第一章--电力系统基础知识资料讲解
- 格式:doc
- 大小:1.07 MB
- 文档页数:15
第一章电力系统继电保护基础知识1。
1 判断题1.1.1电力系统振荡时任何一点电流与电压之间的相位角都随功角的变化而改变;而短路时,系统各点电流与电压之间的角度基本不变的。
()答:对1。
1.2 某电厂的一条出线负荷功率因数角发生了摆动,由此可以断定电厂与系统之间发生了振荡。
( )答:错1.1。
3 系统振荡时,变电站现场观察到表计每秒摆动两次,系统的振荡周期应该是0。
5秒。
()答:对1.1.4 暂态稳定是指电力系统受到小的扰动(如负荷和电压较小的变化)后,能自动地恢复到原来运行状态的能力。
()答:错1.1。
5 全相振荡是没有零序电流的,非全相振荡是有零序电流的,但这一零序电流不可能大于此时再发生接地故障时,故障分量中的零序电流。
()答:错1。
1。
6 系统振荡时,线路发生断相,零序电流与两侧电动势角差的变化无关,与线路负荷电流的大小有关。
()答:错1。
1.7 电力系统振荡时,电流速断、零序电流速断保护有可能发生误动作。
( ) 答:错1.1.8 快速切除线路和母线的短路故障是提高电力系统静态稳定的重要手段。
()答:错1。
1。
9 电力系统的不对称故障有三种单相接地、三种两相短路接地、三种两相短路和断线、系统振荡。
( )答:错1.1。
10 零序、负序功率元件不反应系统振荡和过负荷。
()答:对1.1。
11 220kV系统时间常数较小,500kV系统时间常数较大,后者短路电流非周期分量的衰减较慢.( )答:对1。
1。
12 电力系统有功出力不足时,不只影响系统的频率,对系统电压的影响更大.( ) 答:错1。
1。
13 空载长线路充电时,末端电压会升高。
这是由于对地电容电流在线路自感电抗上产生了电压降。
()1.1.14 无论线路末端断路器是否合入,始端电压必定高于末端电压。
()答:错1.1.15 输电线路采用串联电容补偿,可以增加输送功率、改善系统稳定及电压水平。
( )答:对1。
1.16 连锁切机即指在一回线路发生故障而切除这回线路的同时,连锁切除送电端发电厂的部分发电机.( )答:对1.1.17 只要电源是正弦的,电路中的各个部分电流和电压也是正弦的。
电力系统基础电气与自动化工程学院2012年电力系统基础本课程是电力系统中重要的基础知识,包括:(1)电力系统的基本知识;(2)电力网元件的等值电路和参数计算;(3)简单电力系统的潮流计算(4)电力系统的正常运行与控制;(5)电力系统故障与实用短路电流计算。
本课程:(1)与房大中老师等编电力系统分析配套(2)是考电力(电力系统及其自动化、高电压技术)方面的研究生的笔试面试主要课程第1章电力系统基本知识1.1 电力系统的组成1.2 电力系统概况1.3 电力系统的特点和对运行的基本要求1.4 电力系统的接线方式和中性点接地方式1.5 电力系统的输电方式1.6 电力系统负荷1.7 电力系统电源类型及特点简介第1章电力系统基本知识1.1电力系统的组成电能是由一次能源经加工转换成的能源,现在是人类最主要的二次能源。
¾优点:便于大量生产和远距离输送;方便转换和易于控制;损耗小;效率高;污染小。
¾缺点:不便大量储存;作为统一、不可分割的系统,它的生产、输送、消费需同步完成;需要维持电压、频率的稳定,系统安全稳定。
发电厂输电线路升压站配电线路枢纽、降压站照明、动力配变分布式发电1.1电力系统的组成第1章电力系统基本知识(1) 电力系统--是由生产、输送、分配和消耗电能的所有电气设备所组成的统一整体。
它的主要设备是生产电能的发电机、输送和分配电能的变压器和电力线路以及消耗电能的各种用电设备(如电动机等)。
习惯上称其为一次系统;电力系统还包括继电保护装置、安全自动装置、通信设备和调度自动化等辅助系统,一般称为二次系统。
1.1电力系统的组成1.1电力系统的组成(2) 电力网--是电力系统中除去发电机和用户,剩余的变压器和电力线路所组成的输送、分配电能的网络。
1.1电力系统的组成(3) 动力系统--是电力系统再加上电厂的原动机等动力部分。
动力部分主要有:火电厂的锅炉和汽轮机等;水电厂的水库和水轮机等;原子能电厂的反应堆等;风力发电场的风机等。
习惯上,将有带动发电机转动的动力部分、发电机、升压变电所、输电线路、降压变电所和负荷等环节构成的整体成为动力系统。
