当前位置:文档之家› 【CN110165162A】一种锂硫电池的碳硫复合物正极材料【专利】

【CN110165162A】一种锂硫电池的碳硫复合物正极材料【专利】

【CN110165162A】一种锂硫电池的碳硫复合物正极材料【专利】
【CN110165162A】一种锂硫电池的碳硫复合物正极材料【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910357920.1

(22)申请日 2019.04.28

(71)申请人 南京大学

地址 210093 江苏省南京市鼓楼区汉口路

22号

(72)发明人 王学斌 张然 

(51)Int.Cl.

H01M 4/36(2006.01)

H01M 4/38(2006.01)

H01M 4/62(2006.01)

H01M 10/0525(2010.01)

H01M 4/13(2010.01)

(54)发明名称

一种锂硫电池的碳硫复合物正极材料

(57)摘要

本发明公开了一种锂硫电池的碳硫复合物

正极材料,及其制备方法和应用。该复合材料由

三维筋撑石墨烯与单质硫复合而成,其可直接用

作自支撑锂硫电池正极材料,无需另加导电剂集

流体等。本发明操作简单,成本低廉,绿色环保,

制得的锂硫电池活性物质利用率高,循环稳定性

优异。可见本发明提供的三维筋撑石墨烯/硫复

合材料能够有效缓解锂硫电池存在的导电性差、

“穿梭效应”、

体积膨胀等问题。权利要求书1页 说明书3页 附图3页CN 110165162 A 2019.08.23

C N 110165162

A

权 利 要 求 书1/1页CN 110165162 A

1.一种自支撑的锂硫电池正极材料,其特征在于,其组成为三维筋撑石墨烯/硫复合物。

2.根据权利要求1所述的三维筋撑石墨烯/硫复合物,其特征在于,其制备方法是三维筋撑石墨烯与单质硫通过熔融扩散的方法制得。

3.根据权利要求1所述的三维筋撑石墨烯/硫复合物,其特征在于,复合过程中三维筋撑石墨烯不需要与硫单质进行接触。

4.根据权利要求1所述的三维筋撑石墨烯,是利用葡萄糖和碳酸铵作为原料,由发泡法制得。

5.根据权利要求2所述的三维筋撑石墨烯/硫复合物制备过程,其特征在于,三维筋撑石墨烯与硫单质在160~180℃温度下,进行真空熔融扩散。

6.根据权利要求2所述的三维筋撑石墨烯/硫复合物制备过程,其特征在于,熔融扩散时间为12h。

7.根据权利要求2所述的三维筋撑石墨烯/硫复合物制备过程,其特征在于,所需三维筋撑石墨烯与硫单质的质量比为1∶20至1∶40。

8.根据权利要求1所述的三维筋撑石墨烯/硫复合物,其特征在于,可直接用作锂硫电池正极,无需另加导电炭黑、聚偏氟乙烯(PVDF)后涂敷在铝集流体上获得正极片。

2

锂离子特性标准

锂离子电池特性 锂是化学周期表上直径最小也最活泼的金属。体积小所以容量密度高,广受消费者与工程师欢迎。但是,化学特性太活泼,则带来了极高的危险性。锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。 锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。 保护措施 锂电池芯过充到电压高于4.2V后,会开始产生副作用。过充电压愈高,危险性也跟着愈高。锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜 纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。最理想的充电电压上限为4.2V。 锂电芯放电时也要有电压下限。当电芯电压低于2.4V时,部分材料会开始被破坏。又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。因此,3.0V是一个理想的放电截止电压。 充放电时,除了电压的限制,电流的限制也有其必要。电流过大时,锂离子来不及进入储存格,会聚集于材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。万一电池外壳破裂,就会爆炸。 因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。 爆炸类型分析 电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。 当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

