单因素方差分析-SPSS
- 格式:ppt
- 大小:807.00 KB
- 文档页数:15
SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。
第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。
SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。
本文将详细介绍单因素方差分析的原理、步骤和结果解读。
一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。
组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。
如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。
二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。
例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。
2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。
在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。
4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。
关键的统计结果包括F值、P值和ETA方。
-方差分析表:用于比较组间方差和组内方差的大小。
方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。
-P值:用于判断F值的显著性。
如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。
-ETA方:代表效应大小程度。
ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。
5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。
SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。
三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。
1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。
SPSS中的单因素方差分析一、大体原理单因素方差分析也即一维方差分析,是查验由单一因素阻碍的多组样本某因变量的均值是不是有显著不同的问题,如各组之间有显著差异,说明那个因素(分类变量)对因变量是有显著阻碍的,因素的不同水平会阻碍到因变量的取值。
二、实验工具SPSS for Windows 三、实验方式例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取假设干个灯泡测其利用寿命(单位:小时hours),数据列于下表,此刻想明白,关于这四种灯丝生产的灯泡,其利用寿命有无显著不同。
灯泡灯丝1 2 3 4 5 6 7 8 甲1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不利用选择项操作步骤(1)在数据窗成立数据文件,概念两个变量并输入数据,这两个变量是:filament 变量,数值型,取值一、二、3、4 别离代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours 变量,数值型,其值为灯泡的利用寿命,单位是小时,格式为F4.0,标签为“灯泡利用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左侧源变量框当选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。
(4)从左侧源变量框当选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。
(5)在主对话框中,单击“OK”提交进行。
五、输出结果及分析灯泡利用寿命的单因素方差分析结果ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部份说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。
SPSS单因素方差分析步骤-图文SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,可以用于进行各种统计分析,包括单因素方差分析。
单因素方差分析是一种用于比较三个或更多组之间平均值差异的统计方法。
下面是使用SPSS进行单因素方差分析的步骤:1.载入数据:打开SPSS软件,并导入数据文件。
可以通过“File”菜单中的“Open”选项来导入已有的数据文件,或是通过“File”菜单中的“New Data”选项创建新的数据文件。
2.数据检查:在进行方差分析之前,需要对数据进行检查,确保数据符合方差分析的假设要求。
