小学五年级下册数学奥数课件-10较复杂的盈亏问题 人教版 (共19张PPT)
- 格式:ppt
- 大小:1.66 MB
- 文档页数:19
第一讲盈亏问题知识要点:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次刚好够分;4.不足适足:一次分配不够,一次分配正好。
一些非标准盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配的对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配的对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配的对象总数。
例一、饲养员将一堆桃子分给一群猴子,如果每只猴子分10个桃子,则缺24个桃子,如果每只猴子分8个桃子,则缺2个桃子。
求有多少只猴子?多少个桃子?分析:这是一道“两亏”题。
练一练、老师给学生发奖品,如果每人7支铅笔少13支;每人6支铅笔少5支。
问学生有几人?铅笔有多少支?例二、五年级给优秀学生发奖品书。
如果每个学生发5册还剩32册;如果其中10个学生每人发4册,其余每人发8册,就恰好发完。
那么优秀学生有多少人?奖品书有多少册?分析:每人发5册,多32册;每人发()册,(多/少)()册;练一练、小明买了一本《五年级奥数》,他计划:若每天做3道题,则剩16道题;若每天坐5道题,则最后一天只要做1道题。
那么这本书共有几道题?小国计划做几天?例三、某校乒乓球队有若干名学生。
如果少一个女生,增加一个男生,则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生人数的一半,乒乓球队共有多少个学生?分析:“少一个女生,增加一个男生,则男生为总人数的一半”可知,女生比男生多2人。
第8讲盈亏问题盈亏问题又叫盈不足问题,是指把固定数量的物品平均分给固定的对象,因为两种不同的分配标准,导致两种不同的分配结果:一种标准分配后有剩余(盈);另一种标准分配后不够分(亏或不足)。
此类问题,要求通过两种分配结果的比较,求出物品总数量和固定对象的个数。
标准的盈亏问题就是两次分配的结果一盈一亏,所以就叫盈亏问题。
基本的数量关系是:(盈+亏)三两种分配标准的数量之差=固定对象数量。
广义的盈亏问题一般还包括以下四种情况:一、两次分配都有余(两盈);二、两次分配都不够分(两亏);三、一次有余,一次刚好够分(盈适足);四、一次分配不够分,一次刚好够分(亏适足)。
解决盈亏问题常用比较的解题策略:通过两次分配盈亏总额与分配数量的比较,先求出固定对象的个数,再求出分配物品的总数量。
此类问题基本数量关系有:①盈适足问题:盈余部分三两种分配标准的数量之差=固定对象数量。
②亏适足问题:亏欠部分三两种分配标准的数量之差=固定对象数量。
③两盈问题:(盈多一盈少)三两种分配标准的数量之差=固定对象数量。
④两亏问题:(亏多一亏少)三两种分配标准的数量之差=固定对象数量。
⑤盈亏问题:(盈+亏)三两种分配标准的数量之差=固定对象数量。
比较常规的盈亏问题,一般可以直接套用上面的数量关系,解决问题。
较复杂的盈亏问题,一般需要先对题中的条件进行适当的转化,将相关问题先转化成典型的盈亏问题,再求解。
【例1】“雏鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵树;如果每人栽7棵,就缺4棵。
问这个小队有多少人一共要栽多少棵树解析】:可以画出线段图帮助理解题意,如下图:观察上图,比较每人栽7棵与每人栽5棵的两种情况,雏鹰小队总人数是不变的。
雏鹰小队栽树总棵数多出:12+4=16(棵);而每个人多栽:7-5=2(棵);所以小队人数为:(12+4)三(7—5)=8(人)。
由小队人数和任意一种栽法,可以求出栽树总棵数:5X8+12=52(棵)或7X8—4=52(棵)。
五年级奥数专题--盈亏问题专题简析:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量.例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块.小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题.盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4.不足适足:一次分配不够,一次分配正好.一些非标准的盈亏问题都是由标准的盈亏问题演变过来的.解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数. 例1.某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半.乒乓球队共有多少名学生?变式训练1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍.学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍.两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半.这些优秀学生中男、女生各多少人?例2.幼儿园老师拿出苹果发给小朋友.如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个.有多少个小朋友?共有多少个苹果?变式训练1.给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个.有多少个小朋友?有多少个梨?2.老把一些铅笔奖给三好学生.每人5支则多4支,每人7支则少4支.老师有多少支铅笔?奖给多少个三好学生?3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每船坐6人;如果减少一条船,正好每条船上坐9人.这个班一共有多少个同学?例3.幼儿园老师将一筐苹果分给小朋友.如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个.已知大班比小班多3人,这筐苹果有多少个?变式训练1.一些学生搬一批砖,每人搬4块,其中5人要搬两次;如果每人搬5块,就有两人没有砖可搬.这些学生有多少人?这批砖有多少块?2.老师给幼儿园小朋友分糖,每人3块还多10块;如果减少2个小朋友再分,每人4块还多7块.原来有多少个小朋友?有多少块糖?3.筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?例4.幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块.如果只分给小班的小朋友,平均每人分得多少块?变式训练1.老师把一批书借给甲组同学,平均每人借4本.如果只借给甲组的女同学,每人可借6本.如果只借给甲组的男生,平均每人借到几本?2.甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵.如果把这些红花让甲组同学单独做,每人要多做4朵.如果把这些红花让乙组同学单独做,每人要做几朵?3.老师把一袋糖分给小朋友.如果只分给小班,每人可得12块;如果只分给中班和小班,每人只能分到4块.如果这袋糖只分给中班,每人可分到几块?例5.全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学.这个班有多少个同学?变式训练1.老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个.这篮苹果一共有多少个?2.五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上价8人.五年级共有多少人?3.一个旅游团去旅馆住宿,6人一间,多2个房间;若4人一间又少2个房间.旅游团共有多少人?。