镍催化剂催化加氢机理
- 格式:doc
- 大小:12.03 KB
- 文档页数:1
一、意义1.具有绿色化的化学反应,原子经济性。
催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。
绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。
2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。
3.反应条件温和;4.设备通用性二、催化加氢的内容1.加氢催化剂Ni系催化剂骨架Ni(1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。
具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。
(2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。
(3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。
(4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。
(5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。
镍基催化剂的作用
镍基催化剂是一种常见的催化剂,其作用可以用以下几点来
描述:
1.催化剂能够降低活化能:镍基催化剂可以提供一个适当的
反应表面,使反应物分子能够吸附在表面上,从而降低反应物
的活化能。
这样,反应物分子在催化剂表面上会更容易发生反应,加快了反应速率。
镍基催化剂的高活性能有效降低化学反
应的反应温度,提高反应的选择性。
2.催化剂能提供吸附位点:催化剂能够为反应物提供吸附位点,使反应物分子能够在催化剂表面上进行吸附。
这种吸附可
以增加反应物分子之间的交流,促进反应的进行。
3.催化剂能改变反应物的分子结构:镍基催化剂的特殊结构
和活性中心可以通过吸附、解离等反应改变反应物的分子结构。
这种结构改变有助于调控反应的速率和选择性,并且可以帮助
产生更理想的产物。
4.催化剂能提供充足的活性位点:催化剂通常具有较大的比
表面积,可以提供大量的活性位点,从而增加反应物与催化剂
表面的接触面积,使得反应物分子更容易被吸附和催化。
5.催化剂能够被再生:镍基催化剂通常具有较好的稳定性和
催化活性,即使在反应过程中发生一些失活,也可以通过再生
操作恢复其催化活性。
总而言之,镍基催化剂可以通过提供吸附位点、降低活化能、改变反应物分子结构等方式促进化学反应的进行。
它在许多重
要的工业反应中具有广泛的应用,如加氢、脱氢、加氧、加氯、加氨等反应中。
同时,镍基催化剂的合成和表征研究也是催化
领域的一个重要方向。
收稿日期:20201119基金项目:南京工程学院大学生科技创新基金项目(TB202002032)作者简介:杨梦晓(1998 ),女,本科生,主要研究方向为复合材料与工程;通讯作者:赵学娟(1987 ),女,博士,讲师,主要研究方向为负载型催化剂的开发及应用研究,E-mail:zhaoxj@㊂doi :10.16597/j.cnki.issn.1002154x.2021.02.007镍基催化剂催化加氢研究进展杨梦晓㊀邵爱文㊀刘子麒㊀刘玲珂㊀刘灏远㊀张家程㊀赵学娟∗(南京工程学院材料科学与工程学院,江苏南京211167)摘㊀要㊀镍基催化剂具有较高的热稳定性且对氢气有选择性,在催化领域有广泛的应用前景㊂本文首先介绍了镍基催化剂常见的制备方法,如共沉淀法㊁体积浸渍法㊁还原法㊁溶胶-凝胶法以及水热合成法,然后重点综述了镍基催化剂在顺酐加氢㊁芳香族加氢以及其他加氢领域的应用㊂关键词㊀镍㊀催化剂㊀制备方法㊀加氢中图分类号:O643㊀㊀㊀㊀文献标识码:AResearch Progress on Nickel-Based Catalysts for Catalytic HydrogenationYang Mengxiao㊀Shao Aiwen㊀Liu Ziqi ㊀Liu Lingke㊀Liu HaoyuanZhang Jiacheng㊀Zhao Xuejuan ∗(School of Materials Science and Engineering,Nanjing Institute of Technology,Jiangsu Nanjing 211167)Abstract ㊀Nickel-based catalysts have been widely