实践与探索1--华师大版
- 格式:ppt
- 大小:283.00 KB
- 文档页数:16
22.3 实践与探索第一课时学习目标:1.使学生掌握列方程解应用题中写“关系式”及找相等关系列方程方法;2.使学生理解列方程实质在于会用含未知数的代数式表示题目里的关系式;3.采用对面积的割补、移动的方法,培养学生灵活运用的能力.重点和难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列方程是重点也是难点.学习过程:一、创设情境1.写出本节课的课题:一元二次方程的应用.2.请同学们回忆并回答解一元一次方程应用题的一般步骤:3.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.我们先来解决§22.1的问题1,然后总结一些规律或应注意事项.二、探究归纳例1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.现设长方形绿地宽为x米,不难列出方程:三、实践应用例2如图1,在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为 540米2,道路的宽应为多少?分析此题的相等关系是矩形面积减去道路面积等于540米2.解法1如图2,设道路的宽为x米,则横向的路面面积为______.纵向的路面面积为______.所列的方程是不是32×20-(32x+20x)=540?启发学生思考,务必把这一点弄明白!解法2 利用“图形平行移动”的道理,把纵、横两条路移动一下,使列方程容易些,(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)如图3,设路宽为x米,耕地矩形的长(横向)为______.耕地矩形的宽(纵向)为______.例3 如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.分析设截去正方形的边长为x厘米后,关键在于列出底面(图示虚线部分)长和宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式.解设截去正方形的边长为x厘米,根据题意,得练习:1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的三分之二时较美观,求镶上彩纸条的宽(精确到0.1厘米).2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=,其中重力加速度g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米?四、归纳小结1.列方程解应用题的步骤是:2.面积问题常要用到割、补、运动等技法.例2中,纵、横两条路有一块重叠的面积最容易忽略,解法2采用了运动的办法,是一种灵活解题的能力.总之:在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程的解之后,要注意检验是否符合题意,然后得到原问题的解答. 五、作业1.学校课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽(精确到0.1米).2.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较适合?3.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分面积为100平方米,求原正方形广场的边长(精确到0.1米).4.村里要修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多0.4米,求灌溉渠横截面的上下底长和灌溉渠的深度.。
华师大版九年级上册22.3实践与探索教案(2)教学内容:课本P40页~P43页。
教学目标:1、通过具体的实例,体验用一元二次方程解决实际问题的方法;2、通过变式寻找问题的本质;3、形成图形问题的解题经验;教学重点:应用题的分析方法;教学难点:找等量关系;教学准备:课件教学方法:讲授法教学过程一、练习课本P43第5、6题二、学习1、学习问题3:小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折叠成一个无盖的长方体盒子,如图所示。
(1)如果要求长方体的底面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面积的数据要求,那么剪去的正方形边长会发生怎样的变化?折叠成的长方体的侧面积又会发生怎样的变化?折叠成的长方体底81644936251694面积(cm2)剪去的正方形边长(cm)折叠成的长方体侧面积cm2)分析:设剪去的正方形的边长为xcm,则长方体的底面正方形的边长为(10-2x)cm。
长方体的底面积为(10-2x)2cm2;长方体的侧面积为4块相同的长方形,其长为(10-2x)cm,宽为xcm,侧面积为4x(10-2x)cm2.解:(1)设剪去的正方形的边长为xcm,根据题意,得(10-2x)2=81解得:x1=9.5(舍去),x2=0.5答:剪去的正方形的边长为0.5cm.(2)当折叠的长方全底面积为81cm2时,剪去的正方形边长为0.5cm,折叠成的长方体的侧面积为4×0.5×9=18cm2.学生分组计算并填表格。