锂硫电池简介

锂硫电池简介 简介:锂离子电池(LiCoO2)是单电子脱嵌,锂硫电池是8电子氧化还原,因而 有7-8倍的理论容量。 前言:锂电池目前已经广泛应用于日常生活中。近几年新能源产业被政府大力支持,短时间内锂电领域不论是科研界还是商业圈都被闹得沸沸扬扬。没拿到诺贝尔奖,老爷子Good Enough哭晕在厕所;三星Note7爆炸门,iphone6S冻死关机;比亚迪放弃磷酸锂铁,转投三元材料;董大妈(董明珠)下台,私人投资珠海银隆;还有最让人闹心的新能源骗保事件,2016,锂电走在风口浪尖。 锂电的简史:锂电池,简称锂电,包含金属锂电池,锂离子电池,锂硫电池,锂空电池等,多数情况下大家指的是目前商业应用的钴酸锂(LiCoO2)。二十世纪80年代,朝日化学制品公司最早开始研发锂离子电池体系(Li-ion)[1]。1980年,Good Enough发表了正极层状材料LiCoO2的专利。1990年sony首先推出技术较为成熟的商业化锂离子电池[15]。1991年,索尼引入18650电池,并在1992-2006年之间快速发展[2]。在此之后,锂离子电池以极其惊人的发展速度,迅速取代市场上的Ni-Cd和Ni-MH电池(目前人们意识里充电电池=锂电池,大多数人甚至不知道有这两类可充电电池)。 最为直观的感受就是,换了智能手机之后,大家是每天充电,甚至充电宝不离手的状态。当今社会更需要一种低成本,无污染,性能稳定,比容量大,能量密度高的新型锂离子电池[7-10]。就像某手机广告里那样,充电5分钟,通话俩 小时。 锂硫电池发展史:锂离子电池有30多年的历史,而锂硫电池更年轻。1962年,Herbet和Ulam首次提出使用硫作为正极材料,以碱性高氯酸盐为电解质[24]。早期锂硫体系作为一次电池被研究,甚至还一度商业化生产,但后来被可充电电池取代搁置。2009年Linda F. Nazar在Nature Materials上提出关于锂硫二次可充放电池,并用CMK-3实现了1320mAh/g的高比容量。自此锂硫电池真正开启了发展篇章。 锂硫电池原理:锂硫电池正极为硫或含硫材料,负极为锂。平均电压2.1 V,理论上锂硫体系(Li-S)具有1672mAh/g的比容量,2600Wh/kg的能量密度,是传统商业化以LiCoO2为正极的锂离子电池(理论比容量273.8mAh/g,能量密度360 Wh/kg)7倍左右[11-13]。相比普通锂离子电池,锂硫电池的放电本质不是简单的锂离子脱嵌,而是伴随着大量中间产物的氧化还原过程。锂硫放电电池放电过程中,单质硫从环状S8开环与Li反应,由长链Li2S8向短链Li2S转化的过程中伴随着两个明显的放电平台,高电势放电平台为2.45V——2.1V,该过程可认

锂硫电池综述

高性能锂硫电池的研究进展 摘要:目前传统的锂离子电池在电子产品中发挥着重要作用。然而受到其较低的理论比容量的限制(约150~200Wh/kg),锂离子电池将难以满足人类发展的长远需求,例如电动汽车行业的发展。锂硫电池的理论能量密度为2600Wh/kg,是锂离子二次电池的3~5倍,是极具应用前景的电化学储能体系,近年来引起了研究人员的广泛关注。人们提高电极导电性、维持电极结构稳定性、提高硫的负载率和利用率以及加强电池循环寿命等方面开展了大量的研究工作。本文将就近几年锂硫电池的发展进行相关介绍和讨论。 关键词:锂硫电池正极材料纳米结构材料改性电解质电池结构 Research progress in High-Performance Lithium-Sulphur Batteries Ren Guodong (School of Metallurgy and Environment, Central South University,0507110402) Abstract:Lithium-ion batteries has played an important role in the electronics at present.But due to its low theoretical energy density ,which is only 150~200Wh/kg,therefore the lithium-ion batteries cannot meet the long-term needs of society in the future,just in the case of the development of electric vehicles.Lithium-sulphur battery is a promising electrochemical energy storage system which has high theoretical energy density of 2600Wh/kg,that is 3~5 times to lithium-ion battery.And it has arised more and more attentions recently.Great efforts have been made by reseachers to improve the conductivity of the electrode , the stability of electrode structure,the loading capicity of sulphur ,the utilization efficiency of sulfur in the cathode and the enhancement of cycle life of the battery.In this paper,the recent research of lithium-sulphur battery will be analyzed and discussed. Keywords:lithium-sulphur battery cathode material nano-structure modification electrolyte cell configuration 1.前言 电能储存技术和设备将会在未来社会发展中成为一项十分重要的需求。传统

