生物化学_糖代谢
- 格式:ppt
- 大小:3.76 MB
- 文档页数:150
医学基础知识:生物化学之糖代谢的知识今天今天来给大家梳理一下关于糖代谢的知识,具体内容如下:糖的分解代谢(一)糖酵解葡萄糖在无氧情况下经过三个阶段生成乳酸。
(糖酵解的产物是乳酸)1.三个阶段、三个关键酶:①第一阶段:葡萄糖生成2分子磷酸甘油醛;关键酶:己糖激酶、6磷酸果糖激酶。
②第二阶段:磷酸甘油醛生成丙酮酸;③第三阶段:丙酮酸生成乳酸;关键酶:丙酮酸激酶。
(第一阶段:葡萄糖在己糖激酶作用下生成6磷酸葡萄糖;6磷酸葡萄糖在6磷酸果糖激酶的帮助下生成1,6二磷酸果糖;1,6二磷酸果糖再裂解成2分子磷酸甘油醛。
)2.糖酵解的3个关键酶(限速酶):己糖激酶、6磷酸果糖激酶、丙酮酸激酶。
记忆:(六斤冰糖):6磷酸果糖激酶、己糖激酶、丙酮酸激酶。
3.糖酵解的作用:提供能量。
(二)糖的有氧氧化1.三个阶段:①第一阶段:葡萄糖生成丙酮酸;②第二阶段:丙酮酸进入线粒体生成乙酰辅酶A;③第三阶段:乙酰辅酶A进入三羧酸循环生成二氧化碳。
2. 三羧酸循环四步脱氢、三个关键酶、二步脱羧、一次底物磷酸化。
三羧酸循环的原料:乙酰CoA;第一步:乙酰CoA生成柠檬酸;关键酶是柠檬酸合酶;第二步:柠檬酸调整姿态,变为异柠檬酸;第三步:异柠檬酸生成-酮戊二酸;关键酶是异柠檬酸脱氢酶。
(第一次脱氢;受体是NAD)第四步:-酮戊二酸在-酮戊二酸脱氢酶的帮助下生成琥珀酰CoA;关键酶是-酮戊二酸脱氢酶。
(第二次脱氢;受体是NAD)第五步:琥珀酰CoA在某些激酶的帮助下生成琥珀酸和GTP。
(这是唯一一次底物水平磷酸化)第六步:琥珀酸在琥珀酸脱氢酶的帮助下生成延胡索酸;关键酶是琥珀色酸脱氢酶(第三次脱氢;受体是FAD)第七步:延胡索酸加水生成苹果酸。
第八步:苹果酸在苹果酸脱氢酶的帮助下生成草酰乙酸(第四次脱氢;受体是NAD)总结:三羧酸循环发生在线粒体;三羧酸循环的底物:乙酰辅酶A;三羧酸循环发生了4次脱氢;生成3个NAD、1个FAD;三羧酸循环发生2次脱羧,生成2分子CO2;三羧酸循环发生1次底物磷酸化;一个NAD可以生成2.5个ATP;一个FAD可以生成1.5个ATP;一轮三羧酸循环总共生成10个ATP;(3个NAD、1个FAD + 唯一一次底物磷酸化时生成的1个ATP)三羧酸循环通过脱氢反应生成9个ATP;三羧酸循环底物磷酸化生成1个ATP;一分子乙酰辅酶A进入三羧酸循环最终生成10个ATP;一分子葡萄糖糖酵解生成2个ATP;一分子葡萄糖彻底氧化后生成30或32个ATP;一分子丙酮酸彻底氧化后生成12.5个ATP。
糖代谢一、多糖的代谢1.淀粉凡能催化淀粉分子及片段中α- 葡萄糖苷键水解的酶,统称淀粉酶(amylase)。
主要可以分为α-淀粉酶、β-淀粉酶、γ-淀粉酶、和异淀粉酶4类。
(一)α-淀粉酶又称液化酶、淀粉-1,4-糊精酶1)作用机制内切酶,从淀粉分子内部随机切断α-1,4糖苷键,不能水解α-1,6-糖苷键及与非还原性末端相连的α-1,4-糖苷键。
2)水解产物直链淀粉大部分直链糊精、少量麦芽糖与葡萄糖支链淀粉大部分分支糊精、少量麦芽糖与葡萄糖,底物分子越大,水解效率越高。
(二)β-淀粉酶又叫淀粉-1,4-麦芽糖苷酶。
1)作用机制外切酶,从淀粉分子的非还原性末端,依次切割α-1,4-糖苷键,生成β-型的麦芽糖;作用于支链淀粉时,遇到分支点即停止作用,剩下的大分子糊精称为β-极限糊精。
2)β-淀粉酶水解产物支链淀粉β-麦芽糖和β-极限糊精。
直链淀粉β-麦芽糖。
(三)γ-淀粉酶又称糖化酶、葡萄糖淀粉酶。
1)作用方式它是一种外切酶。
从淀粉分子的非还原性末端,依次切割α-1,4-葡萄糖苷键,产生β-葡萄糖。
遇α-1,6和α-1,3-糖苷键时也可缓慢水解。
2) 产物葡萄糖。
(四)异淀粉酶又叫脱支酶、淀粉-1,6-葡萄糖苷酶。
1)作用方式专一性水解支链淀粉或糖原的α-1,6-糖苷键,异淀粉酶对直链淀粉不作用。
2)产物生成长短不一的直链淀粉(糊精)。
3)现象碘反应蓝色加深2.糖原(一)糖原分解糖原的降解需要三种酶,即糖原脱支酶,磷酸葡糖变位酶和糖原磷酸化酶。
(1)糖原磷酸化酶该酶从糖原的非还原性末端以此切下葡萄糖残基,降解后的产物为1-磷酸葡萄糖。
(2)磷酸葡糖变位酶糖原在糖原磷酸化酶的作用下降解产生1-磷酸葡糖。
1-磷酸葡萄糖必须转化为6-磷酸葡糖后方可进入糖酵解进行分解。
1-磷酸葡糖到6-磷酸葡糖的转化是由磷酸葡糖变位酶催化完成的。
(3)糖原脱支酶该酶水解糖原的α-1,6-糖苷键,切下糖原分支。
糖原脱支酶具有转移酶和葡糖甘酶两种活性。
生物化学第五章糖代谢第五章糖代谢一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。
