用向量方法证明
- 格式:ppt
- 大小:2.15 MB
- 文档页数:47
证明点在直线上的方法在几何学中,证明一个点是否在直线上是非常常见的问题。
这个问题在初中数学中就已经开始涉及,而在高中数学中更是必须掌握的基本技能之一。
本文将介绍几种证明点在直线上的方法。
方法一:使用向量向量是几何学中非常重要的概念,它可以用来表示线段、直线、平面等几何图形。
在证明点在直线上时,我们可以使用向量的方法。
具体步骤如下:1. 将直线表示为向量的形式,即将直线上的两个点表示为向量的差。
2. 将点表示为向量的形式,即将点表示为一个向量。
3. 判断点是否在直线上,只需要判断点的向量是否与直线的向量共线即可。
如果共线,则点在直线上;如果不共线,则点不在直线上。
方法二:使用坐标坐标是几何学中另一个非常重要的概念,它可以用来表示点、直线、平面等几何图形。
在证明点在直线上时,我们可以使用坐标的方法。
具体步骤如下:1. 将直线表示为解析式,即将直线的方程化为一般式或斜截式。
2. 将点的坐标代入直线的方程中,如果等式成立,则点在直线上;如果不成立,则点不在直线上。
方法三:使用相似三角形相似三角形是几何学中非常重要的概念,它可以用来求解各种几何问题。
在证明点在直线上时,我们可以使用相似三角形的方法。
具体步骤如下:1. 连接点与直线上的两个点,形成两个三角形。
2. 判断两个三角形是否相似,如果相似,则点在直线上;如果不相似,则点不在直线上。
方法四:使用向量积向量积是几何学中非常重要的概念,它可以用来求解各种几何问题。
在证明点在直线上时,我们可以使用向量积的方法。
具体步骤如下:1. 将直线表示为向量的形式,即将直线上的两个点表示为向量的差。
2. 将点表示为向量的形式,即将点表示为一个向量。
3. 求出点向量与直线向量的向量积,如果向量积为零,则点在直线上;如果向量积不为零,则点不在直线上。
以上四种方法都可以用来证明点在直线上,具体使用哪种方法取决于具体的问题。
在实际应用中,我们可以根据问题的特点选择最合适的方法,以便更快地求解问题。
向量证明四点共面的方法要证明四点共面,可以使用向量的方法来证明。
假设四个点为A、B、C、D,其位置矢量分别为a、b、c、d。
首先,计算向量AB、AC和AD:AB = B - AAC = C - AAD = D - A接下来,计算向量AC和AD的叉积:n = AC × AD如果n的模长为0,即|n| = 0,则说明向量AC和AD共线,从而四点A、C、D共面。
因为共线的向量的叉积等于0。
如果n的模长不为0,即|n| ≠ 0,则说明向量AC和AD不共线,四点A、C、D不共面。
所以,通过计算向量的叉积可以判断四点是否共面。
另一种使用向量证明四点共面的方法是通过判断四个向量AB、AC、AD所张成的平行六面体的体积是否为0。
首先,计算向量AB、AC和AD,如上所述。
然后,计算向量AC和AD的叉积:n = AC × AD接下来,计算平行六面体的体积V,其中三个边向量为AB、AC和AD:V = |AB · n|其中,·表示内积运算,|AB · n| 表示向量AB与n的内积的模长。
若平行六面体的体积V等于0,则说明四点A、B、C、D共面。
因为共面的四点所张成的平行六面体的体积为0。
反之,若V不等于0,则四点A、B、C、D不共面。
另一种判断四点共面的方法是使用行列式的性质。
将四个向量AB、AC、AD组成一个矩阵:M = [AB AC AD]如果矩阵M的行列式为0,即det(M) = 0,则说明四点A、B、C、D共面,因为行列式为0表示矩阵的列向量线性相关,即存在一组非零系数使得它们的线性组合为零向量。
通过以上两种向量的方法,我们可以判断四点是否共面。
这些方法利用了向量的性质和行列式的特性,能够简便地证明四点共面的问题。
空间向量中证明线线平行的公式
在空间向量中,我们经常需要判断两条线是否平行。
判断两条
线是否平行的一种方法是使用向量的方法。
下面我们将介绍如何使
用向量来证明两条线是否平行的公式。
假设有两条线,分别用参数方程表示为:
L1: r1 = a + λv.