applied to the field of catalysis due to their high thermalstability and selectivity to hydrogen.In this paper,the common preparation methods of nickel-based catalysts,such as coprecipitation,volume impregnation,reduction method,sol-gel method and hydrothermal synthesis are introduced.Then,the applications of nickel-based catalysts in hydrogenation of maleic anhydride,aromatic hydrogenation andother hydrogenation fields are reviewed.Keywords ㊀Ni㊀catalysts㊀preparation method㊀hydrogenation㊀㊀催化加氢是医药㊁炼油㊁精细化工及其他有机合成领域的核心技术,能节约能耗,减少环境污染,且具有显著的经济效益㊂在现代工业中,催化加氢技术的工业应用较晚,但其速度快㊁规模大,已经成为现代工业的重要组成部分㊂贵金属催化剂具有高效的催化活性和优良的选择性,在催化加氢领域中起着重要的作用,但贵金属资源有限㊁价格昂贵㊁无法大规模使用,因此用非贵金属催化剂代替贵金属催化剂已经成为必然趋势㊂由于镍基催化剂具有较高的热稳定性且对氢气有选择性[1],在非贵金属催化剂领域受到学者们的青睐,成为近几年广泛研究的对象㊂1㊀镍基催化剂的制备镍基催化剂在非贵金属催化领域占据了重要地位㊂目前,镍基催化剂的制备主要有共沉淀法㊁体积浸渍法㊁还原法㊁溶胶-凝胶法㊁水热合成法等㊂1.1㊀共沉淀法共沉淀法是一种应用较为广泛的催化剂制备方法,其主要流程是将催化剂载体和分散剂在去离子水中加热,再加入酸化的镍盐溶液和沉淀剂,进行老化㊁过滤㊁洗涤及烘干得到前驱体,将前驱体粉碎㊁煅烧㊁还原即可制得所需负载型催化剂[2]㊂其中分散剂的㊀2021,Vol.35,No.2㊀论文综述作用是保持反应体系的稳定性,常见沉淀剂有氢氧化物㊁草酸盐㊁硫化物和磷酸盐等㊂共沉淀法制备的催化剂具有更高的催化活性[3]和较高的选择性,但是缺点在于难以精确控制沉淀物的生成量㊂1.2㊀体积浸渍法利用体积浸渍法制备催化剂前首先需要确定载体的吸水率,得出使载体饱和溶解所需的去离子水的体积㊂具体过程是将镍盐溶于等体积的去离子水中,再将载体在溶液中浸渍并不断搅拌,接着干燥㊁焙烧㊁还原得到所需催化剂[4]㊂制备催化剂所需的载体主要有氧化铝类载体㊁硅胶类载体以及某些天然产物㊂体积浸渍法的缺点在于难以准确地确定载体的吸水率,使载体饱和溶解,但是具有原料消耗少,投入成本低的优点㊂1.3㊀还原法还原法又叫程序升温还原法,其主要制备流程为将相应的镍源㊁磷源与载体浸渍,后在空气中干燥㊁焙烧得到前驱体,在400ħ~1000ħ的氢气气氛中还原数小时,即可得到负载型磷化镍催化剂[5]㊂常用的镍源[6]有硝酸镍(Ni(NO3)2㊃6H2O)㊁氯化镍(NiCl2)㊁氢氧化镍(Ni(OH)2)等,常用的磷源有磷酸氢二铵((NH4)2HPO4)㊁次磷酸铵(NH4H2PO2)㊁次磷酸钠(NaH2PO3)㊂还原法制备催化剂的流程比较简单,但是制备所需温度较高,且制备时间较长㊂1.4㊀溶胶-凝胶法溶胶-凝胶法虽是催化剂制备领域较新的制备技术,但其发展迅速,目前已得到广泛应用㊂其主要流程为:选择合适的有机溶剂,在溶剂中加入络合剂,将溶液滴入溶有硝酸镍的溶液中,搅拌形成溶胶,加热搅拌后干燥数小时形成凝胶,烘焙后研磨得到所需催化剂[7]㊂无水乙醇是常用的有机溶剂,其它还包括苯乙烯㊁三氯乙烯㊁三乙醇胺等㊂络合剂在制备过程中可以促进凝胶化,常见的有机酸络合剂[8]有葡萄糖酸㊁柠檬酸㊁EDTA(乙二胺四乙酸)㊁酒石酸㊂此方法的优点在于所需温度较低,反应容易进行,而且在形成凝胶时反应物容易混合均匀,但是制备成本较高,制备周期长,仍需不断改进㊂1.5㊀水热合成法水热合成法是利用高温高压的条件,使溶液中的化学组分发生反应的过程㊂主要制备流程为在一定量的硝酸水合物中滴加氨水至pH=11~12,搅拌完全后,在水热反应釜中加热数小时,待反应完成且反应釜冷却至室温,用去离子水过滤㊁洗涤至中性,烘干后得到所需催化剂[9]㊂水热合成法相对于其他制备方法优点在于可直接得到结晶粉末,省去了后续研磨带来的杂质影响,效率较高㊂但是制备过程中所需温度较高,对设备有