生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。
糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。
糖代谢主要包括两大路径:糖酵解和糖异生。
本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。
糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。
糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。
其中主要以糖原泛素和琥珀酸途径为代表。
糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。
它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。
糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。
糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。
接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。
随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。
草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。
草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。
琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。
琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。
琥珀酸途径的关键酶有异构酶、羧酸还原酶等。
糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。
糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。
糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。
丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。
生物化学糖代谢糖是生物体内最主要的能量来源之一,同时也具有许多重要的生物学功能。
糖代谢是生物体利用糖类化合物进行能量产生和物质合成的过程。
它包括糖的降解和合成两个主要过程。
本文将详细介绍糖的降解和合成途径,以及糖代谢在生物体内的作用。
一、糖的降解糖类化合物在细胞内经过一系列酶催化反应被降解成低分子产物,以产生能量和提供原料。
主要的糖降解途径包括糖酵解和糖解作用。
1. 糖酵解糖酵解是指葡萄糖通过一系列酶催化反应逐步分解成丙酮酸,产生ATP的过程。
糖酵解分为两个阶段,第一阶段是糖类分子的分解,产生丙酮酸与ATP和NADH,第二阶段是丙酮酸的氧化,进一步产生ATP和NADH。
这两个阶段共同完成了葡萄糖的降解,并释放出大量的能量。
2. 糖解作用糖解作用是指多糖类化合物通过酶的催化作用分解成低聚糖或单糖分子的过程。
常见的糖解作用包括淀粉的淀解、麦芽糖的水解和蔗糖的水解等。
这些糖解作用在生物体内起到提供能量和原料的作用。
二、糖的合成除了糖的降解,生物体还可以通过一系列酶催化反应将简单的碳水化合物转化为复杂的多糖类化合物的合成过程。
主要的糖合成途径包括糖异生和糖原合成。
1. 糖异生糖异生是指通过非糖原料合成糖类化合物的过程。
典型的糖异生途径是葡萄糖异生途径,其中胰岛素通过调节多种酶的活性,使非糖类物质如乳酸、甘油和氨基酸转化为葡萄糖,以满足生物体对葡萄糖的需求。
2. 糖原合成糖原是动物体内的一种能量储备物质,主要储存在肝脏和肌肉中。
糖原合成是指通过多糖短链的催化作用,将葡萄糖合成为糖原的过程。
这种储能的形式在机体需要时可以分解为葡萄糖,以满足能量需求。
三、糖代谢的生物学功能糖代谢在生物体内具有多种重要生物学功能,包括能量产生、物质合成和信号传递等。
1. 能量产生糖代谢是生物体产生能量的重要途径之一。
通过糖酵解和线粒体呼吸链的反应,糖类化合物可以被氧化分解,产生大量的ATP。
这种能量产生的过程对于细胞的正常代谢和生命活动至关重要。