矿井低压漏电保护研究
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
煤矿井下低压供电系统漏电故障分析与解决方案1. 引言1.1 煤矿井下低压供电系统漏电故障的重要性煤矿井下低压供电系统是煤矿生产中至关重要的设施之一,而供电系统漏电故障则是一个潜在的严重安全隐患。
煤矿井下的照明、通风、排水、机械运输等设备都需要依靠供电系统来进行正常运转,一旦发生漏电故障,将可能导致设备停止工作甚至发生火灾等严重后果。
对煤矿井下低压供电系统漏电故障进行及时的分析和处理显得尤为重要。
煤矿井下环境复杂,通常处于封闭状态,一旦发生漏电故障不仅会影响到生产效率,更可能危及到工人的生命安全。
加强对煤矿井下低压供电系统漏电故障的防范意识,提高漏电故障的检测和处理能力,对确保煤矿生产和工人安全具有重要意义。
只有深入了解漏电故障的原因,并采取相应的预防措施和解决方案,才能有效降低漏电故障对煤矿生产所带来的影响,确保供电系统的稳定运行。
重视煤矿井下低压供电系统漏电故障的重要性,及时采取措施解决问题,对于煤矿生产和工人安全具有重要意义。
1.2 煤矿井下低压供电系统漏电故障的危害漏电故障可能造成电路短路,导致设备损坏或发生火灾事故。
由于煤矿井下环境封闭,一旦发生火灾,可能会造成严重的人员伤亡和财产损失。
漏电故障还会影响煤矿井下的生产正常进行。
煤矿是一个高度安全要求的环境,任何一次供电事故都可能导致矿工的生命安全受到威胁,同时也会影响矿山的生产计划。
漏电故障还可能给煤矿井下的工作人员带来安全隐患,增加他们的工作压力和安全风险。
在煤矿井下的工作环境,电气设备的正常运行对于矿工的安全至关重要,一旦出现漏电故障,会增加矿工的工作负担和危险。
煤矿井下低压供电系统漏电故障的危害不容忽视,必须采取有效的预防和解决措施来保障矿工的生命安全和煤矿的正常生产。
2. 正文2.1 煤矿井下低压供电系统漏电故障的原因分析1. 设备老化:随着设备的长期运行,煤矿井下低压供电系统中的电缆、接头、开关等设备会出现老化现象,导致绝缘能力下降,容易引发漏电故障。
谈谈煤矿井下供电系统中低压漏电保护摘要:漏电保护作为煤矿井下供电三大保护之一,在煤矿井下供电安全上发挥着极其重要的作用。
煤矿井下漏电的结果会导致人身触电和瓦斯爆炸危险,因此矿井电网必须装设漏电保护装置,以保证井下高压供电安全可靠。
通过结合实际分析漏电产生的原因,得出漏电预防措施,为煤矿井下预防漏电事故提供理论依据。
关键词:煤矿井下;供电系统;漏电保护漏电保护是用来防止人身触电和漏电引起事故的一种接地保护装置,当电路或用电设备漏电电流大于装置的整定值,或人、动物发生触电危险时,它能迅速动作,切断事故电源,避免事故的扩大,保障了人身、设备的安全。
在煤矿井下供电系统发生漏电故障,则可能引起瓦斯和煤尘爆炸、电雷管先期爆炸、以及电火灾等事故,不仅会影响到井下供电系统的正常稳定供电,同时还可能威胁到井下作业人员的生命安全,《煤矿安全规程》中,明确规定在煤矿井下这种恶劣供电环境中,必须结合井下用电负荷情况采取完善可靠的防护措施,有效提高井下供电系统供电安全性和可靠性。
1漏电保护原理1.1附加直流电源漏电保护如果检漏继电器上欧姆表显示电网各相对地的绝缘阻值都有较大的下跃,那么电网必定是发生漏电等故障。
为了精确控制电网对地绝缘阻值的变化,可以在电网与地间通过一个的直流电流,如果电流的控制准确,那么电流的大小就能表征电网对地绝缘阻值的变化。
这样,通过简单地检测这条附加电流的变化就能有效地监测漏电。
1.2零序电流保护在漏电故障发生后,故障处电网三相中每一相上都会产生一个电压,即零序电压。