一定的依赖性㊂除上述制备方法外,镍基催化剂的制备方法还有蒸氨法㊁液相还原法㊁热分解法等㊂2㊀镍基催化剂在加氢领域的应用目前非贵金属催化剂催化加氢反应的研究已取得一定进展,其中镍基催化剂因其高分散度和适宜的粒度而具有最佳的催化活性与稳定性㊂2.1㊀顺酐加氢顺酐是一种重要的有机合成中间体㊂顺酐加氢的本质上是对羰基(C=O)的加氢,顺酐结构中含有两个C=O,性质活泼,加氢活化能低,所需反应条件温和㊂夏晓丽[10]等通过蒸氨法制备了掺杂不同含量Mo的页硅酸镍金属-酸双功能催化剂MoNi-PS㊂研究表明,掺杂Mo能显著提高Ni的还原性,增加催化剂表面Ni0的数量,大幅提高对顺酐中C=C和C=O 的加氢活性㊂随着Mo含量的增加,γ-丁内酯(GBL)的收率先增加后减少;当Mo含量为3wt%时,加氢催化性能最好;当温度为160ħ时,3MoNi-PS的顺酐的加氢性能达到最高;在压强5MPa的H2环境下反应3h,对顺酐的转化率可达到100%㊂由此可见,添加合适的元素可使镍催化剂的加氢活性增大㊂除此之外,催化剂的结构对加氢催化性能也有明显影响㊂赵丽丽[11]分别制备了单斜向和四方相混合晶相氧化锆负载型镍催化剂,并研究了其对顺酐的加氢性能影响㊂结果表明,单斜相ZrO2催化剂表面氧空位呈现相对缺电子状态,能有效活化碳氧双键,有利于C=O的加氢,而四方相ZrO2负载镍催化剂表面氧空位具有较高的电荷密度,呈相对富电子性质,难以有效地活化C=O基团,因而四方相ZrO2负载镍催化剂几乎没有C=O加氢活性㊂梁二艳[12]等采用体积浸渍法制备了Ni/ZrO2催化剂,研究其催化顺酐液相加氢性能㊂结果表明,当甲醇热反应时间为2h 时,催化剂对C=O的加氢活性最高;反应时间为3h,反应压力5MPa,反应温度为210ħ时,对于顺酐的转化率达100%㊂毛洁[13]等采用沉积沉淀法制备蒙脱土负载镍催化剂(Ni/MMT),考察反应条件对于其加氢催化顺酐的影响,结果表明,以乙酸酐作溶㊀杨梦晓等.镍基催化剂催化加氢研究进展㊀2021,Vol.35,No.2剂时,对于顺酐的加氢性能最佳,反应温度100ħ㊁反应时间3h㊁氢气压力2MPa,顺酐转化率达95%㊂2.2㊀芳香族加氢镍基催化剂不仅在顺酐加氢反应中效果显著,在芳香族加氢反应中也有较高的催化活性㊂芳香族化合物通常是一类带离域键苯环的化合物,苯环本身存在p-π共轭,活化能相对较高㊂虽然镍基催化剂能在芳香族加氢反应中提高苯环脱去取代基的效率,但是易引发反应体系中的副反应,因而如何提高加氢的转化率和选择性便成为其主要的研究方向㊂梁伟[18]等采用液相还原法制备了硅柱撑蒙脱土负载型双金属催化剂Mo-Ni/SPC,并研究了其在苯酚加氢脱氧反应中的性能㊂结果表明,在3MPa和623K条件下,Mo-Ni/SPC催化剂表现出优异的催化性能,苯酚转化率为98%,环己烷选择性约95%㊂李晨芮[17]采用浸渍法和热分解法制备了负载型磷化镍催化剂,研究其对于苯酚的加氢脱氧性能,研究表明,硅含量的增加会使苯酚转化率逐渐升高,当反应时间5h,反应温度为300ħ时,苯酚转化率达到100%㊂在镍基催化剂中,镍本身的粒径和含量也是一个不可忽视的影响因素,对催化剂加氢性能有重要影响㊂王建强[14]等采用浸渍-沉淀法制备了Ni-Y/Al2O3催化剂㊂研究表明Ni含量小于30wt%时,对硝基甲苯加氢的收率可达到50%以上㊂夏延洋[16]等采用溶胶-凝胶法和浸渍法制备了Ni/SiO2催化剂,研究其对于偏三甲苯的加氢脱烷基反应活性,结果表明,通过调整催化剂中还原镍的粒径可有效控制苯环加氢,在最佳反应条件下,10Ni/Si-2.0上偏三甲苯的转化率最高为29.4%,二甲苯的选择性为99.9%㊂王文静[15]等用化学还原法制得Ni-B催化剂,研究发现该催化剂是针对卤代芳胺和卤代硝基苯的特化型催化剂,既能保证活性,也能做到保护卤代基的目的,其脱卤率小于4%,优于其它Ni基催化剂㊂2.3㊀其它加氢王登豪[9]通过水热合成法制备了Cu-Ni/SiO2催化剂,通过调节铜镍摩尔比来调控其加氢性能,结果表明,在氢酯比为150㊁反应压力为2MPa㊁反应温度为200ħ㊁液时空速为0.5h-1的反应条件下,铜镍摩尔比为1ʒ1时催化剂Cu1Ni1/SiO2表现出了最佳的加氢催化性能,草酸二甲酯的转化率达到90%,且催化剂能稳定运行100h㊂钱潇奇[20]以层状页硅酸镍(Ni-PS-L)为前驱体,通过蒸氨和水热制备出结构稳定㊁粒子分布均匀的镍基催化剂,以传统方法制备成的镍基催化剂为对比,考察它们的5-羟甲基糠醛(5-HMF)加氢性能㊂结果表明,相比传统的镍基催化剂,蒸氨法和水热法制备得到的催化剂展现出更优异的5-HMF加氢性能,在373K㊁8h㊁1.5MPa H2的条件下,能得到100%的5-HMF转化率㊂3㊀结语镍基催化剂价格低廉,资源丰富,符合绿色可持续发展理念,在过去的几十年里,专家学者们对其进行了广泛的研究与探索㊂在催化加氢方面,镍基催化剂由于其价格低廉㊁催化效率高㊁具有良好的加氢活性等原因,已广泛应用于各种不饱和有机物的加氢反应㊂但是镍基催化剂在研究与应用中也存在一些问题,如催化剂在反应中容易产生积炭造成失活;高温下稳定性较差;催化剂的结构和性能之间的关系还需进一步深入研究;镍基催化剂催化加氢的反应机理研究不多等㊂参考文献[1]余海燕,李东魁,王娜.Fe-Ni双金属催化剂的研究进展[J].