L2: r2 = b + μw.
其中a和b是两条线上的已知点,v和w是两条线的方向向量,λ和μ是参数。
要证明L1和L2平行,我们可以使用以下方法:
1. 首先,我们可以计算两条线的方向向量v和w。
2. 然后,我们可以计算v和w的向量积(叉乘)v × w。
3. 最后,我们可以判断v × w是否为零向量。
如果v × w为零向量,那么根据向量积的性质,我们可以得出结论,两条线平行。
证明过程如下:
v × w = 0。
⇒ |v × w| = 0。
⇒ |v| |w| sinθ = 0。
其中θ为v和w之间的夹角。
根据向量积的性质,v × w = 0 当且仅当v与w共线或其中一个为零向量。
因此,如果v × w = 0,则L1和L2平行。
通过这种方法,我们可以使用向量来证明两条线是否平行的公式。
这种方法简单直观,适用于空间向量中线线平行的判断。
希望这篇文章能对你有所帮助。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
用向量方法证明平行与垂直要证明两个向量是平行的,我们需要证明它们的方向相同或相反。
而要证明两个向量是垂直的,我们需要证明它们的内积为零。
首先,我们考虑平行向量的证明。
设有两个向量u和v,我们可以将它们表示为:u = (u1, u2, ..., un)v = (v1, v2, ..., vn)其中n代表向量的维度。
如果u和v是平行的,那么它们的方向相同或相反,可以用以下方式进行证明:1.方向相同:我们可以证明向量u和v的比例关系。
即对于任意的i,我们有:ui/vi = u1/v1 = u2/v2 = ... = un/vn如果我们找到一个非零常数k,使得:ui = k * vi,则u和v是平行的。
2.方向相反:我们可以找到一个常数k,使得:ui = -k * vi,则u和v的方向相反,它们也是平行的。
下面我们来看一个具体的例子。
例1:证明(1,2,3)和(2,4,6)是平行的。
解:我们可以计算向量的比例:(1/2)=(2/4)=(3/6)=1/2这意味着我们可以找到一个非零常数k=1/2,使得:(1,2,3)=(1/2)*(2,4,6)因此,向量(1,2,3)和(2,4,6)是平行的。
接下来,我们考虑垂直向量的证明。
设有向量u和v,我们可以将它们表示为:u = (u1, u2, ..., un)v = (v1, v2, ..., vn)如果u和v垂直,那么它们的内积为零,可以用以下方式进行证明:u·v=0我们可以将内积展开为标量乘积的形式:u · v = u1 * v1 + u2 * v2 + ... + un * vn = 0这意味着对于任意的i,我们有:ui * vi = -u1 * v1 - u2 * v2 - ... - un * vn如果我们能找到满足上述等式的向量u和v,则u和v是垂直的。
下面我们来看一个具体的例子。
例2:证明(1,2,3)和(-1,2,-1)是垂直的。
用向量的方法证明
向量方法一般用于证明几何性质,其中最常用的方法是向量共线和向量垂直证明。
1. 向量共线证明:
若要证明两个向量共线,可以采用以下方法:
- 方法一:两个向量的比例相等。
如果有两个向量a和b,可以将它们写成向量的形式,并计算它们的比值。
如果这个比值对于所有的两个向量都相等,那么它们就是共线的。
- 方法二:两个向量的夹角为0度或180度。
可以通过计算两个向量的点积来判断它们的夹角。
如果点积等于0,则两个向量垂直;如果点积为两个向量的模乘积,则两个向量共线。
2. 向量垂直证明:
若要证明两个向量垂直,可以采用以下方法:
- 方法一:两个向量的点积为0。
如果有两个向量a和b,可以计算它们的点积。
如果点积等于0,则这两个向量垂直。
- 方法二:两个向量的斜率互为相反数。
如果有两个向量a和b,可以根据向量的斜率来判断它们是否互为相反数。
如果斜率之积为-1,则这两个向量垂直。
总结起来,向量方法可以通过计算向量之间的比例、点积和斜率等来判断向量之间的几何性质,如共线和垂直。
用向量法证明正弦定理正弦定理又称为正弦法则,是指在任意三角形中,三条边的长度之间的关系可以用正弦函数表示。