每一相上出现的零序电压都是相等的,而且方向也相同。
有零序电压作用于绝缘电阻上必定会产生电流,及零序电流。
由于变压器中性点与地之间没有零序电流通路,所以变压器内部没有零序电流通过,而零序电流只能在绝缘电阻和故障点之间。
由此可见,对于单一支路来讲,在电源端装设零序电流保护装置,不能反映该线路的故障。
对于多支路的单侧电源辐射式电网中,如果有一个支路发生故障,那么各个分支路中都将有零序电流通过,这些分支上的零序电流汇集到故障处后就集中构成了通过故障处的电流。
煤矿低压选择性漏电保护新探1 问题的提出第一,根据《煤矿安全规程》相关要求:矿井主要高压供电线路上必须安装有选择性的单相接地保护装置,保证在高压线路出现单相接地时接地电流超过安全电流时能够立即切断线路供电,保证供电安全。
在井下低压供电线路上,必须装设选择性漏电保护装置或者检漏保护装置,并保证其正常运行,当线路出现漏电现象、线路绝缘电阻下降到指定数值后,该装置保证能够自动切断漏电的供电线路,在保证供电安全的前提下减少事故影响范围。
第二,井下低压供电系统中常用的漏电保护有三种,分别是漏电保护(非选择性)、选择性漏电保护及漏电闭锁保护。
漏电保护(非选择性)是采用附加直流电源法;选择性漏电保护是取零序电流和零序电压两种信号,若零序电流滞后零序电压近90°,则该支路为故障线路;漏电闭锁则是在开关合闸前通过对负载设备进行检测,若检测设备绝缘值低于设定值则该开关拒绝启动。
第三,漏电保护(附加直流)跳总开关,停电面积大;选择性漏电保护设置在分开关上,只跳漏电支路。
但当供电网络分布电容大到一定程度时,零序电压就降到取不出信号,无法起到漏电保护的作用。
2 选择性漏电保护附加直流电源漏电保护的缺点是没有选择性,只有安装在变压器低压侧总电源开关处。
这样当低压电网任一点发生漏电时,都会引起总开关跳闸,使整个低压电网停电,停电范围大,寻找故障点所需花费的时间较长,对生产的影响也大。
由于矿井供电线路使用的是变压器中性点不接地的供电方式,因而可以安装选择性漏电继电器。
选择性漏电保护具有横向选择性,弥补了漏电保护的不足,即只切断漏电故障支路的供电电源。
2.1 基本原理由变压器中性点不接地电网分析可知:当电网正常运行时,各相对地电压对称,电网无零序电压,也无零序电流;当电网发生不对称漏电时,各相对地电压不再平衡,电网出现零序电压U0,因而必有零序电流I0。
选择性漏电保护的原理就是利用零序电流实现不对称漏电保护的。
它利用零序电流互感器LH作为漏电检测元件。
煤矿井下漏电保护及相应措施探讨摘要:煤矿井下作业环境复杂,对于供电系统来说,一旦发生漏电问题,可能会引发严重事故,因此,煤矿企业方面需要重视井下漏电问题,采取有效措施进行防护。
要正确选择和应用漏电保护技术,同时加强供电系统检修,消除电力隐患,进一步提高井下供电安全性,创造一个稳定的生产环境。
本文结合煤矿井下生产,对供电系统漏电保护进行分析研究,提出了几点解决措施。
关键词:供电系统;漏电保护;井下开采;保护装置引言煤矿井下环境非常恶劣,虽然煤矿开采单位在开采煤矿时已经采用比较先进的低压馈电技术,但是一些普通的电气设备在使用过程中仍然会受到恶劣环境的影响,容易出现漏电、短路等故障。
其中,漏电事故的危害最大,一旦出现漏电问题,将会给矿井内工作人员的人身安全造成很大的威胁,所以,必须要做好煤矿井下漏电保护工作。
下文对此进行简要阐述。
一、煤矿井下供电系统漏电原因分析(一)设备自身问题设备因素是系统漏电的主要因素之一,由于矿井的工作环境比较恶劣,大部分的电缆都会发生绝缘老化、潮湿等问题,从而影响到系统的正常、稳定、安全的工作,导致绝缘参数的电阻值大幅度降低,最终导致漏电问题的出现。