折叠成的长方体底面积(cm 2)81 64 49 36 25 16 9 4 剪去的正方形边长(cm )0.5 1 1.5 2 2.5 3 3.5 4 折叠成的长方体侧面积cm 2)18 32 42 48 50 48 42 32从表格数据可以看出:当折叠成的长方体底面积变小时,剪去的正方形边长增大,折叠成的长方体的侧面积先变大后变小。
22.3 实践与探索〔1〕学习目标:1、使学生能根据量之间的关系,列出一元二次方程的应用题。
2、提高学生分析问题、解决问题的能力。
3、培养学生数学应用的意识。
学习重难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列出方程是本节课的重点,也是难点。
学习过程:一、温故:1、表达列一元一次方程解应用题的步骤。
2、一元二次方程有哪些解法?3、用多种方法解方程22-=++x x x(31)69二、探究:自主探究:绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?解:设宽为x米,可列出方程解出方程:合作交流:列一元二次方程解应用题的步骤:〔鼓励用自己的语言总结出解题步骤。
〕自主学习:例:学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便,m,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402小道的宽应是多少?解:精讲点拨:要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决。
求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答自主探究:思考:是否还有其它的方法解决问题?合作交流:通过本节课的学习你有什么收获?在二次根式的化简时注意什么问题?三、作业作业:课本第40页,练习1、2自我检测:A组1、用一块长80cm、宽60cm的薄钢片,在四个角上截去四个一样的边长为xcm 的小正方形,然后做成底面积为1500cm的无盖长方体盒子。
为求出x,根据题意,列方程并整理得〔〕A、x2-70x+825=0B、x2+70x-825=0C、x2-70x-825=0D、x2+70x+825=02、要用一条长为24cm的铁丝围成一个斜边长为10cm的直角三角形,那么两条直角边的长分别为〔〕A、4cm,8cmB、6cm,8cmC、4cm,10cmD、7cm,7cmB组1、一堵墙长a米,一面靠墙用24米木栅栏修总面积为32平方米的临时仓库(1)求仓库的长和宽(2)a的长对x的取值有何影响?2、如图用160米建筑材料和一面旧墙修一个600平方米分割为六间的养鸡场,求养鸡场的总的长和宽是多少?。
一元二次方程--实践与探究4m,现可用的围栏长度为探究一:计划背面靠山修建矩形果园,共种植30000棵柑橘树,每棵树占地面积为21000m(靠山面不需要围栏),则果园的长和宽分别为多少?探究二:果园修建完成后,投入了30万元进行种植果树以及果园的管理,预计两年后果园的资金投入将达到43.2万元,则该果园投入资金的平均增长率为多少?探究三:柑橘批发出售,预计成本每千克4元,经过市场调查发现,若按每千克14元销售,每天能销售500千克,销售单价每涨1元,日销售量就减少20千克.(1)预计月销售利润达到6000元,但售价不能超过20元,销售单价应上涨多少?(2)当销售价格上涨多少时,获得利润最大,最大为多少?练习1:学校准备在图书馆后面的场地上建一个面积为12m 2的矩形自行车棚,一边利用图书馆的后墙,后墙长为5m ,并利用已有总长为10m 的铁围栏,请你来设计,如何搭建较合适(即自棚的长、宽各是多少)?练习2:1、国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2023年底有贫困人口9万人,通过社会各界的努力,2023年底贫困人口减少至1万人.设2023年底至2023年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1-2x)=1B .9(1-x)2=1C .9(1+2x)=1D .9(1+x)2=12、某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x ,那么可列出的方程是( )A .1000(1+x)2=3990B .1000+1000(1+x)+1000(1+x)2=3990C .1000(1+2x)=3990D .1000+1000(1+x)+1000(1+2x)=3990练习3:一商店销售某种商品,每件盈利40元,平均每天可售出20件.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时,该商店每天销售利润为1200元?(2)当商品降价多少时获得最大利润,最大利润为多少?拓展提升:例如y=ax2+bx+c(a≠0),当x为何值时,y有最大值(最小值)为多少?(用a,b,c表示)。
实践与探索
一、学习目标确定的依据
1、课程标准
探索根据一次函数的图象求二元一次方程组的解,并能从图象上获取信息的能力。