由各类降压变电所、输电线里和生涯变电所组成的电能传输和分配的网络成为电力网。
由发电机、电力网和负荷组成的统一体成为电力系统。
利用固体、液体、气体燃料的化学能来生产电能的的工厂。
利用河流所蕴藏的水能资源来生产电能的工厂。
可分为堤坝式和引水式电厂。
还有核电厂、风力发电、地热发电、潮汐发电、太阳能发电等。
3、 6、 10、 35 、 63 、 110、 220、 330 、 500、 750kV,均为三相交流系统的线电压。
由以上可知,当输送功率一定时,线路的电压越高,线路中通过的电流就越小,所用导线的截面就可以减小,用于导线的投资可以减少,而且线路中的功率损耗、电能损耗也就会相应降低。
因此大容量、远距离输送电能要采用高压输电。
电压越高,要求线路的绝缘水平也就越高;线路杆塔投资增大,输电走廊加宽,变压器、电力设备等的投资也增加。
根据经验,电力系统输电额定电压等级中相邻的两个电压之比,在电压为 110kV 以下是一般为 3 倍左右,在 110kV 以上时宜在 2 倍左右。
理论上,用电设备的额定电压应和电网的额定电压相一致。
实际上,由于输送电能时在线路和变压器等元件上产生的电压损失,会使线路上各处的电压不相等,使各点的实际电压偏离额定电压。
即线路首端的电压将高出额定电压 5% ,线路末端的电压会低于额定电压 5%。
因为发电机总是接在线路的首端,因此它的额定电压应比电网的额定电压高 5% ,用于补偿电网上的电压损失。
在电力系统中,变压器具有发电机和用电设备的双重性。
因此规定:变压器一次绕组的额定电压等于电网的额定电压;若变压器一次绕组直接与发电机出线端相连是,其一次绕组的额定电压应与发电机的额定电压相同;变压器二次绕组的额定电压是指变压器空载运行是的电压。
因此规定,二次绕组的额定电压应比同级电网的额定电压高 10% 。
第二篇电力系统基础知识第一章电力系统和发电厂概述第一节电力系统的概念为了提高供电的可靠性和经济性,目前,都尽量将许多发电厂用电网联接起来并列运行。
1、电力系统由发电厂(热力、水动部分除外)、电力网、变电所及电力用户组成的统一整体,称为电力系统。
一、电力系统的基本概念通常,电能由发电厂供给,为了经济起见,发电厂多建立在动力资源丰富的地方。
这样离工业企业就可能相距很远,这样就产生了电能的输送问题;电能输送到工矿企业后,由于生产厂房和车间分布很广,因而产生了电能分配问题。
电力主要来自火力和水利发电厂。
为了是工业布局更加合理,常需要将发电厂建造在动力资源如水、煤、石油丰富的地区。
但由于用电的分散性,或者受地理及历史条件的限值,可能会使负荷中心与动力资源相隔很远,这样就必须将电能经变压器升高电压后,由输电线路输送到遥远的用户处,因此便有必要在发电厂与用户之间建立升压和降压变电所。
此外,为了供电的可靠性性和经济性,还须将各发电厂用电力网联起来并列运行。
电力网是电力系统的一部分,它是有各类变电所和各种不同电压等级的线路联接起来组成的统一网络。
它是联系发电厂和用户的中间环节。
电力网的作用是将电能从发电厂输送并分配到用户处。
通常,把发电厂生产的电能直接分配电能给用户,或由降压变电所分配给用户的10KV及以下电力线路,称为配电线路;而把电压在35KV及以上的高压电力线路称为送电线路。
电力用户在电力系统中,一切消费电能的用电设备均称为电力用户。
用电设备按其用途可分为:动力用电设备(如电动机等)、工艺用电设备(如电解、冶炼、电焊、热处理等设备)、电热用电设备(电炉、干燥箱、空调等)、照明用电设备和试验用电设备等,它们分别将电能转换为机械能、热能和光能等不同形式的适于生产需要的能量。
电力系统是动力系统的一部分,它是由发电厂的发电机及配电装置、升压及降压变电所、输配电线路及用户的用电设备所组成。
电力系统的作用是使个发电厂、变电所并列运行,从而提高整个系统运行的可靠性和经济性。
电力系统分析基础知识第一部分:电力系统分析基础知识1、电力系统中性点有哪些接地方式?各具什么特点?2、输电线的等值电路存有那几种形式?它们适用于的条件就是什么?3、当变压器带有一定负荷时,在其中要产生哪些功率损耗?它们与变压器的容量、负荷和电压有怎样的关系?空载时有无损耗?为什么?4、在展开多电压级电力网络的排序时,为什么功率不展开隆哥蒙,而电阻和磁滞应当隆哥蒙?电压和电流应不应隆哥蒙?5、电力系统接线如图所示,电网各级电压示于图中,求1)发电机和各变压器高低压侧额定电压;2)设t-1高压两端工作于+2.5%粘毛,t-2工作于主粘毛,t-3高压两端工作于-5%粘毛,谋各变压器实际变比。