具体地,如果在三角形 ABC 中,a、b、c 分别表示三条边的长度,A、B、C 分别表示三个角,则其正弦定理可以表述为:$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$下面我们使用向量法来证明正弦定理。
假设向量 $\vec{a}$、$\vec{b}$、$\vec{c}$ 分别表示三条边的方向和长度,则三角形的三个顶点可以用向量表示为:$$\vec{A}=\vec{0}$$$$\vec{B}=\vec{a}$$$$\vec{C}=\vec{a}+\vec{b}$$根据三角形余弦定理可得:$$\cosA=\frac{\vec{b}\cdot\vec{c}}{|\vec{b}|\cdot|\vec{c}|}=\frac {(\vec{a}+\vec{b})\cdot\vec{a}}{|\vec{a}+\vec{b}|\cdot|\vec {a}|}=\frac{\vec{a}\cdot\vec{a}+\vec{a}\cdot\vec{b}}{|\vec{ a}+\vec{b}|\cdot|\vec{a}|}$$移项得:$$\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot\cos A-|\vec{a}|^2$$同理,可以得到:$$\vec{b}\cdot\vec{c}=|\vec{b}|\cdot|\vec{c}|\cdot\cos B-|\vec{b}|^2$$$$\vec{c}\cdot\vec{a}=|\vec{c}|\cdot|\vec{a}|\cdot\cos C-|\vec{a}+\vec{b}|^2$$将三个式子分别代入正弦定理中:$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$得到:$$\frac{|\vec{a}|}{\sin A}=\frac{|\vec{b}|}{\sinB}=\frac{|\vec{c}|}{\sin C}$$由于 $\vec{a}$、$\vec{b}$、$\vec{c}$ 可以任意选取方向,因此可以将它们都转化为长度相等的单位向量。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
运用向量法证明几个数学公式为了确保完整解答您的问题,我将介绍几个重要的数学公式,并利用向量法进行证明。
1.向量的模长和方向余弦一个向量的模长是指从原点到向量终点的距离,记作,→a。
而方向余弦可以用来表示向量在坐标轴上的投影比例。
假设一个向量→a有坐标(a1,a2,a3),则其模长为:→a,=√(a1²+a2²+a3²)而方向余弦aa可以表示为:cosaa = aa / ,→a这个公式可以通过用向量→a与坐标轴上的单位向量aa进行点积的方式进行证明。
点积的值为:a·a = ,→a,,→a, cosa,其中a为两个向量之间的夹角。
通过观察上述方程,可以得到:a·a = a1a1 + a2a2 + a3a3 = ,→a,,→a,cosa因此,我们可以将a取为单位向量aa,应用到上述方程中,得到:a·aa = ,→a, cosaaa·aa=a1aa+a2aa+a3aa这个结果与方向余弦aa的定义相似,因此我们可以得出结论:cosaa = aa / ,→a2.向量的内积和外积向量的内积也称为点积或数量积。
假设有两个向量→a和→a,其内积可以表示为:a·a = ,→a,,→a, cosa其中a为两个向量之间的夹角。
这个公式可以通过向量的坐标表示进行证明。
假设向量→a和→a有坐标(a1,a2,a3)和(a1,a2,a3),则内积可以表示为:a·a=a1a1+a2a2+a3a3而向量的外积也称为叉积或向量积。
其结果是一个新的向量,该向量垂直于原来两个向量的平面,并且模长等于原向量与夹角的正弦值的乘积。
记作→a=→a×→a。
其计算方式如下:→a=(a2a3-a3a2,a3a1-a1a3,a1a2-a2a1)可以通过向量的坐标表示进行证明。
假设向量→a和→a有坐标(a1,a2,a3)和(a1,a2,a3),则外积可以表示为:→a=(a2a3-a3a2,a3a1-a1a3,a1a2-a2a1)3.向量的投影向量的投影表示一个向量在另一个向量上的分解比例。