数字调制
- 格式:ppt
- 大小:2.83 MB
- 文档页数:45
数字调制(ASK、FSK、PSK)2ASK(⼆进制幅移键控)⼜称OOKfunction askdigital(s,f)% 实现ASK调制% s——输⼊⼆进制序列;f——载波的频率,即:⼀个码元周期包括f个载波周期% 调⽤举例:askdigital([1 0 1 1 0], 2)t=0:2*pi/99:2*pi; %初始化定义,1*100的矩阵cp=[];mod=[];bit=[];for n=1:length(s); % 调制过程if s(n)==0;bit1=zeros(1,100); % 100是码元周期else % s(n)==1;bit1=ones(1,100);endc=sin(f*t);mod=[mod c];bit=[bit bit1];endask=bit.*mod;subplot(2,1,1);plot(bit,'k','LineWidth',1);grid on;ylabel('Binary Signal');axis([0 100*length(s) -2.5 2.5]);subplot(2,1,2);plot(ask,'k','LineWidth',1);grid on;ylabel('ASK modulation');axis([0 100*length(s) -2.5 2.5]); 2FSK:‘1’对应频率为ω1的载波,‘0’对应频率为ω2的载波。
function fskdigital(s,f0,f1)% 实现 FSK 调制% s——输⼊⼆进制序列 f0,f1——两个不同频率的载波% 调⽤举例 (f0 f1 必须是整数) : fskdigital([1 0 1 1 0],1,2)t=0:2*pi/99:2*pi; %初始化定义cp=[];mod=[];bit=[];for n=1:length(s); % 调制过程if s(n)==0;cp1=ones(1,100);c=sin(f0*t);bit1=zeros(1,100);else %s(n)==1;cp1=ones(1,100);c=sin(f1*t);bit1=ones(1,100);endcp=[cp cp1];mod=[mod c];bit=[bit bit1];endfsk=cp.*mod;% fsk = mod;subplot(2,1,1);plot(bit,'k','LineWidth',1);grid on;ylabel('Binary Signal');axis([0 100*length(s) -2.5 2.5]);subplot(2,1,2);plot(fsk,'k','LineWidth',1);grid on;ylabel('FSK modulation');axis([0 100*length(s) -2.5 2.5]); 或⽤Matlab提供的函数fskmod调⽤格式 y= fskmod(x,M,freq_sep,nsamp); y=fskmod(x,M,freq_sep,nsamp,Fs);参数说明 x:消息信号 M:表⽰消息的符号数,必须是2的整数幂,M进制信号(0~M-1) freq_sep:两载波之间的频率间隔,单位Hz nsamp:输出信号的采样数,必须是⼤于1的正整数 Fs:根据奈奎斯特采样定理,(M-1)*freq_seq <= Fs M=2;freqsep=8;nsamp=8;Fs=32;x=randi([0,M-1],1000,1);y=fskmod(x,M,freqsep,nsamp,Fs);ly = length(y);%画2FSK的信号频谱freq= -Fs/2:Fs/ly : Fs/2-Fs/ly;Syy = fftshift(abs(fft(y)));plot(freq,Syy)PSKfunction bpskdigital( s, f )%实现BPSK% s:输⼊⼆进制序列,f:载波信号的频率(⼀个码元有⼏个载波周期)% 调⽤举例:bpskdigital([1 0 1 1 0], 2)t = 0:2*pi/99:2*pi;cp = [];mod = []; bit = [];for n=1:length(s)if s(n) == 0cp1 = -ones(1,100);bit1 = zeros(1,100);else %s(n)==1cp1 = ones(1,100);bit1 = ones(1,100);endc= sin(f*t);cp = [cp,cp1];mod = [mod,c];bit = [bit,bit1];endbpsk = cp .* mod;subplot(211);plot(bit,'LineWidth',1.5);grid on;ylabel('Binary Signal');axis([0 100*length(s) -2.5 2.5]);subplot(212);plot(bpsk,'LineWidth',1.5);grid on;ylabel('BPSK modulation');axis([0 100*length(s) -2.5 2.5]);endProcessing math: 100%。