而且,由于相应的开关设备已经使用了很久,接线板很有可能会被水浸透,肯定会有漏电的问题,而且,机械设备内部的电路系统也有可能会因为绝缘老化,导致导线接触金属外壳漏电。
此外,由于长期使用,电气设备的电线绝缘性能都会降低,线圈的散热效率也会降低,导致线圈的材质发生老化,甚至有可能从内部连接处脱落。
(二)安装施工因素在煤矿井下生产系统构建过程中,供电系统施工属于重点内容,为了提高整个机电设备的使用的质量,必须确保整个作业过程的完整性、规范性。
而不正确的施工作业将会影响整个机电设备使用的安全和使用的效率。
如果电缆的安装方式有问题,则会导致相线与接地线路的连接不正确,在供电后会发生严重的漏电现象。
另外,电缆结构与相应设备的连接存在问题,如芯线接合强度不足、封口效果不佳、压板结构紧密性不足等问题,将导致接合接头脱落,从而影响相线与金属外壳的搭接效果。
煤矿井下低压馈电开关的漏电保护浅述摘要:煤矿井下工作环境比较复杂,地下阴暗潮湿,电气设备在运行过程中非常容易发生漏电问题,继而引发严重的安全事故。
在煤矿生产活动中,大多数电气设备都会受到潮湿环境的影响,即便是质量较好的低压馈电开关,也会受到一定程度的影响。
为了避免漏电问题发生,煤矿井下低压供电管理人员会安装质量比较好的低压馈电开关,虽然质量较好的低压馈电开关具有很高的安全系数,但是其也同样会受到其他电气设备的影响,当其他电气设备发生漏电问题时,低压馈电开关的正常功能将难以发挥。
因此,管理者要加强对低压馈电开关漏电保护工作的重视,制定完善的低压馈电开关漏电保护方案,本文就围绕煤矿井下低压馈电开关的漏电保护开展研究,希望能探索出有效、可行的漏电保护措施。
关键词:煤矿;低压馈电开关;漏电保护技术引言:煤矿井下环境非常恶劣,虽然煤矿开采单位在开采煤矿时已经采用比较先进的低压馈电技术,但是一些普通的电气设备在使用过程中仍然会受到恶劣环境的影响,容易出现漏电、短路等故障。
其中,漏电事故的危害最大,一旦出现漏电问题,将会给矿井内工作人员的人身安全造成很大的威胁,所以,必须要做好煤矿井下低压馈电开关的漏电保护工作。
1漏电保护分类煤矿井下低压馈电开关的漏电保护可以划分为两个类型,分别为集中型、分散型。
如果煤矿井下低压馈电开关的漏电保护是集中型的,那么其漏电保护方式就是单相接地,在漏电问题发生之后会发挥一定的保护作用。
如果煤矿井下低压馈电开关的漏电保护是分散型的,那么其漏电保护方式就是三相对地绝缘,通过降低对地绝缘水平来实现漏电保护。
在漏电保护过程中,可以借助继电器来实现对附加直流的检测,从而达到对分散型漏电以及集中型漏电的保护。
整流电路是生成直流电源的主要方式,附加电源的负极会通过直流继电器,同时,还会经过零序电抗器、三项电抗器和三相电网[1]。
在直流电源中一般会出现正极接地的现象,电阻R在同直流电流形成通路的过程中,需要对电网进行充分的应用。
煤矿井下馈电开关选择性漏电保护研究发布时间:2022-07-28T09:23:03.302Z 来源:《福光技术》2022年16期作者:樊卓[导读] 煤矿井下湿度大,空间小,工作环境恶劣,矿用电气设备在这种环境条件下运行要求更加苛刻。
山东丰源远航煤业有限公司北徐楼煤矿山东滕州 277500摘要:附加直流电源检测保护没有选择性,任何地方发生漏电故障开关都会跳闸。
零序电流方向性保护是通过零序电流和零序电压之间的相位比较来实现漏电保护,达到选择性漏电保护的目的。
馈电开关同时设置了两种漏电保护功能,满足了煤矿井下供电的苛刻要求,总开关和分开关选用不同的漏电保护功能,以实现煤矿井下的安全供电。
