DEM分辨率对地形因子的影响分析
- 格式:pdf
- 大小:699.52 KB
- 文档页数:8
实验五DEM坡面地形因子提取实验目的:通过数字高程模型(DEM)数据提取坡度和坡向地形因子,以分析地形特征对水文过程和土地利用分布的影响。
实验步骤:1.数据准备a) 获取高分辨率的地形DEM数据,可以选择使用Lidar数据或者采用其他方式获取DEM数据。
b)进行数据预处理,包拟合DEM数据,去除噪声和突出值等。
2.坡度计算a)在DEM上采样,计算每个像元上的坡度。
b)坡度计算可以通过以下公式进行计算:Slope(i,j) = arctan(sqrt((dz/dx)^2 + (dz/dy)^2))其中,Slope(i,j)代表坡度, dz/dx代表DEM在x方向的梯度,dz/dy代表DEM在y方向的梯度。
3.坡向计算a)在DEM上采样,计算每个像元上的坡向。
b)坡向计算可以通过以下公式进行计算:Aspect(i,j) = arctan(dz/dx / dz/dy)其中,Aspect(i,j)代表坡向, dz/dx代表DEM在x方向的梯度,dz/dy代表DEM在y方向的梯度。
4.地形指数计算a)根据坡度和坡向的计算结果,可以进一步计算其他地形指数,例如地形湿度、地形开阔度等。
b)地形湿度可以通过计算每个像元周围的流通路径长度来估算。
c)地形开阔度可以通过计算每个像元周围的可见面积来估算。
5.结果分析a)可视化坡度和坡向地形因子,以了解地形特征。
b)利用地形指数,可以分析地形特征对水文过程和土地利用分布的影响。
实验结果分析:通过提取DEM的坡度和坡向地形因子,可以分析出地形特征,进而对水文过程和土地利用分布进行预测和分析。
例如,通过分析坡度可以了解一个地区的地势起伏程度,从而对洪水灾害的发生概率进行预测。
通过分析坡向可以了解水流在地表的流向,从而对土壤侵蚀和水资源分布进行预测。
此外,通过计算其他地形指数,还可以分析地形湿度和地形开阔度对生态环境的影响,为环境管理和规划提供数据支持。
总结:本实验通过DEM数据的处理和分析,提取了坡度和坡向地形因子,并通过计算其他地形指数,以分析地形特征对水文过程和土地利用分布的影响。
基于高分辨率DEM的地形特征提取与分析地形是地球表面的地势形态,通过地形特征提取与分析可以帮助我们更好地理解和研究地球表面的特点和变化。
高分辨率数值地形模型(DEM)是一种用于描述地球表面地形特征的数字地形模型,它通过采集和处理大量的地理数据来构建一个具有高精度的表面地形模型。
地形特征提取主要包括侧向地形特征和垂向地形特征。
侧向地形特征包括地形坡度、曲率、坡向等,这些特征可以用来分析地形的斜率和变化趋势。
垂向地形特征包括海拔高度、地面高度差等,这些特征可以用来分析地形的高度差异和起伏变化。
在高分辨率DEM的基础上,可以使用多种方法来提取和分析地形特征。
一种常用的方法是使用地理信息系统(GIS)软件,通过栅格分析功能来提取和分析地形特征。
地理信息系统软件可以将高分辨率DEM数据转换为栅格数据格式,并利用栅格分析工具来计算地形特征,例如坡度、曲率和坡向等。
另一种方法是使用特定的地形分析软件,例如地形分析软件(Terrain Analysis System, TAS)或地形工具包(Terrain ToolKit, TTK)等。
这些软件具有更强大的地形分析功能,可以进行更复杂的地形特征提取和分析。
地形特征提取与分析可以帮助我们更好地了解地球表面的地形变化和分布规律。
通过分析地形特征,可以发现地球表面的地形类型和形成机制,并为地质研究、土地利用规划、环境保护等提供科学依据。
例如,通过分析地形坡度和高度差等特征,可以划定不同地形类型的边界,并对不同地形类型的自然资源和生态环境进行评估和保护。
此外,通过分析地形特征还可以预测地质灾害的潜在位置,例如山体滑坡、地震断层等,从而为地质灾害风险评估和防灾准备提供参考。
总之,基于高分辨率DEM的地形特征提取与分析是一项重要的地理研究工作。