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂硫电池正极材料及其设备制作方法与相关技术

本技术介绍了一种锂硫电池正极材料及其制备方法,该正极材料由单质硫和三维分级多孔炭复合而成;制备方法是先通过溶剂热法制备三维分级多孔炭的前驱体复合物,碳化后得到三维分级多孔炭,再和硫复合,即得到锂硫电池正极材料,该制备方法简单、成本低,制备的锂硫电池正极材料具有高容纳硫的能力、较高离子传输能力和导电性能,能提高锂硫电池的高倍率性能和高循环性能。 技术要求 1.一种锂硫电池正极材料的制备方法,其特征在于,将金属盐、有机配体和多壁碳纳米管通过分散剂在隔绝空气的条件下超声分散在有机溶剂中后,转移到密闭反应釜中,以2~10℃/min的升温速率从室温加热至110~200℃进行溶剂热反应;反应完成后,冷却,分离出前驱体复合物,所得前驱体复合物经干燥后在500~900℃下碳化3~24h,得到三维分 级多孔炭;所得三维分级多孔炭和单质硫复合,即得。 2.根据权利要求1所述的制备方法,其特征在于,所述的金属盐为Zn(CH3COO)2、ZnCl2、Zn(NO3)2、ZnSO4及其水合物中的一种或几种。 3.根据权利要求1所述的制备方法,其特征在于,所述的有机配体为三联苯对二甲酸、对苯二甲酸、均苯三甲酸、2,5-二羟基对苯二甲酸中的一种或几种。 4.根据权利要求1所述的制备方法,其特征在于,所述的溶剂热反应时间为8~48h。 5.根据权利要1所述的制备方法,其特征在于,所述的复合包括气相沉积、液相沉积、液相制备、球磨法、真空浸渍法中的一种。 说明书 一种锂硫电池正极材料及其制备方法 技术领域 本技术涉及一种锂硫电池正极材料及其制备方法,属于新能源领域。 背景技术

随着人类社会的发展,能源短缺、环境污染等问题的日益突出,人们对化学 电源的认识和要求也越来越高,促使人们不断探索新的化学电源为主的能量储存系统。近几十年来,以金属锂为基础的电池引领了高性能化学电源的发展方向。随着锂离子电池的成功商业化,世界各国都在加紧开展车用锂离子动力电池的研究。但由于能量密度、安全性、价格等因素,常规锂离子电池如钴酸锂、锰酸锂和磷酸铁锂电池作为动力源无法满足电动汽车的要求。 锂硫电池是极具发展潜力和应用前景的高能量密度二次电池。它具有高比容 量(1675mAh/g)和高能量密度(2600Wh/kg)。另外,硫作为正极活性物质在 来源、成本和环境友好等方面也表现出不可比拟的优势。目前,锂硫电池存在循环性能差、倍率性能需要进一步提高等问题。而锂硫电池存在的两个主要的问题在于一方面活性物质硫材料本身和最终放电产物Li2S是电子和离子的绝缘体; 另一方面,放电过程中的中间产物多硫化物易溶解于电解液中,这些会造成活性物质的不可逆损失和容量衰减。为此,如何抑制多硫化物的扩散、提高硫正极循环过程中的导电性是硫基正极材料的研究重点。 近几年学术界主要围绕抑制多硫化物扩散和改善正极材料导电性两个方面 开展研究。在材料结构上,首先考虑是将单质硫吸附在多孔材料骨架上,例如将多孔炭如活性炭、碳纳米管、石墨烯等碳材料与硫复合,防止反应过程生产的多硫化合物溶解到电解液中,通过电解液扩散,这样有助于减少穿梭效应和自放电现象。这些新型材料结构或多或少提高了电极的循环稳定性。但传统的多孔炭材料一般比表面积较小,孔径尺寸单一,结构一致性差、孔径难以调控,材料的吸附活性物质硫能力有限,造成制备的复合正极材料中的硫含量较低、分布不均匀,导电性能差,装配成电池循环数圈后,仍然有大量活性物质会从炭结构孔道中溶解,造成活性物质的损失,锂硫电池能量密度很难进一步提高。 综上所述,本领域迫切需要开发一种兼具良好的导电性和层次孔结构的锂硫 电池用正极材料,抑制多硫化物的扩散、提高硫正极循环过程中的导电性,进而提高正极材料的离子传输能力和导电性,可有效降低充放电极化,减小电池内阻,提高锂硫电池的大倍率性能。 技术内容