主要包括以下几个方面:- 数据的正态性:使用“Explore”功能可以进行直方图和正态性检验。
在菜单栏中选择“Analyze”-“Descriptive Statistics”-“Explore”,然后选择需要检查的变量,并将其拖放到“Dependent List”框中。
点击“Plots”选项卡,勾选“Normality plots with tests”,然后点击“OK”进行正态性检验。
- 数据的同方差性:使用“Explore”功能可以进行散点图和相关统计检验。
同样地,在“Explore”对话框的“Plots”选项卡中,勾选“Scatter/Matrix”选项,并在“Options”选项卡中勾选“Flagextreme cases”,然后点击“OK”进行散点图和异常值检查。
-异常值:通过观察数据的散点图或是通过计算异常值统计量,可以确定是否存在异常值。
3.单因素方差分析:使用“Analyze”菜单中的“General Linear Model”选项来进行单因素方差分析。
在“General Linear Model”对话框中,将需要进行分析的因变量拖到“Dependent Variable”框中,将独立变量拖到“Fixed Factor(s)”框中,然后点击“OK”进行分析。
SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。
图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。
或者打开已存在的数据文件“data1.sav”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。
图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
SPSS中的单因素方差分析单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较不同组之间的平均数差异是否显著。
本文将介绍SPSS中进行单因素方差分析的步骤和结果解读。
首先,我们需要准备数据。
假设我们有一个实验,想要比较三种不同根据不同学习方法进行学习的组之间的学习成绩差异。
我们随机选择了30个参与者,将他们以随机方式分成三组,分别进行不同训练方法的学习。
每个参与者在学习结束后会得到一个学习成绩。
我们将数据录入SPSS,将每个组的学习成绩作为一个变量,并将组别作为因素变量。
确保数据已经正确输入后,我们可以进行单因素方差分析。
1. 打开SPSS软件,点击"Analyze",然后选择"General Linear Model",再选择"One-Way ANOVA"。
2. 在弹出的对话框中,将变量选择为因变量,将因素选择为分组变量。
点击"Options"来选择分析的选项,比如描述性统计和效应大小指标。
3.点击"OK"进行分析。
在分析结果会显示出表格,其中包含了各个组的均值、方差、诸如F值和p值等统计指标。
根据分析结果,我们可以得到以下结论:-F值:根据单因素方差分析的结果表格,我们可以看到F值。
F值是一种比较不同组均值变异性的度量。
F值越大,说明组之间的平均差异越显著。
-p值:p值是用来判断组别之间的差异是否显著的指标。
在单因素方差分析中,我们通常关注的是p值是否小于0.05(或者0.01,根据研究需要),小于这个阈值说明组别之间的差异是显著的。
根据我们的假设,在我们的实验中,不同学习方法对学习成绩有显著影响。
通过SPSS的单因素方差分析,我们可以得到以下结论:-F值:在我们的实验中,F值为10.41、这个结果意味着不同学习方法组之间的学习成绩有显著差异。
-p值:p值为0.001,在我们的显著水平0.05下,p值小于阈值,说明组别之间的学习成绩差异是显著的。
用SPSS进行单因素方差分析和多重比较在SPSS中进行单因素方差分析和多重比较可以帮助研究人员分析各组之间的差异,并确定是否存在显著性差异。
本文将详细介绍如何使用SPSS进行单因素方差分析和多重比较。
一、单因素方差分析1.数据准备首先,将数据导入SPSS软件。
确保每个观测值都位于独立的行中,并且将每个因素作为一个变量列。
确保每个变量的测量水平正确设置。
对于要进行单因素方差分析的变量,应该是连续型变量。
2.描述性统计在执行方差分析之前,我们需要进行描述性统计,以了解每个组的均值、标准差和样本数量。
在SPSS中,可以通过选择“统计”菜单,然后选择“描述统计”来执行描述性统计。
在弹出的对话框中,选择想要分析的变量,并选择“均值”和“标准差”。
3.单因素方差分析要进行单因素方差分析,在SPSS中选择“分析”菜单,然后选择“一元方差分析”。
在弹出的对话框中,将要分析的变量移入“因素”框中。
然后,点击“选项”按钮,选择想要输出的结果,如方差分析表和均值表。
最后,点击“确定”执行单因素方差分析。
4.结果解读方差分析表提供了重要的统计信息,包括组间和组内的平方和、自由度、均方、F值和p值。
其中,F值表示组间变异性和组内变异性的比值。
p值表示在原假设下观察到的差异是否显著。
如果p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,即存在显著差异。
二、多重比较当在单因素方差分析中发现存在显著组间差异时,下一步是进行多重比较,以确定哪些组之间存在显著差异。