阴山学刊(自然科学版),2018,32(02):4952.[2]孙春晖,于海斌,陈永生等.高活性镍基加氢催化剂制备研究[J].无机盐工业,2017,49(03):7476. [3]张斌,张新波,许莉勇等.共沉淀法制备氧化铝负载铜催化剂及其在肉桂醛选择性加氢反应中的应用[J].过程工程学报,2012,12(04):690695.[4]刘飞.磷化镍催化剂的制备及其在糠醛选择性加氢反应中的应用[D].黑龙江大学,017.[5]李天敏,张君涛,申志兵等.负载型磷化镍催化剂的制备及其催化应用[J].工业催化,2019,27(09):1925.[6]于祺,牟玉强,佟铁鑫.还原法制备磷化镍催化剂的研究进展[J].精细石油化工进展,2019,20(06):4750.[7]Karaismailoglu M,Figen HE,Baykara SZ.Hydrogenproduction by catalytic methane decomposition over yttria doped nickel based catalysts.2019,44(20):99229929.[8]张成,万金泉,马邕文等.pH及络合剂对亚铁活化S2O2-8氧化去除活性艳蓝的影响研究[J].环境科学, 2012,33(03):871878.[9]王登豪,张传彩,朱远明等.高效稳定的铜镍催化剂在草酸二甲酯加氢的应用[J].化工学报,2017,68(07): 27392745+2957.(下转第53页)㊀胡榕华等.新工科背景下化工原理课程设计教学改革㊀2021,Vol.35,No.2高教学水平和教学质量的目的,本课程在雨课堂平台上建设了线上教学资源㊂目前,雨课堂的线上教学资源包括10个课程教学视频,每个视频5~10分钟,涵盖了课程设计任务书的解读㊁管道阻力计算㊁换热器设计㊁离心泵扬程计算及选型㊁转鼓真空过滤机计算及选型㊁吸收塔塔径及填料高度计算等课程设计内容㊂另外,我们还将针对化工原理课程设计所涉及的单元操作的知识点设置100道练习题,用于学生自测,以便学生温故知新㊂为了满足学生自主学习需求,我们将在学堂在线平台或校内平台上建设化工原理课程设计的线上课程,为线上线下混合式一流本科课程建设做好积累和改进㊂2.6㊀教学团队的改革化工原理课程设计水平与指导教师直接相关,教师的实践教学能力是提高课程设计环节教学质量的关键㊂大部分年轻教师基本都是从高校毕业就到学校从事本科教育,没有企业工作背景,工程实践经验不足,对工艺流程㊁设备结构㊁车间布置和管道布置等不熟悉㊂因此,年轻教师可以到企业进行挂职锻炼,参加实习实践基地建设及校企项目合作,解决实际工程问题和企业关心的实际问题㊂另外,我们可以从企业中选派具有工程设计经验的工程师或优秀校友作为兼职教师,共同开展课程设计,不断提升教师队伍的指导水平㊂3㊀结语针对化工原理课程设计的教学现状,以 实际应用,提升能力 为原则,我们进行新工科背景下化工原理课程设计实践课程的教学改革㊂课程设计选题来源于工程实际,教学中实施分层次的教学目标,开展专业课程思政教育,采用线上线下混合式教学,建立 平时成绩+设计作品+答辩 的过程性考核方式㊂通过以上的教学改革,更好地提升了学生的设计水平,提高了学生的工程实践能力和创新能力,进一步满足社会对应用型人才的需求㊂参考文献[1]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(03):1 6.[2]夏淑倩,王曼玲,程金萍等.践行OBE理念,开展化工类专业新工科建设[J].化工高等教育,2018(01):912,61.[3]陈桂,袁叶,胡扬剑等.应用型高校化工原理课程设计教学改革思考[J].化学工程与装备,2019(11):280281.[4]唐新德,刘宁,王津津等.基于OBE理念的化工原理课程设计教学改革探索[J].广州化工,2020,48(18): 146148.[5]陈婷,胥桂萍,姚振华等.新工科背景下‘化工原理实验“思政探索与实践[J].