数字调制技术一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。
将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。
在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。
数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。
在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。
主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。
1.幅移键控幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。
幅移键控载波在数字信号1或0的控制下通或断。
在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。
那么,在接收端就可以根据载波的有无还原出数字信号1和0。
移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。
二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。
2. 频移键控频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。
基本数字调制数字调制是指将模拟信号转换为数字信号的过程,其中基本数字调制是数字调制的一种核心技术。
本文将就基本数字调制进行详细的阐述,并探讨其在通信领域的应用。
一、数字调制的定义和基本概念数字调制是利用数字信号对模拟信号的某些特征进行描述和变换的过程。
在数字调制中,需要将模拟信号进行采样和量化,然后通过调制过程将其转换为数字信号。
数字信号的特点是离散性和可编码性,可通过解调过程进行还原,从而实现信号的传输和处理。
二、基本数字调制的分类基本数字调制包括脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲位置调制(PPM)、正交振幅调制(QAM)等几种常见的调制方式。
下面将对其中的几种调制方式进行分析:1. 脉冲振幅调制(PAM)脉冲振幅调制是通过调整脉冲信号的幅度来表示原始模拟信号的一种调制方式。
通过改变脉冲的幅度来表示模拟信号的大小,实现信号的数字化。
PAM技术在高速通信中得到广泛应用,如光纤通信和数字电视等领域。
2. 脉冲宽度调制(PWM)脉冲宽度调制是通过改变脉冲信号的宽度来表示原始模拟信号的一种调制方式。
将模拟信号划分为若干个固定宽度的脉冲,通过改变脉冲的宽度来表示模拟信号的变化程度。
PWM技术常应用于交流电转直流电的调节中。
3. 脉冲位置调制(PPM)脉冲位置调制是通过改变脉冲信号的位置来表示原始模拟信号的一种调制方式。
通过改变脉冲的触发位置来表征模拟信号的大小或变化情况。
PPM技术常应用于无线通信中,如雷达和无线传感器网络等。
4. 正交振幅调制(QAM)正交振幅调制是利用两个正交载波来表示数字信号的调制方式。
通过改变正交载波的相位和振幅来表示数字信号的不同取值。
QAM技术在现代通信系统中广泛使用,如无线局域网和移动通信等。
三、基本数字调制的应用基本数字调制广泛应用于现代通信系统中。
其中,QAM技术在数字电视中得到广泛应用,通过将音视频等信号进行QAM调制,实现了高清晰度的信号传输。
而PAM技术常应用于光纤通信中,提高了数据传输速率和可靠性。
基本数字调制
数字调制是指用数字数据调制模拟信号,主要有三种形式:移幅键控法ASK、移频键控法FSK、移相键控法PSK。
幅度键控(ASK):即按载波的幅度受到数字数据的调制而取不同的值,例如对应二进制0,载波振幅为0;对应二进制1,载波振幅为1。
调幅技术实现起来简单,但容易受增益变化的影响,是一种低效的调制技术。