通过提取和分析地形特征,可以深入了解地球表面的地形变化和分布规律,并为地质研究、土地利用规划、环境保护等提供科学依据。
随着技术的不断发展,高分辨率DEM的应用将进一步推动地形特征提取与分析的发展,为人类认识地球表面提供更丰富的信息和理解。
DEM分辨率对计算地形起伏引起的高程异常的影响作者:杨长根郭江游为来源:《科学之友》2009年第02期摘要:影响GPS高程转换精度主要有两个方面:地形改正的短波段分量和重力场改正的中长波段分量。
文章以四川某山区为例,采用不同分辨率的数字高程模型(DEM)来计算各控制点的高程异常地形改正值,然后利用“移去-恢复”技术来拟合各控制点的高程异常值。
结果表明,对于山区当DEM分辨率在10 m~100 m内取20 m~30 m时,可以显著提高GPS高程转换的精度,从而有利于具有精度高、速度快、布网灵活等诸多优势的GPS高程测量新技术的普及应用。
关键词:GPS高程转换;DEM;高程异常;地形改正中图分类号:P228.4 文献标识码:A文章编号:1000-8136(2009)05-0146-03目前,利用GPS高程测量代替常规的水准测量,是GPS高程转换研究的一个热点。
许多实验研究的例子都表明,在地势起伏较小的平坦区域和作业区域较小的范围内,GPS高程转换的结果可以达到常规水准测量的精度要求。
但是,在地势起伏较大的山区,或者测量作业范围较大的时候,GPS高程转换的精度还不能够满足工程的精度要求,这是导致GPS高程转换不能在山区、丘陵地区大规模使用的原因。
现阶段,为了提高GPS高程的精度,主要有两种途径:一种是通过地球重力场模型改正的方式来提高GPS高程转换的精度,此种方法主要是用来改正高程异常的中长波段部分,故而较适宜于大范围内的高程异常改正;另一种是通过地形改正的方式来提高GPS高程转换的精度,此种方法主要是用来改正高程异常的短波部分,故而较适宜于小范围内的高程异常改正。
在实际的作业过程中,一般是采用上述两种方式相结合的办法,利用“移去-恢复”技术,来更好地拟合似大地水准面,从而改善GPS高程转换的精度。
本文所做的工作是以四川某山区数字高程模型(DEM)作为基础数据做的科学实验计算。
考虑地形起伏影响,通过数字高程模型计算高程异常的短波分量,采用“移去-恢复”技术,可提高GPS高程转换的精度。
浅析DEM分辨率对其实际应用中的影响摘要:数字高程模型DEM是地形地貌数字化的表示方式,不同比例尺与不同栅格空间分辨率DEM在地形信息容量与精度方面无疑存在明显差异,本文探讨了今年来国内学者对DEM 不同分辨率地形信息的差异的研究以及如何在实际应用中选取合适分辨率的DEM。
关键词:DEM;分辨率;信息量数字高程模型DEM( Digital Elevation Model) 是地形地貌数字化的表示方式。
主要的获取方式有三种:野外测量、航空航天遥感影像和现有的地形图数字化。
目前的DEM 主要有三种方式:规则格网结构、不规则三角网和等高线结构。
其中基于规则格网的DEM 由于其结构简单和计算处理方便,适合与GIS 相结合等特点,使其在数字地形模型中占主要的地位。
数字高程模型是遥感与地理信息系统地理数据库中最为重要的空间信息资料,是赖以进行三维空间处理和地形分析的核心数据库[1]。
从中可以派生出各种地形因子,如坡度、坡向、平面曲率、剖面曲率、汇水面积、复合地形指数等,这些地形因子在水文模型建立、土壤侵蚀分析、水土流失监测、地貌形态模拟、生态环境研究等地学分析领域有着广泛的应用。
一、D EM分辨率对地形信息的影响西部大开发中,诸多黄土高原生态环境建设工程项目,特别是水土流失监测与水土保持规划工作等,往往都需要地面坡度图、沟壑分布图等高精度地形数据。
目前,国家测绘部门已经完成了基于1:50000比例尺地形图DEM的建立,并将作为黄土丘陵沟壑区水土流失监测与水土保持规划的重要信息源,1:10000比例尺地形图DEM尚在建设当中。
由于地形图制图综合以及数据内插方法等方面的影响,不同比例尺与不同栅格空间分辨率DEM在地形信息容量与精度方面无疑存在明显差异。