山东化工,2020,49(19):196197.[6]张健平.基于CDIO工程教育理念的化工原理课程设计教学改革与探索[J].西南科技大学高教研究,2018,34(02):5660.[7]王芳.化工原理课程设计教学改革探讨[J].化工时刊,2019,33(08):5152.ʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏʏ(上接第25页)[10]夏晓丽,谭静静,卫彩云等.钼改性页硅酸镍催化剂催化顺酐加氢性能[J].高等学校化学学报,2019,40(06): 12071215.[11]赵丽丽.二氧化锆负载镍催化剂催化顺酐选择加氢性能研究[D].山西大学,2019.[12]梁二艳,张因,赵丽丽等.甲醇热制备四方相ZrO2及其负载镍催化剂的顺酐加氢性能[J].化工学报,2017,68(06):23522358.[13]毛洁,王清,王慢慢等.蒙脱土负载镍催化顺酐加氢制备丁二酸酐[J].西华师范大学学报(自然科学版),2018, 39(03):247251.[14]王建强,董鹏.新型镍催化剂催化对硝基甲苯加氢的研究[J].云南化工,2017,44(09):2930. [15]王文静,严新焕,许丹倩等.Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺[J].催化学报, 2004,025(005):369372.[16]夏延洋,卜天同,王立成等.镍硅基催化剂上偏三甲苯的加氢脱烷基反应[J].高等学校化学学报,2016,37(12): 22152220.[17]李晨芮.负载型磷化镍催化剂对苯酚的加氢性能研究[D].郑州大学,2017.[18]梁伟,李保山.助剂Mo对硅柱撑蒙脱土负载镍催化剂结构及加氢脱氧性能的影响[J].工业催化,2017,25(06): 915.[19]马航,冯霄.固体催化剂常规制备方法的研究进展[J].现代化工,2013,33(10):3236.[20]钱潇奇.页硅酸镍催化剂用于5-羟甲基糠醛选择性加氢反应的研究[D].厦门大学,2019.。
2绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。
催化加氢反应一般生成产物和水,不会生成其它副产物,具有很好的原子经济性。
加氢反应的应用很广泛。
加氢过程在石油炼制工业中,除用于加氢裂化外,还广泛用于加氢精制。
在煤化工中用于煤加氢液化制取液体燃料。
在有机化工中则用于制备各种有机产品,例如一氧化碳加氢合成甲醇、苯加氢制环己烷、苯酚加氢制环己醇等。
此外,加氢过程还作为化学工业的一种精制手段,用于除去有机原料或产品中所含少量有害而不易分离的杂质,例如乙烯精制时使其中杂质乙炔加氢而成乙烯;丙烯精制时使其中杂质丙炔和丙二烯加氢而成丙烯等。
3早在1902年,Normann 就实现了用镍催化剂使脂肪加氢来制取硬化油的工业化生产。
近年来,镍系催化剂无论是在制备方法还是在应用领域,都取得了巨大的发展,镍应用于烯烃,炔烃,苯,硝基化合物,含羰基的化合物的催化加氢。
4按照催化剂的改性方法,将镍催化剂分为骨架镍催化剂、负载型催化剂以及其它类型镍催化剂。
5骨架镍,是应用最广泛的一类镍系加氢催化剂,也称雷尼镍。
具有很多微孔,是以多孔金属形态出现的金属催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。
具体的制备方法:将 Ni 和 Al ,Mg ,Si ,Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。
6薛勇等[8]以邻硝基甲苯和草酸二乙酯为起始原料,合成邻硝基苯丙酮酸乙酯的乙醇碱性溶液,再用雷尼镍催化剂,在60~70℃、1.5MPa 压力下,用催化氢化法合成了吲哚-2-甲酸,总收率为70% (以邻硝基甲苯计算)用熔点、NMR 、GC - MS 谱图表征了该化合物。
雷尼镍催化氢化方法合成吲哚-2-甲酸成本较低、后处理简单、无环境污染。
其合成路线为: CH 3NO 2+(COOC 2H 5)2C 2H 5ONa CH 2C OCOOCH 2CH 3NO 2 CH 2C OCOOCH 2CH 3NO 2+H 2Ni NH COOH胡少伟等[10]采用骤冷法制备了改性骨架镍,将其应用于3, 4-二甲基硝基苯的催化加氢制备3, 4-二甲基苯胺。
镍催化剂催化加氢机理
镍催化剂是电子转移型催化剂,在催化加氢反应中起着重要作用。
它
可以催化烃类分子与氢气发生反应,生成相应的烃基化产物。
其反应
机理主要分为两种类型:裂解还原型机理和氢解加成型机理。