在电话线路上,通常只能达到1200bps的速率。
频移键控(FSK):即按数字数据的值(0或1)调制载波的频率。
例如对应二进制0的载波频率为F1,而对应二进制1的载波频率为F2。
该技术抗干扰性能好,但占用带宽较大。
在电话线路上,使用FSK可以实现全双工操作,通常可达到1200bps的速率。
相移键控(PSK):即按数字数据的值调制载波相位。
例如用180相移表示1,用0相移表示0。
这种调制技术抗干扰性能最好,且相位的变化也可以作为定时信息来同步发送机和接收机的时钟,并对传输速率起到加倍的作用。
通信信号的调制和解调技术随着科技的不断进步,通信技术在我们的生活中扮演着越来越重要的角色。
作为通信技术的核心,调制和解调技术起到了关键的作用。
本文将详细介绍通信信号的调制和解调技术,并分步骤进行说明。
一、调制技术1. 通信信号的调制是指将源信号转换为适合传输的调制信号。
调制技术可以将源信号变成需要传输的信号。
2. 常见的调制技术有:振幅调制(AM)、频率调制(FM)和相位调制(PM)。
3. 振幅调制(AM)是指通过改变调制信号的振幅来实现信号的调制。
这种调制技术广泛应用于广播和电视传输中。
4. 频率调制(FM)是指通过改变调制信号的频率来实现信号的调制。
这种调制技术常用于FM广播和音频传输。
5. 相位调制(PM)是指通过改变调制信号的相位来实现信号的调制。
这种调制技术在通信中也有广泛应用。
二、解调技术1. 通信信号的解调是指将调制后的信号还原为源信号的过程。
解调技术可以从调制信号中还原出源信号。
2. 解调技术主要包括同步、检测和滤波三个步骤。
3. 同步是指在解调过程中确保解调器的接收端和发送端保持同步,以便准确还原信号。
4. 检测是指将同步后的信号转化为模拟信号,以便后续处理。
5. 滤波是指通过滤波器去除解调后的信号中的噪声和杂波。
三、调制和解调的分类1. 数字调制和解调:数字调制和解调是指将数字信号转化为模拟信号或将模拟信号转化为数字信号的过程。
常用的数字调制技术包括正交振幅调制(QAM)和相移键控(PSK)等。
2. 模拟调制和解调:模拟调制和解调是指将模拟信号转化为模拟调制信号或将模拟调制信号转化为模拟信号的过程。
常用的模拟调制技术包括调幅调制(AM)、调频调制(FM)和调相调制(PM)等。
四、应用举例1. 无线通信:无线通信中广泛应用的调制技术包括频率调制和相位调制。
比如,蜂窝通信系统中使用的GSM系统就是用的GMSK(高斯最小频移键控)的调制技术。
2. 数字电视:数字电视通过使用数字调制技术将视频信号转化为数字信号进行传输,并通过解调技术将数字信号还原为视频信号。
各种数字调制方式的原理、应用和发展的重新评析序号. 内容1. 引言:数字调制是现代通信中的基础概念之一。
它是将数字信息转换成模拟信号或电磁波的技术,以实现信息的传输和处理。
本文将重新评析各种数字调制方式的原理、应用和发展,旨在提供一个全面、深入的理解。
2. 调幅(AM)调制- 原理:调幅是最早的数字调制方式之一,它基于模拟信号和载波信号的幅度变化来表示数字信息。
原始数字信号的振幅被乘以载波信号的振幅以实现调制。
- 应用:调幅广泛应用于广播电台、电视传输和一些简单的数据传输系统中。
它具有简单、成本低和易于实现的优势。
- 发展:随着技术的进步,调幅逐渐被其他数字调制方式所取代,因为它在传输效率和抗干扰性方面存在限制。
3. 调频(FM)调制- 原理:调频通过改变载波信号的频率来表示数字信息。
原始数字信号的频率变化被转化为载波信号的频率变化。
- 应用:调频广泛应用于广播、无线通信和卫星通信等领域。
它具有较好的抗干扰性和传输质量,适用于要求音频质量较高的应用场景。
- 发展:随着数字通信的发展,调频逐渐被更高效的数字调制方式所取代。
4. 调相(PM)调制- 原理:调相通过改变载波信号的相位来表示数字信息。
原始数字信号的相位变化被转化为载波信号的相位变化。
- 应用:调相主要应用于无线电导航、雷达和卫星通信等领域。
它具有较好的抗噪声能力和低误码率特性。
- 发展:调相在一些特定应用领域仍然具有重要意义,但随着数字技术的发展,更复杂的调制方式逐渐取代了调相。
5. 正交频分复用(OFDM)调制- 原理:OFDM是一种多子载波调制技术,它将一个宽带信号划分为多个窄带子信道进行调制。
每个子信道使用基于正交的调制技术,使得它们之间可以同时传输。
- 应用:OFDM广泛应用于Wi-Fi、4G、5G等无线通信系统中。
它通过利用频谱资源的高效利用和抗多径衰落的能力,显著提高了通信系统的传输速率和可靠性。