关键词:煤矿井;馈电开关;选择性漏电保护引言:煤矿井下湿度大,空间小,工作环境恶劣,矿用电气设备在这种环境条件下运行要求更加苛刻。
煤矿井下使用的防爆电动机和供电矿用电缆是供电系统的薄弱环节。
常见的漏电故障有以下几种:(1)由于挤压或磨损等机械损伤、破坏电缆绝缘、出现漏电使一相接地。
(2)由于受潮使电动机及其供电线路电阻下降、漏地电流增加使电动机外壳及电器外壳带电。
(3)电动机及其供电线路绝缘因老化电压击穿等原因使一相接地。
(4)电动机及其供电线路带电体的裸露部分被人员直接或通过工具等导体接触造成一相接地。
煤矿井下电气故障主要是设备漏电引起,电机和电缆漏电不仅会造成人员触电事故或设备损坏事故,还会引起瓦斯爆炸和煤尘爆炸等危险。
因此,矿用馈电开关采用安全可靠的漏电保护功能,对井下安全供电具有重要意义。
1当前漏电保护技术存在的问题及改进措施当前我国煤矿井下实用选择性的漏电保护技术依然存在很多问题,至今为止,我国多数矿井生产企业的选择性漏电保护系统在使用过程中还依然会频繁发生问题,整体应用效果较差,除了会出现错选、误选等问题外,也会发生不定期的开跳闸现象,进而导致井下大面积停电。
当前多数矿井采用的是零序功率的开关选择性漏电保护系统,但这种系统在漏电检查期间会存在300ms的延迟,且电抗器也具备一定的电流电容补偿功能,以致增大了触电事故的发生几率,很容易引起瓦斯爆炸问题。
浅析煤矿井下低压馈电开关漏电保护技术煤矿是一个特殊的工作场所,矿井下低压馈电开关的安全运行对于煤矿生产和人员安全至关重要。
在煤矿生产过程中,经常会遇到电气设备漏电的问题,如果不及时处理,会对煤矿生产和人员安全造成严重危害。
煤矿井下低压馈电开关的漏电保护技术显得尤为重要。
煤矿井下低压馈电开关漏电保护技术主要包括漏电保护装置的选择和安装、漏电保护系统的运行和维护等方面。
下面将从这几个方面对煤矿井下低压馈电开关漏电保护技术进行浅析。
一、漏电保护装置的选择和安装漏电保护装置是煤矿井下低压馈电开关重要的保护设备,它能够监测电路中的漏电情况,一旦发现有漏电现象,能够迅速切断电气设备的供电,起到保护作用。
对于煤矿井下低压馈电开关的漏电保护装置的选择和安装,应该严格按照相关的国家标准和煤矿安全标准进行。
应选择符合国家标准的漏电保护装置,且要求其具有可靠的切断电路的能力,能够准确快速地检测到漏电情况。
在安装漏电保护装置时,应该保证其能够稳固可靠地固定在相应的位置,且接线要符合要求,避免出现接触不良、接触过紧等现象。
还应该定期对漏电保护装置进行检查和测试,确保其能够在需要时迅速切断电路。
二、漏电保护系统的运行漏电保护系统的运行是煤矿井下低压馈电开关漏电保护技术的重要组成部分。
漏电保护系统应该能够稳定可靠地工作,一旦发现漏电,能够及时切断电路,避免事故发生。
漏电保护系统的运行应遵循以下几点要求:应该定期对漏电保护系统进行检查和测试,确保其功能正常、工作稳定。
应该培训相关人员,使其熟练掌握漏电保护系统的操作和维护技术,提高其对漏电保护系统的认识和使用能力。
在日常生产中,应该加强对漏电保护系统的监控和管理,确保其在工作时处于正常状态,一旦发现异常情况,能够及时处理。
煤矿井下低压馈电开关漏电保护技术在煤矿生产中起着至关重要的作用。
针对煤矿井下低压馈电开关的漏电保护技术,应该做到以下几点:一是选择和安装漏电保护装置时,要遵循国家标准和煤矿安全标准,确保其质量可靠;二是漏电保护系统的运行要稳定可靠,定期检查和测试;三是漏电保护系统的维护要及时得当,发现问题要及时处理。
浅析煤矿井下低压供电系统漏电保护问题摘要:煤矿企业是国民经济发展的支柱型企业,企业开发的煤炭资源能够有效满足各行各业的发展需求。