下面将
详细介绍这两种机理及其特点。
裂解还原型机理
在裂解还原型机理中,烃分子首先被吸附在催化剂表面,然后发生裂
解反应,将分子分为较小的分子段。
这些分子段再与吸附在催化剂表
面的氢分子相遇并发生反应,催化产物被生成。
这种机理主要适用于
低温下的催化加氢反应。
氢解加成型机理
在氢解加成型机理中,烃分子被吸附在催化剂表面,然后被逐渐加氢,逐渐产生烃基化产物。
这种机理主要适用于高温下的催化加氢反应。
总体而言,镍催化剂是一种非常有效的催化剂。
它不仅可以催化加氢
反应,生成相应的烃基化产品,而且还有着较高的选择性和稳定性,
使得它成为了各个领域中必不可少的催化剂。
需要注意的是,镍催化剂在催化反应时也会存在一些问题,例如催化剂的失活、选择性下降、副反应增多等。
因此,为了保证催化剂的有效性,要注意选择适当的反应条件和催化剂充分活化。
同时,在催化反应的过程中,还需进行剖析机理,为进一步改进催化剂提供依据。
镍催化剂催化加氢的机理探究镍催化剂催化加氢的机理探究在化学领域中,催化剂的使用极为广泛,而镍催化剂作为一种重要的催化剂,具有在加氢反应中的广泛应用。
本文将深入探究镍催化剂催化加氢的机理,并分享我对这一主题的观点和理解。
我们来了解一下加氢反应的基本原理。
1. 加氢反应的基本原理加氢反应是指将氢气与有机化合物在催化剂的作用下发生反应,将有机化合物中的双键或多键转化为单键的过程。
这种反应在化学工业中具有广泛的应用,常见的加氢反应包括饱和烃的制备、不饱和化合物的加氢脱氢、氢化物的还原和环代谢等。
2. 镍催化剂的特点与应用镍催化剂具有许多独特的特点,例如催化性能高、催化活性可调节、易得性好等。
镍催化剂在许多加氢反应中都表现出优秀的催化活性和选择性。
镍催化剂还具有较低的成本和环境友好性,因此被广泛应用于工业生产中的加氢反应。
3. 镍催化剂催化加氢的机理镍催化剂催化加氢的机理涉及多个步骤,以下为具体内容:3.1 吸附和激活氢气镍催化剂首先通过吸附氢气使其激活。
在催化剂表面,氢气分子会与表面的镍原子形成键合,从而使氢气中的化学键变得更容易断裂。
3.2 吸附和激活有机化合物在催化剂表面,有机化合物分子与镍原子形成键合,吸附在催化剂表面,从而使有机化合物中的双键或多键易于断裂。
3.3 反应步骤在催化剂表面上,吸附的氢气和有机化合物发生反应,产生中间体。
这些中间体随后发生反应,断裂原有的化学键,生成新的化学键,最终得到目标产物。
4. 我对镍催化剂催化加氢机理的观点和理解镍催化剂催化加氢的机理是一个复杂的过程,涉及多个步骤和反应中间体的生成。
我认为,在研究镍催化剂催化加氢机理时,需要综合考虑各个因素的影响,如镍催化剂的结构、活性位点的形成以及反应条件等。
镍催化剂的催化性能也受到催化剂的负载、助剂的添加等因素的影响。
总结:镍催化剂催化加氢是一种重要的反应,具有广泛的应用前景。
在镍催化剂催化加氢的机理探究中,深入理解反应的步骤和中间体生成的机制对于提高催化剂的活性和选择性具有重要意义。
Ni2P催化剂加氢脱氧机理研究进展宋华;宫静;宋华林;李锋【摘要】T he structure and the active phase for hydrodeoxygenation (HDO ) of Ni2 P catalyst and the typical oxygen‐containing compounds in bio‐oil were introduced . The recent progress in the HDO mechanism over Ni2 P catalysts based on representative oxygen‐containingcompounds ,such as furans ,phenols ,ethers and esters ,wasreviewed .During HDO ,C—O bonds of oxygen‐containing compounds were cleaved under the action of catalysts ,and then the oxygen was mainly removed by hydrog enation‐hydrogenolysis in the form of H2O ,by which complicated products were produced . Bio‐oils were rich in furans and phenolic compounds ,and the deoxidization of these compounds needed harsh reaction conditions ,therefore ,their HDO were of the most challenging .To prepare the catalysts with more excellent HDO performance ,the HDO theoretical research and regulatory mechanism for HDO activity of the Ni2 P catalyst were worthy of being further studied .