利用数形结合解决实际问题
2、教材分析
本节课是初中数学华师大版八年级下册第17章函数及其图象第五大节:实践与探索问题1,是学生在掌握正比例函数和一次函数性质及图象的基础上,进一步利用函数解决实际问题。
教材通过实例提出问题,通过对问题的观察、分析综合应用函数及其图象解决实际问题。
为学生能够灵活利用函数及其图象解决综合性实际问题奠定基础。
3、中招考点
函数及其图象中的实践与探索是中招的常考题,多与其它几何综合性问题渗透在一起。
4、学情分析
实践与探索问题是学生在掌握函数的性质及图象的基础上进行学习的,学生已经对函数和函数图象有了初步的了解,因此学生对利用函数图象决问题会有较浓厚的兴趣。
二、学习目标
1、能根据一次函数的图象求二元一次方程组的解。
2、会从图象上获取信息,利用数形结合解决实际问题
三、评价任务
学生通过对例题的学习能正确利用数形结合解决实际问题。
四、教学过程
、对于y1=2x-1, y2=4x-2,下列说法:
①两直线平行;②两直线交y轴于同一点;
③两直线交于x轴于同一点;④方程2x-1 =0与
的解相同;⑤当x=1时,y1=y2=1. 其中。
实践与探索(1)◆随堂检测1.一商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是( )A 、9%B 、10%C 、11%D 、12%2. 为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( )A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++= 3.为了响应植树造林的号召,某村第一年造林200亩,第一年到第三年共造林728亩,若设它们每年增长率为x ,则应列出的方程是________________________。
4.某酒厂2007年盈利a 万元,以后每年增长率都为x,则2008年的盈利为___________万元,2009年盈利为______________万元,这三年的盈利总额为_____________万元.5.明珠电器城今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份营业额的平均月增长率.◆典例分析某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均月增长率是多少?分析:设平均月增长率为x,则2月份产量是5000(1+x )吨,3月份产量是5000(1+x )2吨. 解答:设平均月增长率为x ,据题意得:5000(1+x )2=7200(1+x )2=1.441+x=±1.2.x 1=0.2,x 2=-2.2(不合题意,舍去).所以x=0.2=20%.点评:注意以下几个问题:(1)为计算简便、直接求得,可以直接设增长率为x .(2)认真审题,弄清基数,增长了,增长到等词语的关系.(3)用直接开平方法做简单,不要将括号打开.◆课下作业●拓展提高1. 为了扩大销售量,某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .2. 某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是_____________.3. 为了使天更蓝水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x += 4.我市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+ 5.一钢铁企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?6. 某省为解决农村饮用水问题,2008年A市在省财政补助的基础上再投入600万元用于农村饮用水的“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元。
华师大版七下数学6.3《实践与探索》(行程问题)教学设计一. 教材分析《实践与探索》(行程问题)这一节内容,主要让学生了解行程问题的基本概念,掌握行程问题的解法,以及能够运用行程问题解决实际生活中的问题。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了相关的一元一次方程的知识,对问题解决的策略也有一定的了解。
但部分学生对行程问题的理解还比较模糊,行程问题的生活情境与数学模型的转化对学生来说还是有一定的难度。
三. 教学目标1.让学生了解行程问题的基本概念,理解行程问题的解法。
2.培养学生运用行程问题解决实际生活中的问题的能力。
3.提高学生的数学思维能力,培养学生的团队合作精神。
四. 教学重难点1.行程问题的基本概念的理解。
2.行程问题的生活情境与数学模型的转化的方法。
五. 教学方法采用问题驱动法,案例分析法,小组合作法,引导发现法等,让学生在实践中学习,合作中探究,发现中理解。
六. 教学准备1.准备相关的教学案例,用于引导学生理解和运用行程问题。
2.准备多媒体教学设备,用于展示和分析行程问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的行程问题,如“小明骑自行车去学校”,“火车通过隧道”等,引导学生对行程问题产生兴趣,激发学生的学习欲望。