1.多重比较检验在SPSS中,可以使用多种方法进行多重比较检验,如Tukey HSD、Bonferroni、LSD等。
这些方法可以通过选择“分析”菜单,然后选择“比较手段”来执行。
在弹出的对话框中,选择要进行比较的变量和方法。
点击“确定”执行多重比较检验。
2.结果解读多重比较结果表提供了各组之间的均值差异估计、标准误差、置信区间和p值。
根据p值,可以确定哪些组之间存在显著差异。
单因素方差分析spss步骤如下所示:操作工具:win10电脑。
操作软件:SPSS分析工具。
操作版本:1.32.5。
1、首先通过快捷方式打开SPSS分析工具,默认显示数据视图。
2、切换到变量视图,然后添加六个变量,分别为姓名、M、C、E、S和R,其中姓名是字符串类型,其他都是数字类型。
3、返回到数据视图,向六个变量列插入对应的数据。
4、点击分析菜单,然后依次选择分类--->系统聚类。
5、打开系统聚类分析窗口,将变量M和变量C移到变量框中。
6、点击右侧统计按钮,打开系统聚类分析:统计窗口,选择集中计划,接着点击继续。
7、单击图按钮,打开图设置窗口,勾选谱系图,然后点击继续。
8、接着点击方法按钮,打开系统聚类分析:方法窗口,聚类方法选择瓦尔德法,然后单击继续。
9、最后点击系统聚类分析窗口中的确定按钮,然后生成系统聚类分析结果和图形展示。
Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。
方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。
采用方差同质性检验方法,原假设“各水平下观察变量总体的方差无显著差异,思路同spss 两独立样本t检验中的方差分析”。
相伴概率0.515大于显著性水平0.05,故认为总体方差相等。
两类方差异同两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。
SPSS中的单因素方差分析(One-WayAnova)SPSS统计分析软件应用一、SPSS中的单因素方差分析One-Way Anova(一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡灯丝 1 2 3 4 5 6 7 8甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
单因素重复测量方差分析-SPSS教程一、问题与数据研究者想知道锻炼对心率(Heart Rate,HR)的影响,招募了10名研究对象,并进行了6个月的锻炼干预。
HR共测量了3次,干预前的HR:HR_1,干预中(3个月):HR_2和干预后(6个月):HR_3。
部分数据如图1。
图1 部分数据二、对问题分析对于单因素重复测量的数据,可以使用One-way Repeated Measures Anova 进行分析,但需要考虑6个假设。
假设1:因变量唯一,且为连续变量;假设2:研究对象内因素(本例为干预的不同时间)有3个或以上的水平;假设3:研究对象内因素的各个水平中,因变量没有明显异常值;假设4:研究对象内因素的各个水平中,因变量需服从近似正态分布;假设5:对于研究对象内因素的各个水平组合而言,因变量的方差协方差矩阵相等,也称满足球形假设。
假设1、假设2与研究设计有关,本研究数据满足。
那么应该如何检验假设3、假设4和假设5,并进行单因素重复测量方差分析呢?三、SPSS操作3.1 检验假设3:研究对象内因素各个水平中,因变量没有明显异常值如果研究对象内因素某个水平中的某些因变量取值和其它值相比特别大或者特别小,则称之为异常值。
异常值会影响该水平的均数和标准差,因此会对最终的统计检验结果产生影响。
对于小样本研究,异常值的影响尤其显著,必须检查每组各个水平内是否存在明显异常值。
在主界面点击Analyze→Descriptive Statistics→Explore,把HR_1、HR_2和HR_3选入Dependent List框中。
如图2。
图2 Explore点击Plots,出现Explore: Plots对话框。
在Boxplots模块内选择Dependents together,在Descriptive模块内取消选择Stem-and-leaf,在下方勾选Normality plots with tests(执行Shapiro-Wilk's检验)。
SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) 〔一〕根本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素〔分类变量〕对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
〔二〕实验工具SPSS for Windows〔三〕试验方法例:某灯泡厂用四种不同配料方案制成的灯丝〔filament〕,生产了四批灯泡。
在每批灯泡中随机地抽取假设干个灯泡测其使用寿命〔单位:小时hours〕,数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡1 2 3 4 5 6 7 8灯丝甲1600 1610 1650 1680 1700 1700 1780乙1500 1640 1400 1700 1750丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680〔四〕不使用选择项操作步骤〔1〕在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝〞。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命〞。