理论上,DEM的分辨率越高,越能真实地反映地形特征,但是DEM的数据量随分辨率的增加而呈几何级数地增加,对于大的区域,往往受到计算机存储容量和数据源的制约,高分辨率的DEM在应用上非常困难,从而一般选择相对较低分辨率的DEM,这样会在一定程度上导致计算的地形参数的改变,从而影响地形信息的正确提取,特别在黄土丘陵沟壑区,地面支离破碎,地形变化异常复杂,1:50000地形图对原始1:10000地形图等高线形态综合取舍程度更大,这些都会在不同程度上影响了地形分析结果的准确性。
ArcView DEM地形分析精度能有效地利用DEM数据进行地形定量因子的自动提取,是ArcView GIS软件空间分析模块的重要功能。
数字高程模型(DEM)是地理信息系统地理数据库中最为重要的空间信息资料和赖以进行地形分析的核心数据系统。
目前世界各主要发达国家都纷纷建立了覆盖全国的DEM数据系统,DEM已经在测绘、资源与环境、灾害防治、国防等与地形分析有关的科研及国民经济各领域发挥着越来越巨大的作用。
但是,由于DEM原始信息源精度、DEM空间分辨率、以及研究区地形复杂度的差异,DEM所提取的地形因子的精度存在着相当大的差异。
本章重点介绍DEM 地形分析精度与不确定性方面的部分研究成果。
第一节DEM地形描述误差的量化模拟一、DEM地形描述误差的概念:DEM精度是指所建立的DEM对真实地面描述的准确程度。
DEM误差的大小被普遍视为衡量DEM精确性的标准。
然而,人们在该问题上存在着明显的片面认识。
以往的研究普遍重视在DEM采样点上出现的高程采样误差,而相对忽视由于DEM离散采样所造成的地形描述误差。
无疑,高程采样误差是影响DEM精度的重要因素,但决不是唯一因素。
因为,即使DEM在所有高程采样点上的误差均为零,有限的DEM栅格采样点所构成的高程模型也只能是对实际地面的近似模拟。
我们将这种在假定DEM高程采样误差为零条件下,模拟地面与实际地面之差异,定义为DEM地形描述误差(以后简称Et)。
如图1所示, A、B两点为DEM地面高程采样点,A 、B两点的连线为DEM模拟地面,假定在该两点的高程采样误差为零,则Et C、Et D及Et E分别为在C、D、E三点的地形描述误差。
无疑,DEM栅格分辨率与地形起伏的复杂程度是影响Et大小的两个关键因子,建立该2因子图14-1. Et分布示意图与DEM地形描述误差之间的量化关系,是对误差进行定量模拟的关键。
二.试验样区与原始DEM数据精度在我国选择有代表性的6个不同地面复杂度的地区作为试验样区,试验区面积均为10km×10km,其主要地形因子及原始信息源精度如表1所示。
Research on the Influence of DEM Resolution on the Pre-cision of Extracted SlopesHao WANG , Shuzheng WANGSpatial Information Research Center of Fujian, Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education ,FuzhouUniversity, FuZhou, ChinaAbstract: Based on the DEMs of different resolution extracted from 1:1 million terrain maps, 6 typical land-scape area was chosen as the test plots to study the effects of different resolution on the accuracy of the slope extracted from the selected DEMs. To quantitatively explore the relationship between DEM