2.呈现(10分钟)呈现一些典型的行程问题,让学生尝试解决。
如:问题1:小明骑自行车去学校,速度为3 km/h,家到学校的距离为2 km,小明需要多少时间才能到学校?问题2:一辆汽车以60 km/h的速度行驶,行驶了30 min,汽车行驶的路程是多少?让学生独立思考,小组讨论,尝试解决这些问题。
3.操练(10分钟)让学生自主设计一些行程问题,并尝试解决。
教师巡回指导,帮助学生解决问题,引导学生理解行程问题的解法。
4.巩固(10分钟)让学生结合生活实际,思考和讨论行程问题在生活中的应用。
华师大版九年级上册22.3实践与探索问题1拓展专题训练学校:___________姓名:___________班级:___________考号:___________一、解答题1.校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是多少米?2.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)3.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用为239万元?二、填空题4.如图,某小区规划在一个长30 m、宽20 m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78 m2,那么通道的宽应设计成多少m?设通道的宽为x m,由题意列得方程____________5.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为_____.6.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为_____m.三、单选题7.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=0参考答案1.2m【详解】解:设道路的宽为xm ,(32-x )(20-x )=540,整理,得x 2-52x+100=0,∴(x-50)(x-2)=0,∴x 1=2,x 2=50(不合题意,舍去),小道的宽应是2m .故答案为2.【点睛】此题应熟记长方形的面积公式,另外求出4块试验田平移为一个长方形的长和宽是解决本题的关键.2.(1)2m (2)2299平方米【分析】(1)根据小亮的方案表示出矩形的长和宽,利用矩形的面积公式列出方程求解即可. (2)求得甬道的宽后利用平行四边形的面积计算方法求得两个阴影部分面积的和即可.【详解】解:(1)根据小亮的设计方案列方程得:()()52x 48x 2300--=,解得:x=2或x=98(舍去)∴小亮设计方案中甬道的宽度为2m .(2)作AI ⊥CD ,垂足为I ,∵AB ∥CD ,∠1=60°,∴∠ADI=60°,∵BC ∥AD ,∴四边形ADCB 为平行四边形,∴BC=AD由(1)得x=2,∴BC=HE=2=AD在Rt△ADI中,AI=2sin60°∴小颖设计方案中四块绿地的总面积为52×48-52×2-48×2+)2=2299平方米.3.(1)150x;(2)当甬道的宽度为2.5米时,所建花坛的总费用为239万元.【解析】【分析】(1)根据题意得出横向甬道的面积为12(120+180)•x整理即可;(2)花坛总费用y=甬道总费用+绿化总费用:239=5.7x+(12000-S)×0.02,即可求出.【详解】(1)中间横道的面积=12(120+180)x=150x,(2)甬道总面积为S=150x+160x﹣2x2=310x﹣2x2,绿化总面积为: =12(120+180)80-S=12000﹣S花坛总费用:y=甬道总费用+绿化总费用=239 239=5.7x+(12000﹣S)×0.02,239=5.7x﹣0.02S+240,239=5.7x﹣0.02(310x﹣2x2)+240,239=0.04x2﹣0.5x+240,0.04x2﹣0.5x+1=0,4x2﹣50x+100=0,x1=2.5,∴x2=10∵甬道的宽不能超过6米,即x≤6,∴x=2.5,当x=2.5时,所建花坛的总费用为239万元.当甬道的宽度为2.5米时,所建花坛的总费用为239万元【点睛】此题考查一元二次方程的应用,解题关键在于列出方程4.(30-2x)(20-x)=6×78.【解析】【详解】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×78.5.10cm【解析】【分析】根据题意表示出中央长方形图案的长与宽,进而利用面积为6000cm2,进而求出即可【详解】设花边宽为x,根据题意可得:(120﹣2x)(80﹣2x)=6000解得:x1=10,x2=90(不符合题意,舍去).所以,花边的宽为10cm.故答案为:10cm.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程6.2【分析】设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【详解】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,故人行通道的宽度为2米.7.C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.。