新型锂硫电池的设计与性能研究

新型锂硫电池的设计与性能研究 锂硫电池是近年来使用频率比较高的一种电池,相对于石油天然气等不可再生资源储存量的严重降低,锂硫电池可以进行重复使用充电,因此备受各方关注。本文主要对新型锂硫电池的设计及性能进行了研究,并提出了几点改进策略。 标签:新型锂硫电池设计性能研究 前言 锂硫电池作为二次电池中使用频率比较高的一款电池,由于其使用性能高、充放电速率快,因此被广泛运用到相关的电气系统中,除此之外对于锂硫电池内部材料问题的研究也是当今重点研究的课题。 一、锂硫电池 1.概述 锂硫电池属于二次电池中的一种,作为一种电能储存设备在可再生能源中发挥着重要的作用。与传统的镇氮电池、铅酸电池、银络电池等商业电源相比,锂硫电池尤其是新型的锂硫电池拥有使用寿命长、自放电效应小、工作电压比较高、使用时更加清洁环保无污染等优点,同时以锂离子电池作为可移动设备的储备电源的技术不仅技术研究成果成熟而且取得了相当成功的成效。 除此之外,与容量在120-200毫安左右的商業电源相比,锂硫电池的实际能量密度可以进一步提高并且当硫单质与锂离子之间进行完全反应过程中,其实际能量密度几乎可以达到1675毫安,是传统锂离子电池的5-8倍,但是由于受到其中的材料以及技术等方面的限制,可以提升的程度并不高,由此探索和研究新型能源具有极为重要的意义。 2.锂硫电池 传统的锂硫电池一般是利用硫单质作为正极的活性物质,同时使用金属锂片作为负极,并且使用隔膜将正负极隔开。锂硫电池一般使用醚类有机物作为电解液,其内部进行的电化学充电循环反应一般是经过如下的一个流程: 首先,电池内的首圈从放电开始,负极金属锂由于失去电子变成锂离子,同时锂离子在电势作用下运动到正极或者负极与硫单质发生反应,进而与硫反应得到硫化锂。其次,由于其中的正负极之间产生的电势差使得锂离子能够在正负极之间来后游动,并且对外产生放电电压,同时利用电压使得以上反应能够进行正逆向进行。 与其他的锂离子电池相比,锂硫电池尤其是新型锂硫电池在发生电化学反应