resolution and the error of the slope, 19 different evaluation indicator of the error was selected for the domain of information theory and statistics, and then those indicators were used to find a corresponding empirical formula and the most appropriate table of resolution. From the table, the most appropriate resolution can be easily identified by the error already known. Our study demonstrates that when the information of slope accuracy was given, the criteria to select the most appropriate resolution can be obtained. This result can be used to provide a basis for selecting the appropriate horizontal resolution in practice.Keywords:Digital Elevation Model, Resolution, Slope不同分辨率DEM对提取坡度精度的影响研究王昊, 王书征福州大学福建省空间信息工程研究中心空间数据挖掘与信息共享教育部重点实验室, 福州, 中国, 350002【摘要】研究选择黄土高原6个典型地貌类型区为试验样区,以1:1万地形图建立的不同分辨率DEM 为研究对象,研究分辨率对DEM所提取坡度精度的影响。
论文 DEM地形因子及其应用DEM地形因子及其应用???江帆朱长青李小荣信息工程大学测绘学院郑州 450052 ?? 江西省景德镇陶瓷学院景德镇 333000摘要:地形因子能表示地形表面的基本特征~但很难用一种地形因子也很难准确具体地表达地形的特征。
为此~可将各种地形因子综合考虑~在一定程度上来刻画地形表面的起伏变化~具有较好的效果。
因此地形因子在研究地形变化时具有重要的应用价值。
关键字:微观地形因子宏观地形因子相关地形因子1. 引言地形表面是一个极不规则的曲面,DEM是地形的一个数学模型,从这个意义上讲,可将[1]DEM看作一个或多个函数的和。
实际上许多地形因子就是从这些函数中推导出来的。
如果对函数求一阶导数并进行组合,则可得到一系列的因子值如坡度、坡向、变差系数、变异系数等的函数;如果求二阶导数并进行组合则可得到坡度变化率、坡向变化率、曲率、凸凹系数等的函数。
从理论上说,还可以继续求三阶、四阶等更高阶的导数直到无穷阶以派生更多的地形因子。
但在实际应用中,对DEM进行高于二阶的求导意义已经很小,至少到目前为止还没有探讨过高于二阶的应用价值。
上述地形因子也称为地貌因子。
用多种地表形态描述参数可以描述地表形态的一种或多种特征及其地形表面的复杂程度。
本文中将地形因子可以划分为三类:微观地形因子、宏观地形因子、相关地形因子,对其进行归纳总结,并对其应用进行阐述。
2. 微观因子空间信息的研究中,空间物体通常被抽象为点、线、面、体(曲面)等四大类,而除点以外的空间物体都具有形态特征。
地形表面是一个极不规则的曲面,在地学研究中我们经常用基本地形因子的各种地表形态描述参数来描述地表形态的一种或多种特征以及地形表面的复杂程度。
而微观因子包括表面积、体积、坡度、坡向、坡长、坡形、曲率等。
2.1. 表面积和体积空间曲面表面积的计算与空间曲面拟合的方法以及实际使用的数据结构(规则格网或者三角形不规则格网)有关。
对分块曲面拟合,曲面表面积由分块曲面片之和给出,因此问题的关键是要计算出曲面片的表面积。
