四年级数学第二讲加法原理 (5)
- 格式:doc
- 大小:35.50 KB
- 文档页数:3
【例1】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?【解析】运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。
②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。
③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。
所以共有组成方法:3+5+2=10(种)。
举一反三1、书架上有10本故事书,3本历史书,12本科普读物。
志远任意从书架上取一本书,有多少种不同的取法?2、一列火车从上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?3、已知往返于甲、乙两地的火车中途要停靠四个站,问:要有多少种不同车票票价(来回票价一样)?需准备多少种车票?4、各数位的数字之和是24的三位数共有多少个?【例2】一把钥匙只能开一把锁,现在有10把钥匙和10把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙?1、4 ×4的方格图中(如下图),共有多少个正方形?2、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?3、图中共有_____个三角形。
4、下图中有______个长方形。
举一反三知识要点二:乘法原理——分步计数原理 【知识导入2】我们再来看看这类问题:问题1:从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有多少条? 问题2:三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有多少种? 问题3:有一项活动,需要在三名教师、五名男生和六名女生中各选一人参加,有多少种选法? 【提炼特点】(1)完成一件事需要经过n 个步骤,缺一不可; (2)完成每一步有若干个方法;(3)把每个步骤的方法数相乘,就可以得到完成这件事的所有方法数. 【抽象概括】分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.【注意】:○1 这个原理也称“乘法原理”; ○2 分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事件。
四年级奥数专题加法原理和乘法原理TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】二讲加法与乘法原理知识导航加法原理:做一件事情,完成..它有n类办法,在第一类办法中有M1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+……+m n种不同的方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有m n种方法,那么,完成这件工作共有m1×m2×…×m n种方法。
运用乘法原理计数,关键在于合理分步。
完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。
精典例题例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。
问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?思路点拨①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。
所以是加法原理的问题。
②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。
模仿练习孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。
小学四年级奥数四年级第一讲:乘法原理基础班1、有五顶不同的帽子,两件不同的上衣,三条不同的裤子。
从中取出一顶帽子、一件上衣、一条裤子配成一套装束。
问:有多少种不同的装束?2、四角号码字典,用4个数码表示一个汉字。
小王自编一个"密码本",用3个数码(可取重复数字)表示一个汉字,例如,用"011"代表汉字"车"。
问:小王的"密码本"上最多能表示多少个不同的汉字?3、"IMO"是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。
现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的"IMO"?4、在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。
问:共有多少种不同的放法?5、要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果?6、甲组有6人,乙组有8人,丙组有9人。