锂硫电池自放电特性的研究

第31卷第4期高校化学工程学报No.4 V ol.31 2017 年 8 月 Journal of Chemical Engineering of Chinese Universities Aug. 2017文章编号:1003-9015(2017)04-0977-07 锂硫电池自放电特性的研究 谭震1, 王崇2, 徐东彦1, 陈剑2 (1.青岛科技大学化工学院, 山东青岛 266042; 2. 中科院大连化学物理研究所, 辽宁大连 116023) 摘要:锂硫电池是目前已知的比能量最高的以固态材料为活性物质的二次电池。然而,多硫化物“穿梭”效应导致 的容量衰减快、库仑效率低和自放电率高等问题限制了锂硫电池的实用化进程。通过测试电池搁置前后的放电容量, 分析了锂硫软包电池的放电深度(DOD)、环境温度和搁置时间对电池自放电特性的影响。研究结果表明,不同DOD下 锂硫电池具有不同的自放电特性,自放电与环境温度、搁置时间呈正相关性。采用原位四电极法考察了不同DOD时内 部电解液电导率的变化情况,推测锂硫电池的自放电特性与锂硫电池的电化学反应机制和过程产物密切相关。 关键词:锂硫电池;自放电;影响因素;多硫化物;电解液电导率 中图分类号:TM912.9 文献标识码: A DOI:10.3969/j.issn.1003-9015.2017.04.031 Research on Self-Discharge of Lithium-Sulfur Batteries TAN Zhen1, WANG Chong2, XU Dong-yan1, CHEN Jian2 (1. Qingdao University of Science and Technology, Qingdao 266042, China; 2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences,Dalian 116023, China) Abstract:Lithium-sulfur batteries have the highest specific energy among those secondary battery systems that use solid materials as active substance. However, problems of fast capacity fade, low coulomb efficiency and high self-discharge rate caused by polysulfide shuttle effects limit its practical applications. In this paper, effects of depth of discharge (DOD), temperature and idling time on self-discharge characteristics were investigated by testing the extent of capacity fade of lithium-sulfur pouch cells. Experimental results show that self-discharge has a positive correlation with temperature and idling time. Variation of electrolyte conductivity in lithium sulfur battery was also investigated with an in-situ four-electrode method. It is speculated that the self-discharge characteristics of the lithium-sulfur battery are closely related to electrochemical reaction processes and intermediate products of lithium-sulfur battery. Key words: lithium sulfur battery; self-discharge; influence factors; polysulfide; electrolyte conductivity 1 前言 近年来,锂二次电池因其具有能量密度高、循环寿命长,以及无污染等优点,已经成为各类电子产品的首选电源。随着科学技术的快速发展,移动电子设备、电动汽车以及航空航天技术等对锂二次电池的比能量提出了更高的要求[1~4]。锂硫电池是一种高比能量的锂二次电池。单质硫作为正极活性组分发生双电子氧化还原反应,其理论比容量高达1672 mA?h?g-1;并且单质硫资源丰富、环境友好、成本低廉,是理想的正极材料。锂硫电池的理论比能量可达2600 W?h?kg-1,远高于传统锂离子电池,是下一代高能量密度二次电池的代表和重要发展方向,受到国内外研究人员的广泛关注[5~8]。 由于锂硫电池在充放电反应过程中存在“穿梭”效应,高价态多硫化物易溶解在电解液中,并扩散到金属锂负极表面,与金属锂发生反应,造成锂硫电池充放电过程中的自放电率高及电池容量衰减快等 收稿日期:2016-12-15;修订日期:2017-03-29。 作者简介:谭震(1991-),男,吉林省吉林市人,青岛科技大学硕士生。通讯联系人:王崇,E-mail:wangchong@https://www.doczj.com/doc/0c3333713.html,

锂硫电池正极改性、结构设计及电化学性能研究

硫正极也存在诸多缺点: (1)硫及还原产物常温下具有电子绝缘性; (2)硫电极在充放电过程中会形成易溶于电解液的多硫化物并产生穿梭效应; (3)硫电极在充放电循环中存在较大的体积效应。这些因素造成锂硫电池活性物质利用率低、循环性能差、倍率性能不理想,阻碍了锂硫电池的实用化 不同碳材料对于碳硫复合材料结构和性能的影响; 用液相原位沉积的方法制备了碳纳米官/硫(CNT/S)、碳纤维/硫(CNF/S)、活性碳/硫(AC/S)和导电炭黑/硫(SP/S)复合材料,结果比较表明:多孔碳材料较无孔或少孔碳材料更能改善硫正极的循环稳定性和提高活性物质利用率;CNT/S和AC/S复合材料表现出较好的电化学性能,CNT能提高复合材料导电性,但复合均匀度欠佳,实际入孔的有效载硫量有限;AC能有效吸附活性物质硫,但导电性差 采用喷雾热分解法制备了锂硫电池新型碳硫复合正极材料; 采用喷雾热分解法,以Si02为模板制备了介孔碳球(SPC),并以此作为负载硫的导电基体,制备了介孔碳球/硫复合材料(SPC/S)。碳球的三维结构可以有效增强复合材料的循环稳定性,此外,碳球内部的介孔有利于硫的纳米化,能起到限域捕捉活性物质和缩短离子扩散路径的作用,有利于提高材料的倍率性能。 研究了多功能碳纸用于硫正极集流体的电化学性能; 碳纸作集流体能显著改善硫正极的循环稳定性,在正极构造中,碳纸既能作为集流体,又能作为负载活性物质硫的基体,限域和捕捉溶解的多硫化物,具备多重功能。这种显著的改善归因于碳纸具有优异的导电性和多孔网络骨架结构。 采用磁控溅射和电化学沉积导电膜的方法对硫正极进行了极片修饰; 研究表明,磁控溅射镀碳能有效增强电极导电性,减少碳硫复合材料中活性物质的不可逆损失;电化学沉积PANI能形成导电纳米网状结构,有效束缚活性物质硫,减小多硫化物的溶解和扩散。 设计并制在正极结构设计方面,设计并制备了两种在正极和隔膜之间含隔层的锂硫电池:采用简单的滤纸碳化工艺获得了性能优良的导电碳纸;采用简单的商业镍网压制工艺获得了结构稳定的导电镍网,分别引入到传统锂硫电池中作为隔层使用,备了新型锂硫电池正极结构和导电隔层,