6、降压变压器型号为sfl1-20000/110,额定容量为20000kva,电压110±2×2.5%/11kv,空载损耗p0=22kw,空载电流百分数i0%=0.8,短路损耗pk=135kw,短路电压百分数ud%=10.5。
求变压器等值电路及其参数。
7、某电力网接线如下图右图,各元件参数见到下表中,其中t-2高压两端直奔+2.5%分后接点运转,其它变压器均在主接头运行。
试1)做出元件参数用出名值则表示的等值电路,挑110kv为基本级;2)作出元件参数用标么值表示的等值电路,要求用两种方法计算。
取sb=100mva,ub=110kv。
第二部分:潮流计算1、推论电压损耗的公式。
2、推论功率损耗的公式。
3、计算电压损耗和功率损耗的公式中,所计算的功率是每相损耗还是三相总损耗?如果是每相损耗,试说明各参数的意义;如果是三相总损耗,说明各参数的意义。
4、电网线路和变压器电阻元件上的电压迫降如何排序?电压迫降的大小主要由什么同意?电压迫降的增益主要由什么同意?什么情况下可以发生线路末端电压低于首端电压的情况?=p+jq,5、如图所示系统,已知线路阻抗分别为r12+jx12,r23+jx23,节点运算负荷为s222,试进行潮流计算,画出节点1、节点=p+jq。
第一章电力系统基础知识继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念。
这是学习继电保护、自动装置等本书内容的基础。
〉〉第一节电力系统基本概念一、电力系统构成电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体.其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1—1中的虚框所示。
电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。
在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。
动力系统、电力系统及电力网之间的关系示意图如图1-l所示。
图1—1 动力系统、电力系统及电力网示意图需要指出的是,为了保证电力系统一次电力设施的正常运行,还需要配置继电保护、自动装置、计量装置、通信和电网调度自动化设施等。
电力系统主要组成部分和电气设备的作用如下。
(1)发电厂。
发电厂是把各种天然能源转换成电能的工厂.天然能源也称为一次能源,例如煤炭、石油、天然气、水力、风力、太阳能等,根据发电厂使用的一次能源不同,发电厂分为火力发电厂(一次能源为煤炭、石油或天然气)、水力发屯厂、风力发电厂等。
(2)变电站(所)。
变电站是电力系统中联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能,是一个装有多种电气设备的场所.根据在电力系统中所起的作用,可分为升压变电站和降压变电站;根据设备安装位置,可分为户外变电站、户内变电站、半户外变电站和地下变电站。
变电站内一次电气设备主要有变压器、断路器、隔离开关、避雷器、电流互感器、电压互感器、高压熔断器、负荷开关等。
变电站内还配备有继电保护和自动装置、测量仪表、自动控制系统及远动通信装置等。
第一章电力系统基础知识继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念。
这是学习继电保护、自动装置等本书内容的基础。
>>第一节电力系统基本概念一、电力系统构成电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体。
其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1-1中的虚框所示。
电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。
在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。
动力系统、电力系统及电力网之间的关系示意图如图1-l所示。
图1-1 动力系统、电力系统及电力网示意图需要指出的是,为了保证电力系统一次电力设施的正常运行,还需要配置继电保护、自动装置、计量装置、通信和电网调度自动化设施等。