DEM地形分析范文DEM地形分析是通过数字高程模型(DEM,Digital Elevation Model)来研究和分析地表地形的方法。
DEM地形分析主要应用于地质、地貌、水文以及土地利用等领域,具有非常重要的研究价值和实际应用意义。
下面将从DEM的获取方法、数据处理、地形参数和应用等方面进行详细介绍。
DEM的获取可以通过多种途径,常见的方法包括遥感获取、气象雷达测量、激光测高仪等。
其中最常用的是激光雷达技术。
该技术通过激光束扫描地表,测量激光从发射到接收的时间,从而得到地表的高程信息。
激光雷达获取的DEM具有高精度和较大的空间覆盖范围,能够满足大部分地形分析的需求。
在进行DEM地形分析之前,需要对DEM数据进行处理。
首先,对原始DEM数据进行滤波处理,去除残余噪声和突出点。
然后,进行地表平滑处理,消除DEM数据中的局部波动和峰谷现象。
最后,进行数据投影和坐标转换,将DEM数据转换为所需的坐标系统和单位。
DEM地形分析的一个重要内容是地形参数的计算。
地形参数是用来描述地表地形特征的数值指标,包括高程、坡度、坡向、曲率、流域等。
高程是指地表相对于参考水平面的海拔高度。
坡度是指地表的垂直变化率,可以通过计算两个相邻格网之间的高程差得到。
坡向是指地表的最大降水方向,可以通过计算两个相邻格网之间的高程差和相对方位得到。
曲率是指地表高程的曲率变化情况,可以通过计算二阶导数得到。
流域是指一定区域内的地表水收集和排泄的区域,可以通过计算流向和累积面积得到。
DEM地形分析在许多领域有着广泛的应用。
在地质领域,DEM地形分析可以用来研究地壳运动、断裂和地震等现象,从而更好地理解地球内部的构造和演化。
在地貌学领域,DEM地形分析可以用来研究地表的起伏和形态,分析河流的发育过程和侵蚀特征,揭示地貌演化的规律和机制。
在水文学领域,DEM地形分析可以用来研究流域的水文特征,如坡度、坡向、曲率和流域面积等,为洪水预测、水资源管理和水土保持等提供科学依据。
DEM坡面地形因子提取与分析DEM(数字高程模型)是一种数字化的地形模型,它包含了地球表面的高程信息,通常以栅格形式进行存储。
DEM数据的应用十分广泛,可以用于地形分析、水文建模、环境监测等领域。
在DEM数据的基础上,可以提取出各种地形因子,帮助人们了解地形特征、进行地形分析和模拟。
其中,DEM坡面地形因子是指在地形上特定位置上的坡度、坡向、坡长等地形指标。
这些地形因子对于水文模型、土壤侵蚀模拟、地质灾害预测等具有重要作用。
在本文中,将介绍DEM坡面地形因子的提取方法和分析过程。
一、DEM坡度的计算DEM坡度是地形上特定点的高程变化率,它反映了地形的陡缓程度。
坡度的计算可以通过计算升降高度差来得到。
通常采用以下公式来计算坡度:\[ \text{坡度} = \arctan(\sqrt((\Delta Z_x)^2+(\DeltaZ_y)^2)/\Delta d) \]其中,\( \Delta Z_x \)和\( \Delta Z_y \)分别是水平方向和竖直方向的高程差,\( \Delta d \)是间距。
二、DEM坡向的计算DEM坡向是指地形上特定点的最大坡度方向,即水平方向的方向角。
坡向的计算方法有多种,其中最常见的是通过计算水平和竖直高程差的比值,然后再根据不同情况进行角度的划分。
在此不做详细展开,需要根据具体情况选择适用的方法。
三、DEM坡长的计算DEM坡长是指地形上其中一点到邻近下游的最大距离,即沿坡度最大的路径所经过的距离,通常也是用来反映地形地势的陡缓程度。
坡长的计算可以通过得到每个像元到下游的距离,然后再计算像元之间的累计距离。
常见的计算方法有累积高程坡长和累积水平坡长,根据需要进行选择。
四、DEM地形曲率的计算地形曲率是指地形曲率的变化率,它反映了地形的凹凸程度。
地形曲率是坡度和坡向的综合表征,可以通过求取DEM的高程的二阶和二阶导数计算得到。
常见的方法有计算h-和v-曲率,分别表示水平和竖直方向的地形曲率。