锂离子电池的三大特性分析

锂离子电池的三大特性分析 时间:2014-11-12 11:12:47来源:本站原创浏览次数:9697 一、电池的容量特性 容量测试得到电池在不同倍率下的放电电压与容量关系曲线如图3所示。 图3 不同倍率下的放电电压与容量的关系曲线 从图中可以看出,在整个放电过程中锂离子电池的电压曲线可以分为3个阶段:1)电池在初始阶段端电压快速下降,放电倍率越大,电压下降的越快; 2)电池电压进入一个缓慢变化的阶段,这段时间称为电池的平台区,放电倍率越小,平台区持续的时间越长,平台电压越高,电压下降越缓慢。在锂离子电池的实际使用过程中,尽可能希望电池工作在平台区; 3)在电池电量接近放完时,电池负载电压开始急剧下降直至达到放电截止电压。从容量测试的结果中,同时还可以得到放电电流与容量的曲线关系,如图4所示。

图4 不同放电电流与容量的关系曲线 从图中可以看出,电池放电电流的大小,会直接影响到电池的实际容量。放电电流越大,电池容量相应减小,这表明放电电流越大,到达终止电压经历的时间越短。所以谈到电池容量时,应指明其放电电流(放电倍率)。 二、电池开路电压特性 开路电压测试[6]得到锂离子电池开路电压与电池SOC的关系曲线如图5所示。 图5 电池充电与放电时的OCV-SOC曲线

从图中可以看出,电池的OCV-SOC曲线与电池放电电压曲线趋势基本相同。在SOC的中间区间(20%<SOC<80%)内,电池的OCV变化极小,电池处于平台区;而在SOC的两端区间(SOC<10%和SOC>90%),OCV 的变化率较大,整个磷酸铁锂电池的OCV-SOC曲线呈现中间区域平坦,头尾两端陡峭的样子,开路电压法即是利用这一稳定的对应关系进行SOC估计。 锂离子电池OCV-SOC关系曲线受温度、放电倍率、老化程度因素影响较小[7],但在充放电2种状态下,两条特性曲线之间会存在一定差异。 三、电池内阻特性 图6表示磷酸铁锂电池在充电和放电时的欧姆内阻。 图6 电池内阻变化曲线

锂硫电池复合正极的结构设计及中间产物调控

锂硫电池复合正极的结构设计及中间产物调控锂硫电池由于其高理论能量密度(2600 Whkg-1),低成本和环境 友好的特点,成为极具潜力的下一代二次电池体系。但也存在限制锂硫电池实际应用的诸多问题,比如单质硫电子导电能力极低,硫在充 放电氧化还原反应形成的多种可溶性中间产物溶解扩散效应,放电过程体积膨胀和负极金属锂保护等。本论文旨在克服上述锂硫电池存在的问题,从电池正极结构设计和高效吸附剂的角度出发,研究了新型 正极材料对锂硫电池电化学性能的影响。主要研究内容和结果如下:1.首次采用钙钛矿结构的La0.6Sr0.4CoO3-δ(LSC)材料作为吸附剂调控硫电极中间产物,提高电池循环稳定性。第一性原理计算(DFT)和X 射线光电子能谱(XPS)证明LSC主要通过LSC中Co原子和多硫离子中的S原子之间的相互作用力形成类似Co-S键“固定”充放电过程中的多硫离子,另外Sr元素的掺杂有效提高了材料电导率,同时也提高了钴对多硫化锂的化学吸附强度。在此基础上,设计合成了以LSC为核心层,硫活性物质为中间层,碳层为最外层的LSC/S@C三层同轴纳 米纤维结构。该结构在通过LSC吸附作用“固硫”之外,外面的碳层可以进一步提高电极的电子传导能力并可以物理阻碍多硫化锂的扩散。该复合正极纳米结构组装的电池在硫载量2.1 mg cm-2时,放电比容量达到996 mAh g-1,且在循环400圈后仍有极高的容量保持率。即便硫载量增加到5.4 mg cm-2时,仍表现出优异的循环和倍率性能。 2.考察了氮化钛(TiN)作为多硫离子吸附剂的“固硫”机制。采用价廉易得的商品化TiN颗粒,经氢氟酸(HF)简单刻蚀后得到纳米TiN,然