电力系统主要组成部分和电气设备的作用如下。
(1)发电厂。
发电厂是把各种天然能源转换成电能的工厂。
天然能源也称为一次能源,例如煤炭、石油、天然气、水力、风力、太阳能等,根据发电厂使用的一次能源不同,发电厂分为火力发电厂(一次能源为煤炭、石油或天然气)、水力发屯厂、风力发电厂等。
(2)变电站(所)。
变电站是电力系统中联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能,是一个装有多种电气设备的场所。
根据在电力系统中所起的作用,可分为升压变电站和降压变电站;根据设备安装位置,可分为户外变电站、户内变电站、半户外变电站和地下变电站。
变电站内一次电气设备主要有变压器、断路器、隔离开关、避雷器、电流互感器、电压互感器、高压熔断器、负荷开关等。
变电站内还配备有继电保护和自动装置、测量仪表、自动控制系统及远动通信装置等。
电力系统基础知识
继电保护、自动装置对电力系统起到保护和安全控制的作用,因此首先应明确所要保护和控制对象的相关情况,涉及的内容包括:电力系统的构成,电力系统中性点接地方式及其特点,电力系统短路电流计算及其相关概念。
这是学习继电保护、自动装置等本书内容的基础。
>>第一节电力系统基本概念
一、电力系统构成
电力系统是由发电厂、变电站(所)、送电线路、配电线路、电力用户组成的整体。
其中,联系发电厂与用户的中间环节称为电力网,主要由送电线路、变电所、配电所和配电线路组成,如图1-1中的虚框所示。
电力系统和动力设备组成了动力系统,动力设备包括锅炉、汽轮机、水轮机等。
在电力系统中,各种电气设备多是三相的,且三相系统基本上呈现或设计为对称形式,所以可以将三相电力系统用单相图表述。
动力系统、电力系统及电力网之间的关系示意图如图1-l所示。
图1-1 动力系统、电力系统及电力网示意图
互感器是—种变流设备,将交流一次侧大电流转换成二次电流,供给测量、保护等二次设备使用,一般二次额定电流为5A或1A;电压互感器是—种变压设备,将交流一交侧高电压转换成二次电压,供给控制、测量、保护等二次设备使用,—般二次额定的相电压为100/3V。
二、电力系统中性点运行方式
电力系统中性点运行方式即中性点接地方式,是指电力系统中发电机或变压器的中性点的接地方式,是一种工作接地。
目前,我国电力系统中性点接地方式分为中性点直接接地与非直接接地两大类,具体有;中性点不接地、经电阻接地、经电抗接地、经消弧线圈接地和直接接地等。
1.中性点直接接地方式
中性点直接接地是指电力系统中至少有一个中性点直接与接地设施相连接,如图1-2中的N点接地,通常应用于500kV、330kV、220kV、110kV电网。
中性点直接接地系统保持接地中性点零电位,发生单相接地故障时如图1-2所示,非故障相对地电压数值变化较小。
由于高压、尤其是超高压电力变压器中性点的绝缘水平、电气设备的绝缘水平都相对较低,采用中性点直接接地方式,对保证变压器及其电气设备的安全尤其重要。
但由于中性点直接接地,与短路点构成直接短路通路,故障相电流很大,造成接于故障相的电气设备过电流。
为此,需要通过继电保护和断路器动作,切断短路电流。
2.中性点不接地方式
中性点不接地系统指电力系统中性点不接地。
中性点不接地系统发生单相接地故障时如图1-3所示,中性点电压发生位移,但是三相之间的线电压仍然对称,且数值不变;由于没有直接的短路通路,接地故障电流由线路和设备对地分布电容回路提供,是容性电流,通常数值不大,一般不需要立即停电,可以带故障运行一段时间(一般不超过2h);但非故障相对地电压升高,数值最大为额定相电压的3倍,因此用电设备的绝缘水平需要按线电压考虑。
中性点不接地方式具有跳闸次数少的优点,因此普遍应用于接地电容电流不大的系统,例如66kV、35kV电网。
“一低两高三不变”
当中性点不接地系统发生一相接地情况时,该相的对地电压变低,甚至为零,此为一低;此时其它两相的对地电压升高,最大可为系统线电压.此为两高;由于中性点没有接地,此时接地相没有形成电流通路,接地时三相对地电流基本不变(先前有每相的对地电容电流,一般很小)当为三不变了.正因如此,线电压是肯定不变的了。
3.中性点经消弧线圈接地方式
当电网的电容电流不大时,单相接地故障点的电弧可以自行熄灭;如果电容电流较大,接地故障点的电弧不会自行熄灭,并且产生间歇性电弧,引起过电压,可能导致绝缘损坏,使故障扩大。
