当禁带宽度较小时,外加电场或热激发就可以将电子从价带激发到导带,使半导体产生导电性。
二、半导体的本征和杂质掺杂半导体的本征掺杂是指在半导体晶体中掺入同种元素的杂质,以改变半导体的导电性质。
本征掺杂分为n型和p型,n型半导体中掺入的杂质是五价元素,如磷、砷等,而p型半导体中掺入的杂质是三价元素,如硼、铝等。
杂质原子的掺入会形成额外的能级,增加半导体中的自由电子或空穴浓度,从而改变材料的导电性。
三、PN结和二极管PN结是由n型半导体和p型半导体组成的结构。
当n型半导体和p型半导体通过扩散结合在一起时,形成了PN结。
PN结具有整流作用,即只允许电流在一个方向上通过。
当外加正向偏置电压时,PN结导通,电流可以流过;当外加反向偏置电压时,PN结截止,电流无法通过。
这种特性使得PN结被广泛应用于二极管等电子器件中。
四、场效应晶体管场效应晶体管(FET)是一种基于半导体材料的三端器件。
FET的关键是根据电场控制半导体中的电子浓度。
FET有两种类型:MOSFET和JFET。
MOSFET是以金属-氧化物-半导体结构为基础,通过改变栅极电压来控制电流;JFET是以PN结为基础,通过改变栅极电压来控制电流。
FET具有高输入阻抗和低输出阻抗的特点,被广泛应用于放大器、开关和模拟电路中。
五、半导体器件的应用半导体器件在现代电子技术中有广泛的应用。
例如,二极管作为电子元件的基本构建块,广泛应用于整流、调制、信号检测等电子电路中。