在煤炭开采与生产过程中,需要应用多种设备和技术,生产的安全风险系数相对比较高。
供电设备作为煤矿生产的基础设备之一,其安全、高效运行事关煤矿工人的生命安全,供电设备一旦发生故障可能会引发火灾以及其他安全事故。
因此,在煤矿开采过程中做好供电设备的安全防护与电气保护工作极为重要。
关键词:煤矿;低压供电系统;漏电保护引言矿井供电系统的可靠性和安全性是保证工作面安全、高效生产的基础。
工作面供电包括低压供电和高压供电。
其中,低压供电的保护装置主要依赖于移变低压馈出柜和馈电开关等气设备。
随着工作面低压电气设备容量及电压等级、工作面距离及供电距离的增加,传统馈电保护装置的可靠性和保护无法满足实际生产的要求。
因此,本文开展关于煤矿供电馈电保护装置的研究,旨在提升其可靠性、安全性和连续性。
1零序电压检测原理分析对于运用变压器中性点不接地系统的低压电网而言,其在常规作业时供电电缆多能维持良好的绝缘性,这一状态下电缆对地绝缘电阻值一致,电网中不会出现零序电压。
但如果电网出现漏电事故或单相接地现象,整个系统电网的三相对地绝缘阻值便会不再相同,从而造成地缘阻抗失衡,系统电网生成零序电压。
因此,借助零序电压互感装置对系统电网进行实时检测,一旦电网发生漏电或出现电缆绝缘阻值减小,进而造成零序电压产生,互感装置便会立即产生感应,并将相关信息上报控制中心。
而在零序电压数值等同电网漏电整定值后,该系统便会第一时间切断电网供电,以充分保证系统安全。
2煤矿电气设备与供电系统保护的作用2.1降低电火灾发生的概率在煤矿采掘工作实施期间,煤矿工人必须要掌握一定电力方面的知识,这样在电气设备发生故障后,才能更好地进行保护自我。
然而,当前中国大部分煤矿工人的综合素质参差不齐,许多工作人员对于供配电基础知识了解不多,当电气设备发生故障引发安全事故后,缺乏一定自救能力。
矿井低压漏电保护研究
漏电保护是煤矿井下三大重要保护之一,对人身安全和设备的稳定运行起到至关重要的作用。
在中性点不接地系统中,单相漏地占绝大多数,尽管它不破坏系统的对称性,但非漏电相对地电压会增加为原来的倍,若不及时处理,极易发展成两相短路,造成更大危害。
本文针对矿井低压漏电保护进行研究。
标签:低压漏电动作保护
0引言
低压漏电保护的主要作用是:防止人身触电;不间断地监视井下采区低压电网的绝缘状态,以便及时采取措施,防止其绝缘进一步恶化;减少漏电电流引起瓦斯、煤尘爆炸的危险,防止因漏电电流引爆电雷管,防止短路电流所产生的电弧烧穿隔爆型电气设备的外壳,或使其外壳的温度升高超过危险值,引起瓦斯、煤尘爆炸;预防电缆和电气设备因漏电引起的相间短路故障;选择性漏电保护装置的使用;将会缩短漏电的停电范围,并便于寻找漏电故障,及时排除,从而缩短了漏电停电时间。
为了防止电网触电及由此造成的危害,以及人触及带电体时造成的触电事故,《煤矿安全规程》规定:低压馈电线上必须装设漏电保护装置或有选择性的漏电保护装置。
它可以在设备或线路漏电时,通过保护装置的检测机构获得异常信号,经中间机构转换和传递,然后促使执行机构动作,自动切断电源而起到保护作用。
1井下低压漏电保护动作分析
根据我国井下低压电网的运行情况,一般认为对低压配电网漏电保护实行三级保护,级数再增加将没有使用意义。
实行分级保护的目的是从人身、设备安全和正常用电的角度出发,既要保证能可靠动作,切断电源,又要把这种动作跳闸造成的停电限制在最小范围内。
常用的漏电保护装置多为附加直流电源式保护和零序电流保护装置。
总保护处安装附加直流电源保护,无论系统发生对称性漏电还是非对称性漏电,保护均能可靠性动作;分支出口处安装零序电流保护作为横向选择性保护的主保护:而漏电闭锁则设置在磁力启动其中,作为最后一级保护,但它在运行中发生漏电情况下却是不动作的,仅仅是作为设备启动前的绝缘检测。
