数学分析ch7-1定积分的概念和可积条件
- 格式:ppt
- 大小:2.26 MB
- 文档页数:29
§1 定积分概念与可积性浅析引例 (曲边梯形的面积):设函数在闭区间上连续,且。
则由曲)(x f ],[b a 0)(≥x f 线,直线)(x f y =a x =,以及b x =x 轴所围成的平面图形,称为曲边梯形。
在区间(,内任取)a b 1-n 个分点,依次为T :b x x x x x a n n =<<<<<=-1210它们将区间分割成个小区间,。
记为],[b a n n i i ],[1i i x x -i ,,2,1 =1i x x x -∆=-x ,i ,同时记n ,,2,1 =}n ,,,21x max{)(T x ∆∆∆= λ,再用直线i x x =,1,,2,1-=n i 把曲边梯形分割成个小曲边梯形。
在每个小区间,n ]i x i ,[i x 1-n ,,2, 1=上任取一点i ξ,n i ,,2,1 =,作以)(i f ξ为高,i x ∆为底的小矩形,其面积为)(i f ξi x ∆,当分点不断增多,又分割得较细密时,由于连续,它在每个小区间上的变化)(x f ],[1i i x x -不大,从而可用这些小矩形的面积近似代替相应的小曲边梯形的面积。
于是,该曲边梯形面积的近似值为。
从而∑=nf S 1(∆ix≈ii)ξ ()01lim ()niiT i S f λξ→=x =∆∑1 定积分的定义定义1 (分割):设开区间内有个点,依次为(,)a b 1-n T :b x x x x x a n n =<<<<<=-1210将闭区间分成个小区间,记为],[b a n 1i i i x x x -∆=-,n i ,,2,1 =,同时称}n ,{1x x T ,,2x ∆∆ ∆=为区间的一个分割,并记],[b a }{max )1i n i x (T ∆=≤≤λ称为分割T 的模。
定义2:设是定义在[上的一个函数,对于的一个分割)(x f ],b a (,)a b},,,{21n x x x T ∆∆∆= ,任取点i i x ∆∈ξ,n i ,,2,1 =,并作和式),T f i i x f ∆)(ξni =∑=:(n δ1称此和式为在关于分割)(x f ],[b a T 的一个积分和,也称Riemann 和。
定积分的概念和意义定积分是微积分中的一个重要概念,它描述了函数在一个区间上的累积效应。
在数学和物理学等领域中,定积分有着广泛的应用和重要的意义。
本文将介绍定积分的概念和意义,并探讨其在实际问题中的应用。
一、定积分的概念定积分是无穷小和的极限,用于描述函数在一个区间上的累积效应。
假设我们有一个函数f(x),在区间[a, b]上进行积分运算就是计算该区间上函数f(x)的面积。
为了计算这个面积,我们将区间[a, b]分成许多小的子区间,然后在每个子区间中找到一个代表点,将函数在该点的取值乘以该子区间的长度,然后将所有的乘积相加求和。
当我们把子区间的数量无限增大,子区间的长度趋近于零时,这个累积和就趋近于一个确定的值,这个确定的值就是定积分。
定积分的表示方式为∫[a, b]f(x)dx,其中∫表示积分运算符,[a, b]表示积分的区间,f(x)表示要积分的函数,而dx表示积分的变量。
二、定积分的意义定积分具有重要的意义,它在数学和物理学中具有广泛的应用,并且为解决实际问题提供了数学工具。
下面将介绍定积分的几个主要意义。
1. 几何意义:定积分可以用于计算曲线与坐标轴之间的面积。
例如,当函数f(x)大于等于零时,定积分∫[a, b]f(x)dx表示了曲线y=f(x)与x轴以及直线x=a和x=b所包围的面积。
这个面积可以用定积分来精确计算。
2. 物理意义:定积分可以应用于物理学中的速度、加速度、质量、功等概念。
例如,当把速度函数v(t)对时间t积分,得到的就是物体在一段时间内的位移。
同样地,将加速度函数a(t)对时间t积分,得到的就是速度的变化量,即位移的变化。
3. 统计意义:定积分可以用于统计学中的概率密度函数和累积分布函数的计算。
概率密度函数描述了连续随机变量的概率分布情况,而累积分布函数给出了该变量取值小于等于某个特定值的概率。
通过计算概率密度函数和累积分布函数的积分,可以得到各种随机变量的概率和期望值等重要统计量。
定积分的概念和定义
定积分是微积分中的重要概念之一,用于计算曲线下的面积、曲线长度、质量、质心等问题。
定积分的定义是通过极限过程来逼近曲线下面积的值。
考虑一个函数f(x)在区间[a, b]上的积分,将该区间分成n个小区间,每个小区间的长度为Δx = (b-a)/n,然后在每个小区间上选取一个任意点xi,i取值从1到n。
那么,曲线下的面积可以近似表示为:
S ≈ f(x1) Δx + f(x2) Δx + f(x3) Δx + ... + f(xn) Δx
上述表达式中,f(xi)表示函数f(x)在xi点的函数值,Δx表示小区间的长度。
当n趋向无穷大时,曲线下的面积的连续性被更好地描述,可以写作如下定义的定积分形式:
∫[a, b] f(x) dx = lim(n→∞) [f(x1) Δx + f(x2) Δx + ... + f(xn) Δx]
其中,∫表示积分,[a, b]表示积分的区间,f(x)表示被积函数,dx表示积分变量,lim表示极限。
定积分可以理解为对函数
f(x)在[a, b]区间的所有小区间上的面积进行累加,通过极限过程得到曲线下的面积值。
一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。
牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。
要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。
被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。
定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。
二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。
在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。
定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。
尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。
例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。
可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。
但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。
在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。
后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。