同步电机现代励讲义磁系统及其控制
- 格式:ppt
- 大小:1.26 MB
- 文档页数:26
同步电动机启动原理与励磁系统分析摘要:对于同步电动机而言,它的起动方法有好几种,例如:辅助电动机起动法、变频起动法和异步起动法。
而异步起动法就是同步电动机在转子上装有类似感应电动机笼型绕组的起动绕组(即阻尼绕组),电动机转子由磁极冲片叠片而成的磁极、圆筒磁轭等组成,磁极设有横、纵阻尼绕组。
当电动机接通电源后,便能产生异步转矩起动电动机到接近同步转速,然后设法将电动机牵入同步。
大多数同步电动机都是采用此方法起动的。
本文对同步电动机启动原理与励磁系统进行分析,以供参考。
关键词:同步机;启运原理;励磁分析引言压缩空气储能(Compressed-Air-Energy-Storage,CAES)是一种具有储能容量大、使用周期长、响应速度快等优点的大规模储能技术方案,同时较电池储能更加安全可靠,较抽水蓄能不那么依赖于地理环境,近年来引起国内外大型企业及研究机构的高度关注,国内也相继建成多个集成示范项目。
其中压缩空气储能环节,因为压缩机空气流量及出口压力一般都比常规压缩机要大很多,及在项目装机容量和建设规模的要求,所以一般选择大型同步电动机作为压缩机的驱动。
同时,同步电动机也以其优异的功角特性及良好的性能在动力拖动中有着广泛的应用。
1永磁同步电动机控制方法简述永磁同步电动机控制方法主要采用变频调速方法。
交流电动机的变频调速系统主要控制形式分为开环控制和闭环控制。
比较2种控制方式,因永磁同步电动机在开环控制方式下无法将电机转子位置信号和电机运行的实际速度信号作为实时反馈信号,易出现电机运行失步和突然停车等问题,从而造成永磁同步电动机退磁故障,所以开环控制的变频调速系统并不适用于永磁同步电动机。
为精确得到电机的转子位置信息和电机运行速度信息,实现永磁同步电动机的闭环控制,目前主要采用的方法是在电机的转轴上安装高精度的传感器。
其中,电梯行业常见的传感器主要为光电编码器来检测电机的转子位置信息和电机转速。
FOC控制是一种使用变频器来控制三相交流电机的技术。
同步发电机励磁调节及励磁系统实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
现代同步发电机励磁系统设计及应用现代同步发电机励磁系统设计及应用什么是同步发电机励磁系统?同步发电机是一种通过旋转磁场将机械能转化为电能的装置。
在同步发电机中,励磁系统起着关键的作用,通过提供电磁激励来产生旋转磁场。
现代的同步发电机励磁系统设计与应用涉及多种技术和方法。
主要应用领域1. 发电厂同步发电机励磁系统是发电厂中不可或缺的部分。
它通过控制励磁电流来实现发电机的功率调节和电压调节。
励磁系统的设计和应用对于发电厂的经济运行和稳定供电至关重要。
2. 风力发电在风力发电中,同步发电机励磁系统也扮演着重要的角色。
它可以控制风力发电机组的输出电压和频率,使其与电网保持同步。
同时,励磁系统还能提供额外的励磁容量,以应对突发的风速变化和负荷波动。
3. 水力发电水力发电是利用水能转换为电能的发电方式。
在水力发电中,同步发电机励磁系统的设计和应用决定了发电机组的输出功率和调整能力。
励磁系统可以根据水轮机的负荷需求和发电机输出状况来控制励磁电流,实现自动调节和优化运行。
4. 火力发电火力发电是利用燃烧化石燃料产生高温高压蒸汽驱动汽轮机发电的方式。
同步发电机励磁系统在火力发电中起着关键的作用,它能够提供稳定的励磁电流,使发电机输出恒定的电压和频率。
5. 核能发电核能发电是利用核裂变产生的热能驱动蒸汽轮机发电的一种方式。
同步发电机励磁系统在核能发电厂中同样扮演着重要的角色。
它能够稳定控制励磁电流,使发电机输出稳定的电压和频率。
总结现代同步发电机励磁系统的设计和应用在各种发电方式中都发挥着关键的作用。
它们通过控制励磁电流来保证发电机的稳定运行和功率输出。
随着能源领域的不断发展,同步发电机励磁系统的设计和应用将继续迎来新的挑战和机遇。
同步发电机励磁系统设计的挑战同步发电机励磁系统的设计面临一些挑战,需要考虑以下因素:1. 功率调节和电压调节励磁系统需要能够对发电机的输出功率和电压进行准确的调节。
这意味着励磁系统必须能够快速响应负荷波动,并且能够稳定控制励磁电流,以确保发电机输出满足电网的要求。
同步发电机励磁自动控制系统在现代电力系统中,同步发电机励磁自动控制系统扮演着至关重要的角色。
它如同电力生产的“智慧大脑”,时刻精准调控着发电机的运行状态,确保电力的稳定供应和优质输出。
要理解同步发电机励磁自动控制系统,首先得明白励磁是什么。
简单来说,励磁就是给同步发电机的转子提供直流电流,从而在转子周围产生磁场。
这个磁场与定子绕组相互作用,就能产生电能。
而励磁自动控制系统呢,就是能够根据电力系统的运行状况和需求,自动调整这个励磁电流的大小和方向,从而实现对发电机输出电压、无功功率等重要参数的控制。
那么,为什么需要这样一个自动控制系统呢?这是因为电力系统的运行状态是时刻变化的。
比如,当系统中的负载突然增加时,如果不及时调整励磁电流,发电机的输出电压就会下降,可能导致电力质量下降,甚至影响到用电设备的正常运行。
反之,当负载突然减少时,若不加以控制,输出电压又会升高,可能损坏设备。
同步发电机励磁自动控制系统主要由励磁功率单元和励磁调节器两大部分组成。
励磁功率单元负责向发电机转子提供直流励磁电流,它就像是“动力源”,要保证有足够的能量和稳定的输出。
而励磁调节器则是整个系统的“指挥中心”,通过采集发电机的各种运行参数,如端电压、定子电流、无功功率等,然后按照预定的控制规律进行计算和分析,最终输出控制信号来调节励磁功率单元的输出。
在实际运行中,励磁自动控制系统有着多种控制方式。
其中,恒机端电压控制是最为常见的一种。
它的目标是保持发电机端电压恒定,无论系统中的负载如何变化。
通过不断监测端电压,并与设定的电压值进行比较,然后调整励磁电流,从而使端电压始终稳定在设定值附近。
这种控制方式能够有效地保证电力质量,满足用户对电压稳定性的要求。
另一种常见的控制方式是恒无功功率控制。
在某些情况下,电力系统需要发电机输出特定的无功功率,以维持系统的电压水平和功率因数。
此时,励磁自动控制系统就会根据无功功率的设定值来调整励磁电流,确保发电机输出的无功功率符合要求。