〔2〕按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,翻开“单因素方差分析〞主对话框。
〔3〕从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
〔4〕从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
〔5〕在主对话框中,单击“OK〞提交进行。
〔五〕输出结果及分析灯泡使用寿命的单因素方差分析结果ANQV ASun of Squares df Mean Square F Sig Between Groups 3 .209 Within Groups 22Total 25该表各局部说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。
单因素协方差分析【详】-SPSS教程一、问题与数据某研究者拟分析两种药物对血脂浓度的影响,招募45位中年男性分为三组,第一组给以药物1治疗(为期6周),第二组给以药物2治疗(为期6周),第三组作为空白对照组。
研究者测量了每位研究对象接受干预前的总胆固醇浓度(TC1)和干预后的总胆固醇浓度(TC2),部分数据图1。
图1 部分数据二、对问题分析研究者想判断不同干预方法(group)对因变量(治疗后TC2)的影响,但是不能忽视协变量(治疗前TC1)对因变量的作用。
针对这种情况,我们可以使用单因素协方差分析,但需要先满足以下10项假设:假设1:因变量是连续变量。
假设2:自变量存在2个或多个分组。
假设3:协变量是连续变量。
假设4:各研究对象之间具有相互独立的观测值。
假设5:各组内协变量和因变量之间存在线性关系。
假设6:各组间协变量和因变量的回归直线平行。
假设7:各组内因变量的残差近似服从正态分布。
假设8:各组内因变量的残差方差齐。
假设9:各组间因变量的残差方差齐。
假设10:因变量没有显著异常值。
经分析,本研究数据满足假设1-4,那么应该如何检验假设5-10,并进行单因素协方差分析呢?三、SPSS操作3.1 检验假设5:各组内协变量和因变量之间存在线性关系为检验假设5,我们需要先绘制协变量与因变量在不同组内的散点图。
在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,从Choose from 选择Scatter/Dot。
在中下部的8种图形中,选择“Grouped Scatter”,并拖拽到主对话框中。
如图2。
图2 Chart Builder将TC1、TC2和group变量分别拖拽到“X-Axis?”、“Y-Axis?”和“Set color”方框内。
如图3。
图3 Chart Builder在Element Properties框内点击Y-Axis1 (Point1),在Scale Range框内取消对Minimum的勾选。
SPSS基础学习⽅差分析—单因素分析为什么要进⾏⽅差分析?单样本、两样本t检验其最终⽬的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此⽤⽅差分析解决这个问题;举例:t检验可以分析⼀个班男⼥的⼊学成绩差异;⽽⽅差分析可以分析⼀个班来⾃各省市地区同学的⼊学成绩。
在⽅差分析中,涉及到控制变量和随机变量以及观测变量;举例:施肥量是否会给农作物产量带来显著影响;这⾥,控制变量:施肥量,观测变量:农作物产量,随机变量:天⽓、温度……单因素分析⽬的:分析单⼀控制因素影响下的多组样本的均值是否存在显著性差异。
适⽤条件:正态性,每个⽔平下的因变量应服从正态分布;同⽅差性,各组之间的具有相同的⽅差;独⽴性,各组之间是相互独⽴的。
案例分析:案例描述:在某⼀公司下,分析⼴告形式对销售额的影响。
(数据来源:《统计分析与SPSS的应⽤》(第五版)薛薇第六章)题⽬分析:在题⽬中,⼴告形式不⾄两种,没办法⽤两独⽴样本t检验分析形式和销售额之间的显著性差异,同时,只有⼀个控制因素,所以采⽤⽅差分析中的单因素分析。
提出原假设:⼴告形式和销售额之间不存在显著性差异。
界⾯操作步骤:分析—⽐较均值—单因素ANOVA关键步骤截图:分清楚因变量列表和因⼦;因⼦:控制变量,因变量列表:观测变量结果分析:单因素⽅差分析销售额平⽅和df均⽅F显著性组间5866.08331955.36113.483.000组内20303.222140145.023总数26169.306143分析:平⽅和:组间离差平⽅和(SSA)是由控制变量的不同⽔平造成的变差,组内离差平⽅和(SSE)是由随机变量的不同⽔平造成的变差;df:组间⾃由度,在本题中根据⼴告形式的不同分为四组,所以⾃由度为k-1=4-1=3;组内⾃由度n-k=144-k=140;均⽅:即为⽅差;F=SSA/(k-1)÷(SSE/(n-k))=组间⽅差/组内⽅差,F值显著性⼤于1,说明控制变量对观测变量的影响⽐随机变量⼤,反之有效;P-值=0.00<0.05,所以拒绝原假设,认为不同的⼴告形式和地区对销售额的平均值产⽣了显著影响,不同的⼴告形式、地区对销售额的影响效应不全为0。