%介绍了Ni2 P催化剂的结构特征、加氢脱氧(HDO )活性相及生物油中典型的含氧化合物,综述了具有代表性的典型含氧化合物呋喃类、酚类、醚类和酯类在Ni2 P催化剂催化下的 HDO机理方面的最新研究进展。
金属加氢催化剂全文共四篇示例,供读者参考第一篇示例:金属加氢催化剂是一种具有重要应用价值的催化剂,广泛应用于化工工业和能源领域。
金属加氢催化剂的制备和性能研究一直是催化领域的研究热点之一。
金属加氢催化剂能够促进化学反应的进行,提高反应速率和产率,降低反应温度和压力,减少副反应的产生,具有高效、环保、资源节约等优点。
本文将从金属加氢催化剂的原理、制备方法、应用领域等方面进行介绍。
一、金属加氢催化剂的原理金属加氢催化剂是指由金属元素组成的催化剂,能够促进氢气与其他分子发生加氢反应。
一般来说,金属加氢催化剂可分为贵金属催化剂和非贵金属催化剂两种。
贵金属催化剂如铂、钯、钌等具有较高的催化活性,但成本较高;而非贵金属催化剂如镍、钼、铁等成本低廉,但催化活性相对较低。
金属催化剂的加氢过程一般分为两个步骤:氢气在金属表面被吸附形成活性金属氢原子,然后与其他分子发生加氢反应产生产物。
金属加氢催化剂的制备方法有多种,常见的包括溶液沉淀法、溶胶-凝胶法、气相沉积法、物理混合法、共沉淀法等。
溶液沉淀法是一种常用的制备方法,具有简单、易控制、废液回收等优点。
溶胶-凝胶法则是一种新兴的制备方法,可以制备出高比表面积的催化剂。
气相沉积法适用于高温条件下的催化剂制备,可以得到高纯度、均匀分散的催化剂颗粒。
物理混合法和共沉淀法常用于合成复合金属催化剂,满足特定催化反应的要求。
金属加氢催化剂在化工工业和能源领域有着广泛的应用。
在化工领域,金属加氢催化剂常用于有机合成反应、氨合成、裂化反应等。
有机合成反应中,金属加氢催化剂可以促进醇、酮、脂肪酸等化合物的加氢反应,提高产品的纯度和产率。
在氨合成和裂化反应中,金属加氢催化剂可以催化氮气和氢气的反应产生氨气,或者促进烃类分子的裂化反应产生烯烃、烷烃等。
在能源领域,金属加氢催化剂也有着广泛的应用。
油品加氢处理是一种重要的石油加工技术,金属加氢催化剂在油品加氢处理中起着至关重要的作用。
金属加氢催化剂可以去除油品中的硫和氮等杂质,减少废气排放,提高油品的质量。
加氢催化剂主要成分催化剂是一种能够加速化学反应速率,而在反应结束后能够保持其化学性质不发生改变的物质。
添加催化剂可以降低反应的活化能,使得反应能够以更低的能量进行,从而提高反应速率。
加氢催化剂是一种特殊的催化剂,在有机合成领域中广泛应用。
加氢催化剂的主要成分可以分为金属和载体两类。
金属通常是使用过渡金属或贵金属,而载体则可以是氧化铝、硅胶、活性炭等。
1. 过渡金属:常见的过渡金属催化剂有钯(Pd)、铑(Rh)、钌(Ru)、铂(Pt)、镍(Ni)等。
这些金属具有良好的活性和选择性,广泛应用于加氢催化剂反应中。
例如,钯在许多加氢反应中表现出较高的催化活性,如芳香烃的加氢脱芳构化反应、醛酮的加氢还原反应等。
2. 贵金属:贵金属催化剂通常使用铂(Pt)、钯(Pd)、铑(Rh)等。
贵金属催化剂具有较高的稳定性和选择性,在很多有机合成中被广泛应用。
例如,铂催化剂可以催化烯烃的加氢反应,将双键加氢转化为烃烃。
3. 载体:载体是催化剂的重要组成部分,它们对催化剂的催化性能和稳定性具有重要影响。
常见的载体材料有氧化铝、硅胶、活性炭等。
载体可以提供较大的比表面积和孔隙结构,增加催化反应的活性位点和提高催化剂的稳定性。
例如,将铂负载在氧化铝上可以增加其比表面积,提高催化剂的反应活性。
加氢催化剂主要应用于有机合成领域,包括烯烃的加氢还原、酮类和醛类的加氢反应、芳香烃的加氢脱芳构化等。
催化剂的选择对于反应的效率和选择性起着重要的影响,不同的催化剂能够实现不同的反应转化率和产物选择性。
综上所述,加氢催化剂包括过渡金属和贵金属两类,常见的金属有钯、铑、镍、铂等;载体为催化剂的重要组成部分,常用材料有氧化铝、硅胶、活性炭等。