从三个组中各选一人参加会议,共有多少种不同选法?7、如下图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?8、在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?9、一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?10、由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?11、某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?提高班1.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色。
加法原理和乘法原理1、加法原理:做一件事情分几类,每一类方法数之和就是完成这件事情的总方法数。
2、乘法原理:做一件事情分几步,每一步方法数之积就是完成这件事情的总方法数。
P29作业1、分四步组成四位数第一步:写好千位上的数,有3种选择(0不能作千位数)(所以一定要先考虑千位)第二步:写好百位上的数,有3种选择第三步:写好十位上的数,有2种选择第四步:写好个位上的数,有1种选择所以共有3×3×2×1=18个2、分三步组成三位数第一步:写好百位上的数,有4种选择(哪一位先考虑都行)第二步:写好十位上的数,有3种选择第三步:写好个位上的数,有2种选择所以共有4×3×2=24个3、分三步组成三位数第一步:写好个位上的数,有2种选择(个位一定是2或4)(所以一定要先考虑个位)第二步:写好十位上的数,有3种选择第三步:写好百位上的数,有2种选择所以共有2×3×2=12个4、分三步完成借书的事情第一步:第一个人来借书有7种选择第二步:第二个人来借书有6种选择第三步:第三个人来借书有5种选择所以共有7×6×5=210种5、分五步组成五位数第一步:写好万位上的数,有5种选择(哪一位先考虑都行)第二步:写好千位上的数,有4种选择第三步:写好百位上的数,有3种选择第四步:写好十位上的数,有2种选择第五步:写好个位上的数,有1种选择所以共有5×4×3×2×1=120个6、分三步完成种菜的任务第一步:第一块田里种菜有4种选择第二步:第一块田里种菜有3种选择第三步:第一块田里种菜有2种选择所以共有4×3×2=24种7、分类完成选书的事情第一类:选语文、数学(这一类在分2步完成,第一步选语文有3种选择,第二步选数学有4种选择,所以一共有3×4=12种)第二类:选数学、外语(同理,有4×5=20种)第三类:选外语、语文(同理,有3×5=15种)一共有12+20+15=47种(分类的要相加)综合列式:3×4+4×5+3×5=47种8、为叙述方便,设五个人为ABCDE,不能坐两端的是A。
学科培优数学“加法原理”学生姓名授课日期教师姓名授课时长知识定位无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理知识梳理一、加法原理一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N=m1+m2+…+mk种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.二、加法原理解题三部曲:1、完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加例题精讲【试题来源】【题目】小明、小华、小红三人去公园玩,想排成一行拍照留念,他们只拍了一张照片(人相同,位置不同为一张),请问他们共有多少种不同的照法?【答案】7【解析】1、要仔细审题,特别注意一道题小括号的内容,往往括号能提供解题的关键信息。
2、审题发现题目问的实质是有几种人员组合,这个组合不需要考虑组合里的人位置的变化。
3、知道题问的是什么后,就开始用我们今天所学的加法原理解题了。
第一步:分类,一共三个人,那么人员的组合可分三类了。
第一类:一个人第二类:二个人第三类:三个人把每类有几种人员组合找出来,然后类类相加即可。
最后答案是7.【知识点】加法原理【适用场合】当堂例题【难度系数】1【试题来源】【题目】有数字1、2、3可以组成多少个数?(每个数字最多只能用一次)【答案】15【解析】三个数字每个数字最多只能用一次,那么就是说每个数字也可以不用。
那么1、2、3三个数字组成一个数该怎么分类呢?一共三个数,那么顶多可组成一个三位数;想到这个地方就豁然开朗了。
原来是可以分成三类的。
第一类:组成一位数第二类:组成两位数第三类:组成三位数每类里找种数,就是我们在乘法原理中学过的数码问题了。
小学数学《加法原理》练习题及答案加法原理是小学数学中的一个基本概念,用于解决合并、组合、排
列等类似问题。
下面是一些关于加法原理的练习题及答案。
1. 一个草莓蛋糕上有5个草莓和3个蓝莓,那么一共有多少个水果?
答案:5 + 3 = 8,一共有8个水果。
2. 有3件红色衣服和2件蓝色衣服,现在要从中选择一件衣服穿,
一共有多少种选择呢?
答案:3 + 2 = 5,一共有5种选择。
3. 一只箱子里有4个苹果和6个橙子,小明想要从中选择2个水果,有多少种不同的选择方法?
答案:10 + 9 + 8 + ... + 1 = 55,一共有55种不同的选择方法。
4. 按下面的要求选择其中的数字:选择两个偶数数字,一共有多少
种选择方法?
0 1 2 3 4 5 6 7 8 9
答案:2 + 2 = 4,一共有4种选择方法。
5. 有红色、黄色、蓝色、绿色四个颜色的挂历,每个颜色可以选择
或不选择,一共有多少种选择方法?
答案:2^4 = 16,一共有16种选择方法。
6. 一件礼物有3种包装纸可以选择,然后可以打上3种不同的红色
蝴蝶结,一共有多少种不同的包装方式?
答案:3 × 3 = 9,一共有9种不同的包装方式。
7. 体育馆有5个入口,其中A、B、C三个入口可直接进入看比赛,另外两个入口不能进入,某人随机选择一个入口,他能够进入看比赛
的可能性是多少?