因目前,10kV 电网采用的中性点接地低值电阻一般为10Ω。
运行经验和统计数据表明,电力系统中各种短路故障发生的几率是不同的,其中发生三相短路的几率最少,发生单相接地短路的几率最大。
在实际工程问题中,经常需要计算短路电流,计算中涉及到如下概念:
(1)无限大容量系统。
无限大容量电力系统指,容量相对于被供电系统容量大得多的电力系统,其特征是,当被供电系统中负荷变动甚至发生短路故障,电力系统母线电压及频率基本维持不变。
一般,电力系统等值电源阻抗不超过短路电路阻抗的5%~10%,或电力系统容量超过被供电系统容量50倍时,可视为无限大容量电力系统,简称无限大系统或无穷大系统。
实际应用中对11OkV配电网,可将供电变压器看作无穷大系统对11OkV配电网供电。
(2)短路电流周期分量。
电力系统发生短路故障时,与正常负荷状态相比,供电回路的阻抗大为减小,因此出现数值很大的短路电流。
显然,短路电流的大小由电源电压和短路回路阻抗决定,电源电压是正弦周期分量,与之对应,产生的是短路电流中的周期分量。
在计算
例1-1 某电力系统如图1-10所示,在母线B 和母线C 分别发生三相短路,试求短路点的短路电流周期分量。
(等值电源电抗为Ω=22.0s X ,线路单位电抗为km x /38.01Ω=,变压器T1、T2的额定容量为1000kVA 、短路电压为5.4%=k U )
解:(1)母线B 三相短路。
Ω
=+=+=Ω
=⨯==∑12.29.122.09.1538.0)1(1AB s k AB AB X X X L x X kA kV X U I k A k 86.212.235.103)1()3(1=Ω
⨯==∑ (2)母线C 三相短路。
计算时需要将等值电源电抗和线路电抗折算到0.4kV 侧,并计算变压器电抗(详细论述请参考电力系统故障分析计算的有关书籍)。
(1-2)
可得零序电流为
)(3
10kC kB kA I I I I &&&&++= 用瞬时值表示为
[])()()(3
1
)(0t i t i t i t i kC kB kA ++=
显然,电力系统正常运行时仅有正序分量。
(二)短路电流 1、两相短路
无穷大系统供电发生BC 两相短路示意图如图1-12所示。
电力系统发生两相短路,经故障相和短路点构成短路回路,由故障相电源的线电动抛产生短路电流,流过故障线路,非故障线路没有短路电流,因此出现三相不对称。
不在计负荷电流的情况下,三相的短路电流分别为
kB
C C kC B B kB
A A kA I I I I I I I
I I I &&&&&&&&&&-=+=+==+=212
1
210
(1-4)
21021021I I I I I I I I I I I I C C kC B B kB A A kA &&&&&&&&&&&&++=++=++=
可见两相短路时的特点是,三相不对称,出现负序电流;只有故障相存在短路电流,且两相的短路电流数值相等,相位相反。
根据图1-12,短路电流数值可计算如上: ∑
=
X E I s
k 2)2( (1-5)
式中)2(k I ——两相短路电流周期分量有效值。
s E ——等值电源线电动势,实际计算进可以采用平均额定电压;
∑X ——一相短路回路总电抗。
将式(1-5)与式(1-1)比较可得
)3()
3()2(866.02
3k k k I I I ==
(1-6) 式(1-6)说明,两相短路电流数值为同一地点三相短路电流的0.866倍,在实际计算中,常常求出三相短路电流后,直接用以上关系得到两相短路电流。
2、单相接地短路
(1)中性点直接接地系统。
中性点直接接地的无穷大系统供电,发生A 相单相接地短路示意图如图1-13所示。
中性点直接接地电力系统发生单相接地时,经直接接地的中性点、故障相和短路点构成短路回路,由故障相电源电动势产生短路电流,流过故障线路,非故障线路没有短路电流,因此出现三相不对称,在不计负荷电流的情况下,三相的短路电流分别为
0030
210
2
1
1
0021=++==+++==++=C C C kC B B B B kB
A A A kA I I I I I I I I I
I I I I I &&&&&&&&&&&&&&
(1-7)
可见单相接地短路时的特点是,三相不对称,出现负序电流和零序电流;故障相存在短路电流,在图1-13(b )中的数值为3I 。