不同的催化剂可以实现不同的反应转化率和产物选择性,催化剂的选择对于反应的效率和选择性具有关键的影响。
镍试剂的应用原理1. 什么是镍试剂?镍试剂是指含有镍离子(Ni2+)的化学试剂,常用于化学分析、有机合成和电镀等领域。
镍试剂可以是无机盐酸镍(NiCl2)、硫酸镍(NiSO4)等,也可以是有机化合物如乙二胺四乙酸镍(Ni(EDTA))等。
2. 镍试剂的应用领域镍试剂在各个领域有着广泛的应用,下面列举了一些主要的应用领域:•化学分析:镍试剂可以用于分析化学中的定量测定和定性分析。
例如,在水质分析中,使用镍试剂可以测定水中重金属离子的含量。
•有机合成:镍试剂在有机合成中起到催化剂的作用。
例如,镍催化的交叉偶联反应可以用于构建碳-碳键和碳-氮键,是有机合成中的重要工具。
•电镀:镍试剂可以用于镀镍工艺中,将镍离子还原成金属镍沉积在物体表面,使物体获得镀镍层,起到保护和装饰的作用。
镀镍层具有较高的耐腐蚀性和光泽度。
•电池:镍试剂在电池中有着重要的应用。
例如,在镍氢电池中,镍试剂可用作正极材料,与氢气进行氧化还原反应,产生电能。
•催化剂:镍试剂在催化反应中起到催化剂的作用,加速化学反应的进行。
例如,在脱氢反应中,镍试剂可以催化烃类化合物的脱氢,生成烯烃。
3. 镍试剂的应用原理镍试剂的应用原理基于镍离子(Ni2+)的化学性质和反应特性。
以下列举了镍试剂常用的应用原理:•络合反应:镍试剂可以与某些配体(如EDTA)形成稳定的络合物,通过络合反应的原理可以实现对金属离子的定量测定和分离提取。
•氧化还原反应:镍试剂在某些反应中可以氧化或还原其他化合物,参与氧化还原反应。
例如在电镀中,镍试剂可以被还原生成金属镍,从而形成均匀的镀层。
•催化反应:镍试剂具有良好的催化性能,可以参与许多有机化学反应,如交叉偶联反应、加氢反应等。
催化反应通过降低反应活化能,使反应速率得到提高。
•离子交换:在某些实验条件下,镍试剂可以与其他离子发生交换反应,通过离子交换的原理实现对离子的富集和分离。
例如,镍试剂可以用于从废水中去除有害离子。
4. 镍试剂的注意事项•镍试剂在使用过程中需要注意安全,避免接触皮肤和吸入气体。
镍钴锰氢气还原在现代工业生产中,以镍钴锰氢气还原是一种常见的化学反应过程。
镍、钴、锰是重要的金属元素,而氢气则是一种常见的气体。
这种还原反应在许多领域中都有重要的应用,例如电池制造、催化剂生产、氢气制备等。
本文将介绍镍钴锰氢气还原的基本原理、应用领域以及相关的研究进展。
镍钴锰氢气还原是一种重要的还原反应,其基本原理是利用镍、钴、锰等金属作为催化剂,将氢气与一定的物质发生化学反应,从而将物质还原为更低的氧化态。
这种反应通常在一定的温度和压力下进行,需要严格控制反应条件以确保反应的稳定性和高效性。
镍、钴、锰等金属元素在化工领域中具有重要的应用价值。
它们可以作为催化剂,参与氢气还原反应,促进物质的还原过程。
在电池制造中,镍、钴、锰等金属元素也被广泛应用,用于制造正极材料,提高电池的性能和循环寿命。
此外,这些金属元素还可以用于制备合金材料,提高材料的强度和耐腐蚀性能。
镍钴锰氢气还原反应在氢气制备领域中也有重要的应用。
氢气是一种清洁的能源载体,具有高能量密度和环保性,被广泛应用于燃料电池、化工生产等领域。
通过镍钴锰氢气还原反应,可以高效地制备氢气,为氢能源的发展提供重要支持。
近年来,随着绿色能源的兴起,氢能源已成为人们关注的热点。
镍钴锰氢气还原反应作为氢能源生产的重要环节,受到了广泛的研究。
许多学者致力于改进镍钴锰催化剂的性能,提高反应的效率和选择性,以满足不同领域对氢气的需求。
总的来说,镍钴锰氢气还原是一种重要的化学反应过程,具有广泛的应用价值。
通过对这一反应过程的深入研究和探索,可以推动氢能源技术的发展,促进工业生产的绿色化和可持续发展。
希望未来能有更多的科研成果和技术突破,推动镍钴锰氢气还原反应在各个领域的应用和发展。
镍催化剂催化加氢机理
镍催化剂催化加氢是一种常见的工业反应,其机理涉及到多个步骤。
首先,氢气在镍催化剂的表面被吸附并形成中间体,这个中间体可以是氢分子或氢离子。
接着,有机物分子进入催化剂表面,与中间体发生反应,形成中间产物。
在这一步骤中,氢气提供了电子和质子,使得有机物分子被还原。
最后,中间产物再次与表面的氢中间体发生反应,形成加氢产物并释放出氨气。
整个反应过程中,镍催化剂起到了催化剂的作用,通过吸附和解离中间体来促进反应的进行。
此外,反应条件也对催化剂的催化效果有影响,如反应温度、压力和氢气流速等。
因此,对镍催化剂催化加氢机理的深入研究有助于优化反应条件和提高反应效率。
- 1 -。