基于DEM的湖南崀山丹霞地貌地形因子分析作者:肖清华张慧峰晏涵来源:《价值工程》2017年第29期摘要:崀山丹霞地貌区,位于湖南新宁县县城之南,是中国丹霞地貌成员之一。
通过构建崀山地区的数字高程模型(DEM),对比可见,TIN模型比GRD模型拥有更好的拓扑结构,能更好的显示山脉的细节。
数据显示,崀山地区300-400m高程区间占30.70%,在研究区有绝对优势。
选择两个微观地形因子进行数据提取,制作坡度图和坡向图,分别统计了研究区的优势坡度区间与优势坡向区间。
关键词:DEM;Nd4;地形因子;丹霞地貌0引言地貌学是研究地表形态特征及其成因、演化、内部结构和分布规律的科学。
20世纪50年代以来,国外地貌学的发展与数学、力学、物理学和化学等结合愈来愈多,并逐步向定量和预测方向发展。
近年来,地理信息系统、遥感技术等新方法、新技术的应用,大大提高了地貌学的研究精度和质量,而数字高程模型(Digital Elevation Model),简称DEM,就是其中的一个亮点。
数字高程模型是对地球表面地形地貌的数字表达、模拟,它以数字的形式按一定的结构组织在一起,提供了一套地表三维坐标数据,用数字函数式表达为:Z=f(x,y),x、y为地面点坐标,z为与之相对应的高程。
可以看出,这套数据,实际上是用来表述地表特征的离散点。
这样一来,地貌特征定量化研究就有了原始的数据源。
以此为基础,首先,DEM可以生成逼真的三维地貌,给人一种直观的感受,能较真实的把握地貌整体形态;其次,精确的高程数据为基本地貌类型分类提供了直接的信息,诸如划分平原、丘陵、山地等,张永民等就进行了区域基本地貌形态类型计算机自动分类方法的尝试:最后,利用原始的高程数据,通过一定的算法变换可以延伸出其它的数据信息。
在地貌学中,地形因子就属于高程信息的一种衍生数据。
地形因子从不同侧面反映地貌特征,呈现出更丰富的地貌信息,大大增强了DEM在地貌学中的应用。
中小尺度DEM 空间分辨率对坡度的影响分析摘要:选取辽河平原、鲁中低山丘陵、黔南山地、川西南高山4 种典型地貌类型区为试验样区,以全国1:5 万DEM 为数据源,从平均坡度、坡谱、坡度信息熵3 个方面分析了不同分辨率DEM 对所提取坡度的影响。
结果表明:随着DEM 分辨率的降低,平均坡度呈对数递减趋势,坡谱的变化跟地貌类型有关,坡度信息熵跟DEM 分辨率有较好的相关性,用数学模型模拟这种关系可以精确衡量坡度的不确定性.关键词:GIS;DEM;平均坡度;坡谱;坡度信息熵0 引言地面坡度影响着地表物质运动和能量转换的规模和强度,是制约生产力空间布局的重要因子[1]。
利用数字高程模型(DEM)提取地面坡度,已经成为最重要的技术方法,得到广泛的应用。
目前,许多GIS 软件都可从DEM 中直接提取坡度信息,但是所提取的坡度明显受到DEM 分辨率的制约[2]。
针对这一问题,汤国安,陈楠等从不同方面分析了黄土高原DEM分辨率对提取平均坡度及坡度精度的影响[3,4],刘学军,zhou,Toutin 等则分析了坡度误差的成因及误差空间分布[5-7],刘敏,汤国安等分析了DEM 提取坡度信息的不确定性[8]。
但前人关于DEM 分辨率对坡度的影响研究多集中在黄土高原地区,不能反映出我国多地貌的特点,分析结果具有一定片面性,且对坡度不确定性的度量也鲜有研究。
本文将针对全国不同地貌类型区提取的坡度进行系统分析,希望能获得更加普遍的规律。
1 试验基础与技术方法1.1 试验样区我国是一个地形复杂的国家,地势起伏很大,地貌条件复杂,境内不仅拥有许多绵长高大的山脉、高亢广袤的高原、封闭性很强的内陆盆地以及河湖密布的平原,可以说,我国平原、丘陵、山地等各种地貌类型齐全,因此为了更好地研究DEM 分辨率,本文选取4 种典型地貌进行研究,分别是:辽河平原、鲁中低山丘陵、黔南山地和川西南高山。
辽河平原位于辽宁省中部,属典型的东北平原,该区域介于122°~123.3°E,41.2°~42.4°N,海拔为0~445.1m,平均海拔为59.55m。