改善锂硫电池循环性能的研究进展

2011年第30卷第5期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·991· 化工进 展 改善锂硫电池循环性能的研究进展 熊仕昭1,洪晓斌1,谢凯1,荣利霞2 (1国防科学技术大学航天与材料工程学院材料工程与应用化学系,湖南长沙 410073; 2北京临近空间飞行器系统工程研究所,北京 100083) 摘要:综述了制约锂硫电池循环性能的因素和正极、负极、电解质对锂硫电池循环性能改善的影响。介绍了制约锂硫电池循环性能的主要因素:不可逆硫化锂的形成、硫正极多孔结构的失效和电解液组分与锂负极的副反应。分别介绍了改善锂硫电池循环性能的途径:合适的黏合剂、碳材料、正极制备工艺,锂负极保护技术,合理组分的电解质,电池结构与设计。并在此基础上对今后的发展趋势进行了展望。 关键词:锂硫电池;循环性能;硫正极;锂负极;电解质 中图分类号:TM 912.9 文献标志码:A 文章编号:1000–6613(2011)05–0991–06 Advance in improvement of cycle life of lithium-sulfur batteries XIONG Shizhao1,HONG Xiaobin1,XIE Kai1,RONG Lixia2 (1Department of Material Engineering and Applied Chemistry,School of Aerospace and Material Engineering,National University of Defense Technology,Changsha 410073,Hunan,China;2Beijing Institute of Near Space Vehicle’s System Engineering,Beijing 100083,China) Abstract:The factors limiting the cycle life of lithium-sulfur batteries and effect of cathode,anode and electrolyte on the cycle life are reviewed. The factors limiting the cycle life are introduced as follows:formation of irreversible Li2S,failure of porous structure of the cathode and parasitic reaction between species of electrolyte and lithium anode. The approaches to improving cycle life of lithium sulfur batteries are introduced as follows:appropriate binder,carbon materials and preparation method of cathode,protective technology of lithium anode,appropriate species of electrolyte,structure and design of battery. Future development of the research is also prospected. Key words:lithium sulfur batteries;cycle life;sulfur cathode;lithium anode;electrolyte 锂离子二次电池是20世纪90年代发展起来的绿色能源,因其具有高可逆容量、高电压、高循环性能和较高能量密度等优异性能而备受青睐,是目前实用化的主导电源[1-2]。高能量密度一直是二次电池研发的主题,锂硫电池是正在开发的二次电池体系中具有较高能量密度的一种,采用单质硫或含硫材料作为正极活性物质,其理论能量密度达2600 Wh/kg,是高能量密度性能二次电池的代表和方向。同其它电池相比,锂硫电池具有比容量高(单质硫的理论比容量达1680 mAh/g)、硫资源丰富、环境友好、价格便宜等优点[3]。 但容量衰减快、循环性能差制约着锂硫电池的进一步发展和应用,因此国外韩国的Samsung研究院、美国的Sion Power、Polyplus等公司,国内的防化研究院、清华大学、北京大学、武汉大学、厦门大学等高校均对锂硫电池展开了广泛而深入的研究,在正极活性材料和正极结构、电解液、锂负极保护等方面取得较大进步[4-5]。本文作者综述了制约锂硫电池循环性能的因素和改善途径。 收稿日期:2010-11-25;修改稿日期:2010-12-24。 第一作者及联系人:熊仕昭(1985—),男,博士研究生,主要从事锂硫二次电池的研究工作。E-mail kdbearx@https://www.doczj.com/doc/0c3333713.html,。

相关主题
文本预览
相关文档 最新文档