华师大版数学八年级下册17.5《实践与探索》(第1课时)教学设计一. 教材分析华师大版数学八年级下册17.5《实践与探索》(第1课时)的内容主要围绕着一次函数的应用展开。
通过本节课的学习,学生能够理解一次函数在实际问题中的应用,掌握一次函数的解析式的求法,以及会利用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了函数的基本概念和一次函数的性质,对函数有一定的理解。
但部分学生在解决实际问题时,还不能很好地将函数知识运用其中。
因此,在教学过程中,需要关注学生的学习情况,引导学生将函数知识与实际问题相结合。
三. 教学目标1.理解一次函数在实际问题中的应用。
2.掌握一次函数的解析式的求法。
3.学会利用一次函数解决实际问题。
4.培养学生的动手操作能力和团队协作能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.一次函数的解析式的求法。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生主动探究,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的一次函数的实际问题案例。
2.准备教学PPT。
3.准备练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题案例,引导学生回顾一次函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)呈现一次函数在实际问题中的应用,让学生观察、分析,引导学生发现一次函数的解析式。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试利用一次函数的知识解决问题,求出一次函数的解析式。
4.巩固(10分钟)对每组的结果进行评价,引导学生总结一次函数解决实际问题的方法,巩固一次函数的知识。
5.拓展(10分钟)让学生尝试解决更复杂的一次函数实际问题,提高学生的解决问题的能力。
6.小结(5分钟)对本节课的学习内容进行小结,引导学生回顾一次函数在实际问题中的应用及解决方法。
7.家庭作业(5分钟)布置相关的练习题,巩固所学知识,提高学生的应用能力。
23.3 实践与探索(一)教学目标:1.学生在已有的一元二次方程的学习基础上,能够对生活中的实际工资问题进行数学建模解决问题,从而进一步体会方程是刻画现实世界的一个有效数学模型.2.让学生积极主动参与课堂自主探究和合作交流,并在其中体验发现问题、提出问题及解决问题的全过程,培养学生的数学应用能力.3.学生感受数学的严谨性,形成实事求是的态度及进行质疑和激发思考的习惯;获得成功的体验和克服困难的经历,增进应用数学的自信心.重点难点:1.重点:利用一元二次方程对实际问题进行数学建模,从而解决实际问题.2.难点:学生分析方程的解,自主探索得到解决实际问题的最佳方案. 教学方法:三疑三探教学过程:一、巩固旧知识1.解方程2708250x x -+=,并叙述解一元二次方程的解法.2.说说你对实践问题的解决时,有何经验,有何体会?二、设疑自探--解疑合探小明把一张边长为10cm 的正方形硬纸板的四周剪去一个同样大小的正方形,再折合成一个无盖的长方形盒子.(1)如果要求长方体的底面面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形边长会发生什么样的变化?折合成的长方体的体积又会发生什么样的变化?三、质疑再探:同学们还有什么问题或疑问?四、拓展运用:1.长方形的底面、正方形的边长与正方形硬纸板中的什么量有关系? (长方形的底面正方形的边长与正方形硬纸板的边长有关系)2.长方形的底面正方形的边长与正方形硬纸板的边长存在什么关系?(长方形的底面正方形的边长等于正方形硬纸板的边长减去剪去的小正方形边长的2倍)M G F E D C B A 3.你能否用数量关系表示出这种关系呢?并求出剪去的小正方形的边长. 解:设剪去的正方形边长为xcm ,依题意得:2(10)81x -= 109x -=± 11x =,29x =因为正方形硬纸板的边长为10cm ,所以剪去的正方形边长为1cm .4.请问长方体的高与正方形硬纸板中的什么量有关系?求出此时长方体的体积. (长方体的高与正方形硬纸板式剪去的小正方形的边长一样;体积为381181cm ⨯=)5.完成表格,与你的同伴一起交流,并讨论剪去的正方形边长发生什么样的变化?折合成的长方体的体积又会发生什么样的变化?6.在你观察到的变化中、你感到折合而成的长方体的体积会不会有最大的情况?以剪去的正方形的边长为自变量,折合而成的长方体体积为函数,并在直角坐标系中画出相应的点,看看与你的感觉是否一致.四、巩固练习:如图,△ABC 的边8BC cm =,高6AM cm =,长方形DEFG 的一边EF 落在BC 上,顶点D 、G 分别落在AB 和AC 上,如果这长方形面积212cm ,(1)试求这长方形的边长.(2)什么情况下,长方形的面积最大.五、课堂小结:1.谈谈本节的收获.2.谈谈本节的体会.3.谈谈本节的疑惑.教学反思:。