答案:3/5,一共有3个进入的入口。
这些练习题通过不同的情境来练习加法原理的运用,帮助学生理解
和掌握加法原理的概念,并培养他们的逻辑推理和问题解决能力。
希
望对学生的学习有所帮助。
数学枚举法和加法原理的应用1. 数学枚举法数学枚举法是一种基于逐个检查可能解的方法,用于解决特定问题的数学方法。
它通常适用于问题空间较小且可以通过逐个尝试来得到解的情况。
在数学枚举法中,我们通过列举所有可能的组合或排列来找到问题的解。
数学枚举法在数论、几何和组合数学中得到广泛的应用。
2. 加法原理加法原理是组合数学中的一种基本原理,用于计算多个事件发生的总次数。
根据加法原理,如果两个事件可以同时发生的次数分别为m和n,则这两个事件发生的总次数为m + n。
加法原理也适用于多个事件的情况,只需要将事件发生的次数相加即可。
3. 数学枚举法的应用数学枚举法在解决各种实际问题中发挥着重要的作用。
以下是数学枚举法的一些应用示例:•排列组合问题:数学枚举法常用于解决排列组合问题,例如从一组物品中选择不同的组合或排列的问题。
•密码破译:通过枚举所有可能的密码组合,可以尝试破解密码。
这种方法虽然耗时较长,但在密码组合较小的情况下是可行的。
•游戏问题:如数独、数码拼图等,都可以通过枚举所有可能的解来求解。
•找零问题:在货币组合有限的情况下,可以通过枚举所有可能的找零方式来解决找零问题。
4. 加法原理的应用加法原理在实际问题中也有很多应用。
以下是加法原理的一些应用示例:•路径问题:在图论中,求从点A到点B的路径数量时,可以通过将所有可能的路径分解为多个子路径并使用加法原理计算总路径数量。
•概率问题:在概率计算中,如果事件A和事件B互斥且无关,则两个事件同时发生的概率为P(A) + P(B)。
•赛事问题:在比赛中,如果参赛者可以选择参加多个项目,则总的参赛方式数量可以通过将每个项目的参赛方式数量相加得到。
•组合问题:如果有多个组合方式,并且每种组合方式都包含不同的元素,则可以使用加法原理计算总的组合方式数量。
以上仅是数学枚举法和加法原理在实际问题中的一些应用示例,实际应用中还有更多的情况。
通过数学枚举法和加法原理,我们可以解决复杂的问题并得到准确的答案。
四年级数学第二讲:加法原理基础班1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。
如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。
问:共有多少种不同的订法?3.将10颗相同的珠子分成三份,共有多少种不同的分法?4.在所有的两位数中,两位数码之和是偶数的共有多少个?5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?6.下图中每个小方格的边长都是1。
有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?10.在1~1000的自然数中,一共有多少个数字0?11.在1~500的自然数中,不含数字0和1的数有多少个?12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?答案1.38种。
2.10种。
提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。
3.8种。
4.45个。
提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。
5.21个。
提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。
6.10条。
提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。
7.3×3+2×4=17(种).8.6+7+15+21+6×7=91(种).提示:拿两本的情况分为2本画报或2本书或一本画报一本书.9.(1)6;(2)10;(3)20;(4)35.10.9+180+3=192(个).11.8+8×8+3×8×8=264(个).12.9+8+7+6+5+4+3+2+1=45(次).我们通常解题,总是要先列出算式,然后求解。
四年级数学第二讲:加法原理
基础班
1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。
如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。
问:共有多少种不同的订法?
3.将10颗相同的珠子分成三份,共有多少种不同的分法?
4.在所有的两位数中,两位数码之和是偶数的共有多少个?
5.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?
6.下图中每个小方格的边长都是1。
有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?
7.如下图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?
8.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?
9.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?
10.在1~1000的自然数中,一共有多少个数字0?
11.在1~500的自然数中,不含数字0和1的数有多少个?
12.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?
答案
1.38种。
2.10种。
提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。
3.8种。
4.45个。
提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。
5.21个。
提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。
6.10条。
提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。
7.3×3+2×4=17(种).
8.6+7+15+21+6×7=91(种).
提示:拿两本的情况分为2本画报或2本书或一本画报一本书.
9.(1)6;(2)10;(3)20;(4)35.
10.9+180+3=192(个).
11.8+8×8+3×8×8=264(个).
12.9+8+7+6+5+4+3+2+1=45(次).
我们通常解题,总是要先列出算式,然后求解。
可是对有些题目来说,这样做不仅麻烦,而且有时根本就列不出算式。
这一讲我们介绍利用加法原理在“图上作业”的解题方法。
提高班
1. 用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。
问:共有多少种不同的染色方法?
11.小明要登15级台阶,每步登1级或2级台阶,共有多少种不同登法?
12.小明要登20级台阶,每步登2级或3级台阶,共有多少种不同登法?
13.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法,
答案
1. 420种。
解:如上图所示,按A,B,C,D,E顺序染色。
若B,D颜色相同,则有
5×4×3×1×3=180(种);
若B,D颜色不同,则有
5×4×3×2×2=240(种)。
共有不同的染色方法180+240=420(种)。
2. 987种。
3. 114种。
4. 274种。
提示:取走1根有1种方法,取走2根有2种方法,取走3根有4种方法。
将1,2,4作为数列的前三项,从第4项起每项都是它前三项的和,得到
1,2,4,7,13,24,44,81,149,274。
第10项274就是取走10根火柴的方法数。