2井下低压漏电保护存在的问题
目前很多矿井仍然普遍使用检漏继电器和漏电保护单元组成的漏电保护系统,其中零序电压不仅与漏电电阻有关,而且与系统容抗、电网电压有很大关系,由于受系统电压和系统电容的影响,其动作时间误差很大。
尽管当时已经调整好分馈和总馈之间的动作关系,但是随着电缆的不断延伸,系统电容也跟着发生变化,当支路漏电时,常常会出现分路开关没有动作,而总开关已经跳闸的误动现象。
在实行分级保护的低压电网中,决定分级的条件是下一级保护器的额定动作时间(包括主开关断开电路的跳闸时间)必须小于上一级保护器的极限不动作时间。
对于下级保护,要求其额定动作时间达到最快,从而快速切除故障。
对于上一级保护,为保证选择性就需一定的时间延时,以躲过下级保护在动作跳闸时所需时间。
然而,据现场调查,目前在一些智能型开关中分支开关跳闸时间超过200ms,则附加直流电源保护的动作时间需加上200ms的固定延时,才能保证选择性。
因此当发生对称性漏电(分支无法检测)、分支保护失效或开关拒动时,总保护动作时间就更长。
此时将会使人身触电电流增大,不但不能保证人身安全,更不能防止沼气、煤尘爆炸。
3提高低压漏电保护准确性的措施
漏电保护的一个重要指标是动作时间,除磁力启动器作为末级保护的漏电闭锁保护要灵敏可靠外,分支馈电的漏电保护动作时间应不大于50ms,总馈的漏电动作时间应设置在250ms,这样才能满足选择性漏电的要求。
目前能够满足这种在时间上灵敏动作要求的馈电开关必须选择智能型单片机控制的开关。
对系统电容的变化要及时修正。
特别是对零序电压法检测漏电支路的方式中,当线路电缆长度增加较大时,此时对地电容电流也加大,则同一漏电电阻时,零序电压降低,漏电保护单元往往出现拒动现象,从而使总馈越级跳电。
此时应该适时对系统电容进行修正,从而消除系统电容变化对零序电压的影响。
很多厂家生产的开关对分支馈电的数量也有一定的要求,通过试验得知,当总馈电下面的分路馈电大于10台,分支线路发生漏电时,其对应的分路开关动作会变得迟缓,有时会造成总开关先于分路开关动作,从而引起大范围停掉电事故。
在单母线分段供电的情况下,当其中一台进线开关出现故障而需要联络开关合闸时,此时运行开关的附加直流电源会叠加在故障开关的三相电抗器和零序电抗器上,使其所测的漏电电阻值增加,从而有可能使设备拒动。
要改变这一现象的途径是分别在两台进线开关后面各增加一台分段开关,当其中一台进线开关停止运行时,其负荷侧所接的分段开关也要分断,这样才可以保证选择性漏电的可靠性。
此外,漏电保护器虽然有效地防止漏电事故的发生,但它仍有不足之处。
所以,为了更可靠地保护线路的安全,还应配合采用接地/接零等保护措施,电气设备良好的接地是漏电保护的一种常见措施。
如果电气外壳良好接地,当发生漏电时,外壳带电。
若人体接触,由于人体电阻远远大于接地电阻,所以漏电电流大部分从接地体流过,从而保护了人的安全。
采用这种保护措施时,要确保接地电阻合符标准,还要确保接地的接线端子牢固。
开关本身的接地性能要好,一般规定,开关本身接地电阻不得大于4欧,如果接地电阻过大,也容易使漏电电流减小,从而出现拒动现象。
4结束语
漏电在煤矿井下有着极大的危害性,必须坚持不懈地使用“漏电保护装置”,
确保井下用电安全。
通过本文的论述,针对井下低压漏电保护的问题所提出的有效措施,对井下供电工作人的有一定的借鉴意义,当然,要有效防范漏电事故的发生,还要提高全民素质,普及安全用电知识:更为重要的是研究、推广有效的漏电保护技术措施,这才是解决问题的根本。