- 发展:OFDM是目前最常使用的数字调制方式之一,而且随着技术的不断发展,它仍在不断演进和优化。
基本数字调制什么是数字调制?在通信领域中,数字调制(Digital Modulation)是一种将数字信号转换成模拟信号的过程。
在数字通信中,信息以离散的形式传输,因此需要将数字信号转换为模拟信号以便在信道中传输。
数字调制技术所做的就是通过将数字信号调制到高频载波上,使其能够在信道中传输。
数字调制可以分为基带调制和带通调制两种方式。
基带调制是将数字信号直接调制到基带频率上,这种方式适用于短距离传输。
而带通调制则是将数字信号调制到射频频率带上,这样可以实现远距离传输和抗干扰能力强。
基本数字调制的分类基本数字调制主要包括以下四种调制方式:1.ASK(Amplitude Shift Keying)调制: ASK调制是一种将数字信号调制到载波上的调制方式。
在ASK调制中,载波的幅度会根据数字信号的取值而变化。
即当传输的比特为1时,载波的幅度为A,当传输的比特为0时,载波的幅度为0。
这种调制方式简单易实现,但对噪声和干扰比较敏感。
2.FSK(Frequency Shift Keying)调制: FSK调制是一种将数字信号调制到载波频率上的调制方式。
在FSK调制中,载波的频率会根据数字信号的取值而改变。
即当传输的比特为1时,载波的频率为f1,当传输的比特为0时,载波的频率为f2。
这种调制方式在抗干扰能力方面较好,但调制复杂度较高。
3.PSK(Phase Shift Keying)调制: PSK调制是一种将数字信号调制到载波相位上的调制方式。
在PSK调制中,载波的相位会根据数字信号的取值而改变。
即当传输的比特为1时,载波的相位为θ1,当传输的比特为0时,载波的相位为θ2。
这种调制方式适用于高速传输,但对抗多径传播的干扰较为敏感。
4.QAM(Quadrature Amplitude Modulation)调制: QAM调制是一种将数字信号同时调制到载波的幅度和相位上的调制方式。
在QAM调制中,载波的幅度和相位会根据数字信号的取值而变化。
数字调制技术在通信中的作用1.引言数字调制技术是现代通信领域中至关重要的技术之一。
数字调制技术通过将数字信号与载波合成为高频信号进行传输,实现了通信效率的大幅度提升。
本文将从数字调制技术的定义、原理以及应用三个方面,全面介绍数字调制技术在通信中的作用。
2.数字调制技术的定义数字调制(Digital Modulation)技术是指通过将数字信号按照一定的规律转换成为模拟信号(载波信号),然后在模拟信号上进行调制,以便在传输过程中保证数据传输的可靠性、迅速性、高效性和稳定性。
3.数字调制技术的原理数字调制技术依靠上述所述的载波信号在数字信号上进行调制,具体原理如下:3.1载波信号为了能够传输高频信号,数字调制技术在传输中必须涉及到载波信号。
载波信号是一种正弦波信号,通常的频率范围为几千赫兹到几千兆赫兹之间。
3.2数字信号传统的数字信号分为脉冲和非脉冲两种,但是在数字调制技术中,常常使用数字化的“0”和“1”代替脉冲和非脉冲,因为“0”和“1”的数字化性质使得传输信号更加稳定。
3.3调制方式数字调制技术中的调制方式根据不同的用途和需求,通常有不同的选择,通用的调制方式有以下三种:3.3.1频移键控(FSK)在FSK中,表示“0”和“1”的两个数字,分别对应两个不同的载波频率,通过这种方法,就可以同时传输两个不同的数字。
3.3.2相位键控(PSK)在PSK中,表示“0”和“1”的两个数字,分别对应两个不同的载波相位,通过这种方法,就可以传输一个数字。
3.3.3振幅键控(ASK)在ASK中,表示“0”和“1”的两个数字,分别对应两个不同的载波幅度,通过这种方法,就可以传输一个数字。
4.数字调制技术的应用数字调制技术广泛应用于现代通信的各个领域,以下将从数字电视、数字音频、数字移动通信、卫星通信四个方面来介绍。
4.1数字电视数字电视的主要特点是大容量、高清晰度、高保真性。
虽然传输中需要的带宽更大,但是通过数字调制技术的高效率传输,数字电视信号依然可以在非常短的时间内传输到用户的家中。
模拟调制和数字调制
模拟调制和数字调制是通信领域中常用的技术手段。
模拟调制是将模拟信号转换为模拟载波信号的过程,常用的模拟调制方式有调幅、调频和调相。
数字调制是将数字信号转换为数字载波信号的过程,常用的数字调制方式有ASK、FSK、PSK和QAM等。
模拟调制和数字调制在通信系统中发挥着重要的作用,对于信号传输的质量和效率具有重要影响。
而随着通信技术的发展,数字调制在通信系统中的应用越来越广泛,已成为通信系统中不可或缺的技术手段。
- 1 -。